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Preface

The idea for this book came from the time the authors spent at the Statistics and
Applied Mathematical Sciences Institute (SAMSI) in Research Triangle Park in North
Carolina starting in fall 2003. The first author was there for a total of two years, the
first year as a Duke/SAMSI Research Fellow. The second author was there for a year
as a Post-Doctoral Scholar. The third author has the great fortune to be in RTP per-
manently. SAMSI was – and remains – an incredibly rich intellectual environment
with a general atmosphere of free-wheeling inquiry that cuts across established fields.
SAMSI encourages creativity: It is the kind of place where researchers can be found at
work in the small hours of the morning – computing, interpreting computations, and
developing methodology. Visiting SAMSI is a unique and wonderful experience.

The people most responsible for making SAMSI the great success it is include Jim
Berger, Alan Karr, and Steve Marron. We would also like to express our gratitude to
Dalene Stangl and all the others from Duke, UNC-Chapel Hill, and NC State, as well
as to the visitors (short and long term) who were involved in the SAMSI programs. It
was a magical time we remember with ongoing appreciation.

While we were there, we participated most in two groups: Data Mining and Machine
Learning, for which Clarke was the group leader, and a General Methods group run
by David Banks. We thank David for being a continual source of enthusiasm and
inspiration. The first chapter of this book is based on the outline of the first part of
his short course on Data Mining and Machine Learning. Moreover, David graciously
contributed many of his figures to us. Specifically, we gratefully acknowledge that
Figs. 1.1–6, Figs. 2.1,3,4,5,7, Fig. 4.2, Figs. 8.3,6, and Figs. 9.1,2 were either done by
him or prepared under his guidance.

On the other side of the pond, the Newton Institute at Cambridge University provided
invaluable support and stimulation to Clarke when he visited for three months in 2008.
While there, he completed the final versions of Chapters 8 and 9. Like SAMSI, the
Newton Institute was an amazing, wonderful, and intense experience.

This work was also partially supported by Clarke’s NSERC Operating Grant
2004–2008. In the USA, Zhang’s research has been supported over the years by two
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grants from the National Science Foundation. Some of the research those grants sup-
ported is in Chapter 10.

We hope that this book will be of value as a graduate text for a PhD-level course on data
mining and machine learning (DMML). However, we have tried to make it comprehen-
sive enough that it can be used as a reference or for independent reading. Our paradigm
reader is someone in statistics, computer science, or electrical or computer engineering
who has taken advanced calculus and linear algebra, a strong undergraduate probabil-
ity course, and basic undergraduate mathematical statistics. Someone whose expertise
in is one of the topics covered here will likely find that chapter routine, but hopefully
find the other chapters are at a comfortable level.

The book roughly separates into three parts. Part I consists of Chapters 1 through 4:
This is mostly a treatment of nonparametric regression, assuming a mastery of linear
regression. Part II consists of Chapters 5, 6, and 7: This is a mix of classification, recent
nonparametric methods, and computational comparisons. Part III consists of Chapters
8 through 11. These focus on high dimensional problems, including clustering, di-
mension reduction, variable selection, and multiple comparisons. We suggest that a
selection of topics from the first two parts would be a good one semester course and a
selection of topics from Part III would be a good follow-up course.

There are many topics left out: proper treatments of information theory, VC dimension,
PAC learning, Oracle inequalities, hidden Markov models, graphical models, frames,
and wavelets are the main absences. We regret this, but no book can be everything.

The main perspective undergirding this work is that DMML is a fusion of large sectors
of statistics, computer science, and electrical and computer engineering. The DMML
fusion rests on good prediction and a complete assessment of modeling uncertainty
as its main organizing principles. The assessment of modeling uncertainty ideally in-
cludes all of the contributing factors, including those commonly neglected, in order to
be valid. Given this, other aspects of inference – model identification, parameter esti-
mation, hypothesis testing, and so forth – can largely be regarded as a consequence of
good prediction. We suggest that the development and analysis of good predictors is
the paradigm problem for DMML.

Overall, for students and practitioners alike, DMML is an exciting context in which
whole new worlds of reasoning can be productively explored and applied to important
problems.

Bertrand Clarke
University of Miami, Miami, FL

Ernest Fokoué
Kettering University, Flint, MI

Hao Helen Zhang
North Carolina State University,
Raleigh, NC
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Chapter 1

Variability, Information, and Prediction

Introductory statistics courses often start with summary statistics, then develop a
notion of probability, and finally turn to parametric models – mostly the normal –
for inference. By the end of the course, the student has seen estimation and hypothesis
testing for means, proportions, ANOVA, and maybe linear regression. This is a good
approach for a first encounter with statistical thinking. The student who goes on takes
a familiar series of courses: survey sampling, regression, Bayesian inference, multi-
variate analysis, nonparametrics and so forth, up to the crowning glories of decision
theory, measure theory, and asymptotics. In aggregate, these courses develop a view of
statistics that continues to provide insights and challenges.

All of this was very tidy and cosy, but something changed. Maybe it was computing.
All of a sudden, quantities that could only be described could be computed readily
and explored. Maybe it was new data sets. Rather than facing small to moderate sam-
ple sizes with a reasonable number of parameters, there were 100 data points, 20,000
explanatory variables, and an array of related multitype variables in a time-dependent
data set. Maybe it was new applications: bioinformatics, E-commerce, Internet text
retrieval. Maybe it was new ideas that just didn’t quite fit the existing framework. In
a world where model uncertainty is often the limiting aspect of our inferential proce-
dures, the focus became prediction more than testing or estimation. Maybe it was new
techniques that were intellectually uncomfortable but extremely effective: What sense
can be made of a technique like random forests? It uses randomly generated ensembles
of trees for classification, performing better and better as more models are used.

All of this was very exciting. The result of these developments is called data mining
and machine earning (DMML).

Data mining refers to the search of large, high-dimensional, multitype data sets, espe-
cially those with elaborate dependence structures. These data sets are so unstructured
and varied, on the surface, that the search for structure in them is statistical. A famous
(possibly apocryphal) example is from department store sales data. Apparently a store
found there was an unusually high empirical correlation between diaper sales and beer
sales. Investigation revealed that when men buy diapers, they often treat themselves
to a six-pack. This might not have surprised the wives, but the marketers would have
taken note.

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 1
in Statistics, DOI 10.1007/978-0-387-98135-2 1, c© Springer Science+Business Media, LLC 2009
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Machine learning refers to the use of formal structures (machines) to do inference
(learning). This includes what empirical scientists mean by model building – proposing
mathematical expressions that encapsulate the mechanism by which a physical process
gives rise to observations – but much else besides. In particular, it includes many tech-
niques that do not correspond to physical modeling, provided they process data into
information. Here, information usually means anything that helps reduce uncertainty.
So, for instance, a posterior distribution represents “information” or is a “learner” be-
cause it reduces the uncertainty about a parameter.

The fusion of statistics, computer science, electrical engineering, and database man-
agement with new questions led to a new appreciation of sources of errors. In narrow
parametric settings, increasing the sample size gives smaller standard errors. However,
if the model is wrong (and they all are), there comes a point in data gathering where
it is better to use some of your data to choose a new model rather than just to con-
tinue refining an existing estimate. That is, once you admit model uncertainty, you can
have a smaller and smaller variance but your bias is constant. This is familiar from
decomposing a mean squared error into variance and bias components.

Extensions of this animate DMML. Shrinkage methods (not the classical shrinkage,
but the shrinking of parameters to zero as in, say, penalized methods) represent a trade-
off among variable selection, parameter estimation, and sample size. The ideas become
trickier when one must select a basis as well. Just as there are well-known sums of
squares in ANOVA for quantifying the variability explained by different aspects of
the model, so will there be an extra variability corresponding to basis selection. In
addition, if one averages models, as in stacking or Bayes model averaging, extra layers
of variability (from the model weights and model list) must be addressed. Clearly,
good inference requires trade-offs among the biases and variances from each level of
modeling. It may be better, for instance, to “stack” a small collection of shrinkage-
derived models than to estimate the parameters in a single huge model.

Among the sources of variability that must be balanced – random error, parameter
uncertainty and bias, model uncertainty or misspecification, model class uncertainty,
generalization error – there is one that stands out: model uncertainty. In the conven-
tional paradigm with fixed parametric models, there is no model uncertainty; only
parameter uncertainty remains. In conventional nonparametrics, there is only model
uncertainty; there is no parameter, and the model class is so large it is sure to con-
tain the true model. DMML is between these two extremes: The model class is rich
beyond parametrization, and may contain the true model in a limiting sense, but the
true model cannot be assumed to have the form the model class defines. Thus, there
are many parameters, leading to larger standard errors, but when these standard errors
are evaluated within the model, they are invalid: The adequacy of the model cannot be
assumed, so the standard error of a parameter is about a value that may not be mean-
ingful. It is in these high-variability settings in the mid-range of uncertainty (between
parametric and nonparametric) that dealing with model uncertainty carefully usually
becomes the dominant issue which can only be tested by predictive criteria.

There are other perspectives on DMML that exist, such as rule mining, fuzzy learning,
observational studies, and computational learning theory. To an extent, these can be
regarded as elaborations or variations of aspects of the perspective presented here,
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although advocates of those views might regard that as inadequate. However, no book
can cover everything and all perspectives. Details on alternative perspectives to the one
perspective presented here can be found in many good texts.

Before turning to an intuitive discussion of several major ideas that will recur through-
out this monograph, there is an apparent paradox to note: Despite the novelty ascribed
to DMML, many of the topics covered here have been studied for decades. Most of
the core ideas and techniques have precedents from before 1990. The slight paradox is
resolved by noting that what is at issue is the novel, unexpected way so many ideas,
new and old, have been recombined to provide a new, general perspective dramatically
extending the conventional framework epitomized by, say, Lehmann’s books.

1.0.1 The Curse of Dimensionality

Given that model uncertainty is the key issue, how can it be measured? One crude
way is through dimension. The problem is that high model uncertainty, especially of
the sort central to DMML, rarely corresponds to a model class that permits a finite-
dimensional parametrization. On the other hand, some model classes, such as neural
nets, can approximate sets of functions that have an interior in a limiting sense and
admit natural finite-dimensional subsets giving arbitrarily good approximations. This
is the intermediate tranche between finite-dimensional and genuinely nonparametric
models: The members of the model class can be represented as limiting forms of an
unusually flexible parametrized family, the elements of which give good, natural ap-
proximations. Often the class has a nonvoid interior.

In this context, the real dimension of a model is finite but the dimension of the model
space is not bounded. The situation is often summarized by the phrase the Curse of Di-
mensionality. This phrase was first used by Bellman (1961), in the context of approx-
imation theory, to signify the fact that estimation difficulty not only increases with
dimension – which is no surprise – but can increase superlinearly. The result is that
difficulty outstrips conventional data gathering even for what one would expect were
relatively benign dimensions. A heuristic way to look at this is to think of real functions
of x, of y, and of the pair (x,y). Real functions f , g of a single variable represent only
a vanishingly small fraction of the functions k of (x,y). Indeed, they can be embedded
by writing k(x,y) = f (x)+ g(y). Estimating an arbitrary function of two variables is
more than twice as hard as estimating two arbitrary functions of one variable.

An extreme case of the Curse of Dimensionality occurs in the “large p, small n”
problem in general regression contexts. Here, p customarily denotes the dimension
of the space of variables, and n denotes the sample size. A collection of such data is
(yyyi,xxx1,i, ...,xxxp,i) for i = 1, ...n. Gathering the explanatory variables, the xxxi, js, into an
n× p matrix X in which the ith row is (xxx1,i, ...,xxxp,i) means that X is short and fat when
p >> n. Conventionally, design matrices are tall and skinny, n >> p, so there is a rel-
atively high ratio n/p of data to the number of inferences. The short, fat data problem
occurs when n/p << 1, so that the parameters cannot be estimated directly at all, much
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less well. These problems need some kind of auxiliary principle, such as shrinkage or
other constraints, just to make solutions exist.

The finite-dimensional parametric case and the truly nonparametric case for regres-
sion are settings in which it is convenient to discuss some of the recurrent issues in
the treatments here. It will be seen that the Curse applies in regression, but the Curse
itself is more general, applying to classification, and to nearly all other aspects of mul-
tivariate inference. As noted, traditional analysis avoids the issue by making strong
model assumptions, such as linearity and normality, to get finite-dimensional behav-
ior or by using distribution-free procedures, and being fully nonparametric. However,
the set of practical problems for which these circumventions are appropriate is small,
and modern applied statisticians frequently use computer-intensive techniques on the
intermediate tranche that are designed to minimize the impact of the Curse.

1.0.2 The Two Extremes

Multiple linear regression starts with n observations of the form (Yi,XXXi) and then makes
the strong modeling assumption that the response Yi is related to the vector of explana-
tory variables XXXi = (X1,i, ...,Xp,i) by

Yi = βββT XXXi + εi = β0 +β1X1,i + . . .βpXp,i + εi,

where each random error εi is (usually) an independent draw from a normal distribu-
tion with mean zero and fixed but unknown variance. More generally, the εis are taken
as symmetric, unimodal, and independent. The XXXis can be random, or, more com-
monly, chosen by the experimenter and hence deterministic. In the chapters to follow,
instances of this setting will recur several times under various extra conditions.

In contrast, nonparametric regression assumes that the response variable is related to
the vector of explanatory variables by

Yi = f (XXXi)+ εi,

where f is some smooth function. The assumptions about the error may be the same
as for linear regression, but people tend to put less emphasis on the error structure
than on the uncertainty in estimates f̂ of f . This is reasonable because, outside of
large departures from independent, symmetric, unimodal εis, the dominant source of
uncertainty comes from estimating f . This setting will recur several times as well;
Chapter 2, for instance, is devoted to it.

Smoothness of f is central: For several nonparametric methods, it is the smoothness
assumptions that make theorems ensuring good behavior (consistency, for instance) of
regression estimators f̂ of f possible. For instance, kernel methods often assume f is
in a Sobolev space, meaning f and a fixed number, say s, of its derivatives lie in a
Hilbert space, say Lq(Ω), where the open set Ω ⊂ Rp is the domain of f .
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Other methods, like splines for instance, weaken these conditions by allowing f to be
piecewise continuous, so that it is differentiable between prespecified pairs of points,
called knots. A third approach penalizes the roughness of the fitted function, so that the
data help determine how wiggly the estimate of f should be. Most of these methods
include a “bandwidth” parameter, often estimated by cross-validation (to be discussed
shortly). The bandwidth parameter is like a resolution defining the scale on which
solutions should be valid. A finer-scale, smaller bandwidth suggests high concern with
very local behavior of f ; a large-scale, higher bandwidth suggests one will have to be
satisfied, usually grudgingly, with less information on the detailed behavior of f .

Between these two extremes lies the intermediate tranche, where most of the action in
DMML is. The intermediate tranche is where the finite-dimensional methods confront
the Curse of Dimensionality on their way to achieving good approximations to the
nonparametric setting.

1.1 Perspectives on the Curse

Since almost all finite-dimensional methods break down as the dimension p of XXXi

increases, it’s worth looking at several senses in which the breakdown occurs. This
will reveal impediments that methods must overcome. In the context of regression
analysis under the squared error loss, the formal statement of the Curse is:

• The mean integrated squared error of fits increases faster than linearly in p.

The central reason is that, as the dimension increases, the amount of extra room in the
higher-dimensional space and the flexibility of large function classes is dramatically
more than experience with linear models suggests.

For intuition, however, note that there are three nearly equivalent informal descriptions
of the Curse of Dimensionality:

• In high dimensions, all data sets are too sparse.

• In high dimensions, the number of possible models to consider increases superex-
ponentially in p.

• In high dimensions, all data sets show multicollinearity (or concurvity , which is
the generalization that arises in nonparametric regression).

In addition to these near equivalences, as p increases, the effect of error terms tends
to increase and the potential for spurious correlations among the explanatory variables
increases. This section discusses these issues in turn.

These issues may not sound very serious, but they are. In fact, scaling up most pro-
cedures highlights unforeseen weaknesses in them. To dramatize the effect of scaling
from two to three dimensions, recall the high school physics question: What’s the first
thing that would happen if a spider kept all its proportions the same but was sud-
denly 10 feet tall? Answer: Its legs would break. The increase in volume in its body
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(and hence weight) is much greater than the increase in cross-sectional area (and hence
strength) of its legs. That’s the Curse.

1.1.1 Sparsity

Nonparametric regression uses the data to fit local features of the function f in a flexi-
ble way. If there are not enough observations in a neighborhood of some point xxx, then
it is hard to decide what f (xxx) should be. It is possible that f has a bump at xxx, or a dip,
some kind of saddlepoint feature, or that f is just smoothly increasing or decreasing at
xxx. The difficulty is that, as p increases, the amount of local data goes to zero.

This is seen heuristically by noting that the volume of a p-dimensional ball of radius
r goes to zero as p increases. This means that the volume of the set centered at xxx in
which a data point xxxi must lie in order to provide information about f (xxx) has fewer and
fewer points per unit volume as p increases.

This slightly surprising fact follows from a Stirling’s approximation argument. Recall
the formula for the volume of a ball of radius r in p dimensions:

Vr(p) =
π p/2rp

Γ (p/2+1)
. (1.1.1)

When p is even, p = 2k for some k. So,

lnVr(p) = k ln(πr2)− ln(k!)

since Γ (k +1) = k!. Stirling’s formula gives k!≈
√

2πkk+1/2e−k. So, (1.1.1) becomes

lnVr(p) =−1
2

ln(2π)− 1
2

lnk + k[1+ ln(πr2)]− k lnk.

The last term dominates and goes to −∞ for fixed r. If p = 2k + 1, one again gets
Vr(p)→ 0. The argument can be extended by writing Γ (p/2+1) = Γ ((k +1)+1/2)
and using bounds to control the extra “1/2”. As p increases, the volume goes to zero
for any r. By contrast, the volume of a cuboid of side length r is rp, which goes to 0,
1, or ∞ depending on r < 1, r = 1, or r > 1. In addition, the ratio of the volume of the
p-dimensional ball of radius r to the volume of the cuboid of side length r typically
goes to zero as p gets large.

Therefore, if the xxx values are uniformly distributed on the unit hypercube, the expected
number of observations in any small ball goes to zero. If the data are not uniformly dis-
tributed, then the typical density will be even more sparse in most of the domain, if a
little less sparse on a specific region. Without extreme concentration in that specific
region – concentration on a finite-dimensional hypersurface for instance – the increase
in dimension will continue to overwhelm the data that accumulate there, too. Essen-
tially, outside of degenerate cases, for any fixed sample size n, there will be too few
data points in regions to allow accurate estimation of f .
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To illustrate the speed at which sparsity becomes a problem, consider the best-case
scenario for nonparametric regression, in which the xxx data are uniformly distributed in
the p-dimensional unit ball. Figure 1.1 plots rp on [0,1], the expected proportion of
the data contained in a centered ball of radius r for p = 1,2,8. As p increases, r must
grow large rapidly to include a reasonable fraction of the data.
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Fig. 1.1 This plots rp, the expected proportion of the data contained in a centered ball of radius r in
the unit ball for p = 1,2,8. Note that, for large p, the radius needed to capture a reasonable fraction
of the data is also large.

To relate this to local estimation of f , suppose one thousand values of are uniformly
distributed in the unit ball in IRp. To ensure that at least 10 observations are near xxx
for estimating f near xxx, (1.1.1) implies the expected radius of the requisite ball is
r = p

√
.01. For p = 10, r = 0.63 and the value of r grows rapidly to 1 with increasing p.

This determines the size of the neighborhood on which the analyst can hope to estimate
local features of f . Clearly, the neighborhood size increases with dimension, imply-
ing that estimation necessarily gets coarser and coarser. The smoothness assumptions
mentioned before – choice of bandwidth, number and size of derivatives – govern how
big the class of functions is and so help control how big the neighborhood must be to
ensure enough data points are near an xxx value to permit decent estimation.
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Classical linear regression avoids the sparsity issue in the Curse by using the linearity
assumption. Linearity ensures that all the points contribute to fitting the estimated sur-
face (i.e., the hyperplane) everywhere on the XXX-space. In other words, linearity permits
the estimation of f at any xxx to borrow strength from all of the xxxis, not just the xxxis in a
small neighborhood of xxx.

More generally, nonlinear models may avoid the Curse when the parametrization does
not “pick off” local features. To see the issue, consider the nonlinear model:

f (xxx) =
{

17 if xxx ∈ Br = {xxx : ‖xxx− xxx0‖ ≤ r}
β0 +∑p

j=1 β jx j if xxx ∈ Bc
r .

The ball Br is a local feature. This nonlinear model borrows strength from the data
over most of the space, but even with a large sample it is unlikely that an analyst
can estimate f near xxx0 and the radius r that defines the nonlinear feature. Such cases
are not pathological – most nonlinear models have difficulty in some regions; e.g.,
logistic regression can perform poorly unless observations are concentrated where the
sigmoidal function is steep.

1.1.2 Exploding Numbers of Models

The second description of the Curse is that the number of possible models increases
superexponentially in dimension. To illustrate the problem, consider a very simple
case: polynomial regression with terms of degree 2 or less. Now, count the number of
models for different values of p.

For p = 1, the seven possible models are:

E(Y ) = β0, E(Y ) = β1x1, E(Y ) = β2x2
1,

E(Y ) = β0 +β1x1, E(Y ) = β0 +β2x2
1, E(Y ) = β1x1 +β2x2

1,
E(Y ) = β0 +β1x1 +β2x2

1.

For p = 2, the set of models expands to include terms in x2 having the form x2, x2
2 and

x1x2. There are 63 such models. In general, the number of polynomial models of order
at most 2 in p variables is 2a−1, where a = 1+2p+ p(p−1)/2. (The constant term,
which may be included or not, gives 21 cases. There are p possible first order terms,
and the cardinality of all subsets of p terms is 2p. There are p second-order terms of the
form xxx2

i , and the cardinality of all subsets is again 2p. There are C(p,2) = p(p−1)/2
distinct subsets of size 2 among p objects. This counts the number of terms of the
form xxxixxx j for i 	= j and gives 2p(p−1)/2 terms. Multiplying and subtracting 1 for the
disallowed model with no terms gives the result.)

Clearly, the problem worsens if one includes models with more terms, for instance
higher powers. The problem remains if polynomial expansions are replaced by more
general basis expansions. It may worsen if more basis elements are needed for good
approximation or, in the fortunate case, the rate of explosion may decrease somewhat
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if the basis can express the functions of interest parsimoniously. However, the point
remains that an astronomical number of observations are needed to select the best
model among so many candidates, even for low-degree polynomial regression.

In addition to fit, consider testing in classical linear regression. Once p is moderately
large, one must make a very large number of significance tests, and the family-wise
error rate for the collection of inferences will be large or the tests themselves will
be conservative to the point of near uselessness. These issues will be examined in
detail in Chapter 10, where some resolutions will be presented. However, the practical
impossibility of correctly identifying the best model, or even a good one, is a key
motivation behind ensemble methods, discussed later.

In DMML, the sheer volume of data and concomitant necessity for flexible regression
models forces much harder problems of model selection than arise with low-degree
polynomials. As a consequence, the accuracy and precision of inferences for conven-
tional methods in DMML contexts decreases dramatically, which is the Curse.

1.1.3 Multicollinearity and Concurvity

The third description of the Curse relates to instability of fit and was pointed out by
Scott and Wand (1991). This complements the two previous descriptions, which focus
on sample size and model list complexity. However, all three are different facets of the
same issue.

Recall that, in linear regression, multicollinearity occurs when two or more of the
explanatory variables are highly correlated. Geometrically, this means that all of the
observations lie close to an affine subspace. (An affine subspace is obtained from a
linear subspace by adding a constant; it need not contain 000.)

Suppose one has response values Yi associated with observed vectors XXXi and does a
standard multiple regression analysis. The fitted hyperplane will be very stable in the
region where the observations lie, and predictions for similar vectors of explanatory
variables will have small variances. But as one moves away from the observed data,
the hyperplane fit is unstable and the prediction variance is large. For instance, if the
data cluster about a straight line in three dimensions and a plane is fit, then the plane
can be rotated about the line without affecting the fit very much. More formally, if the
data concentrate close to an affine subspace of the fitted hyperplane, then, essentially,
any rotation of the fitted hyperplane around the projection of the affine subspace onto
the hyperplane will fit about as well. Informally, one can spin the fitted plane around
the affine projection without harming the fit much.

In p-dimensions, there will be p elements in a basis. So, the number of proper sub-
spaces generated by the basis is 2p−2 if IRp and 000 are excluded. So, as p grows, there
is an exponential increase in the number of possible affine subspaces. Traditional mul-
ticollinearity can occur when, for a finite sample, the explanatory variables concentrate
on one of them. This is usually expressed in terms of the design matrix XXX as detXXX ′XXX
near zero; i.e., nearly singular. Note that XXX denotes either a matrix or a vector-valued
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outcome, the meaning being clear from the context. If needed, a subscript i, as in
XXXi, will indicate the vector case. The chance of multicollinearity happening purely by
chance increases with p. That is, as p increases, it is ever more likely that the variables
included will be correlated, or seem to be, just by chance. So, reductions to affine
subspaces will occur more frequently, decreasing |detXXX ′XXX |, inflating variances, and
giving worse mean squared errors and predictions.

But the problem gets worse. Nonparametric regression fits smooth curves to the data. In
analogy with multicollinearity, if the explanatory variables tend to concentrate along
a smooth curve that is in the family used for fitting, then the prediction and fit will
be good near the projected curve but poor in other regions. This situation is called
concurvity . Roughly, it arises when the true curve is not uniquely identifiable, or
nearly so. Concurvity is the nonparametric analog of multicollinearity and leads to
inflated variances. A more technical discussion will be given in Chapter 4.

1.1.4 The Effect of Noise

The three versions of the Curse so far have been in terms of the model. However, as
the number of explanatory variables increases, the error component typically has an
ever-larger effect as well.

Suppose one is doing multiple linear regression with YYY = XXXβββ+εεε , where εεε ∼N(000,σ2III);
i.e., all convenient assumptions hold. Then, from standard linear model theory, the
variance in the prediction at a point xxx given a sample of size n is

Var[Ŷ |xxx] = σ2(1+ xxxT (XXXT XXX)−1xxx), (1.1.2)

assuming (XXXT XXX) is nonsingular so its inverse exists. As (XXXT XXX) gets closer to singu-
larity, typically one or more eigenvalues go to 0, so the inverse (roughly speaking)
has eigenvalues that go to ∞, inflating the variance. When p � n, (XXXT XXX) is singu-
lar, indicating there are directions along which (XXXT XXX) cannot be inverted because of
zero eigenvalues. If a generalized inverse, such as the Moore-Penrose matrix, is used
when (XXXT XXX) is singular, a similar formula can be derived (with a limited domain of
applicability).

However, consider the case in which the eigenvalues decrease to zero as more and more
explanatory variables are included, i.e., as p increases. Then, (XXXT XXX) gets ever closer
to singularity and so its inverse becomes unbounded in the sense that one or more
(usually many) of its eigenvalues go to infinity. Since xxxT (XXXT XXX)−1xxx is the norm of xxx
with respect to the inner product defined by (XXXT XXX)−1, it will usually tend to infinity
(as long as the sequence of xxxs used doesn’t go to zero). That is, typically, Var[Ŷ |xxx]
tends to infinity as more and more explanatory variables are included. This means the
Curse also implies that, for typically occurring values of p and n, the instability of
estimates is enormous.
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1.2 Coping with the Curse

Data mining, in part, seeks to assess and minimize the effects of model uncertainty to
help find useful models and good prediction schemes. Part of this necessitates dealing
with the Curse.

In Chapter 4, it will be seen that there is a technical sense in which neural networks
can provably avoid the Curse in some cases. There is also evidence (not as clear) that
projection pursuit regression can avoid the Curse in some cases. Despite being remark-
able intellectual achievements, it is unclear how generally applicable these results are.
More typically, other methods rest on other flexible parametric families, nonparamet-
ric techniques, or model averaging and so must confront the Curse and other model
uncertainty issues directly. In these cases, analysts reduce the impact of the Curse by
designing experiments well, extracting low-dimensional features, imposing parsimony,
or aggressive variable search and selection.

1.2.1 Selecting Design Points

In some cases (e.g., computer experiments), it is possible to use experimental design
principles to minimize the Curse. One selects the xxxs at which responses are to be mea-
sured in a smart way. Either one chooses them to be spread as uniformly as possible,
to minimize sparsity problems, or one selects them sequentially, to gather information
where it is most needed for model selection or to prevent multicollinearity.

There are numerous design criteria that have been extensively studied in a variety of
contexts. Mostly, they are criteria on XXXT XXX from (1.1.2). D-optimality, for instance,
tries to maximize detXXXT XXX . This is an effort to minimize the variance of the parameter
estimates, β̂i. A-optimality tries to minimize trace(XXXT XXX)−1. This is an effort to mini-
mize the average variance of the parameter estimates. G-optimality tries to minimize
the maximum prediction variance; i.e., minimize the maximum of xxxT (XXXT XXX)−1xxx from
(1.1.2) over a fixed range of xxx. In these and many other criteria, the major downside
is that the optimality criterion depends on the model chosen. So, the optimum is only
optimal for the model and sample size the experimenter specifies. In other words, the
uncertainty remaining is conditional on n and the given model. In a fundamental sense,
uncertainty in the model and sampling procedure is assumed not to exist.

A fundamental result in this area is the Kiefer and Wolfowitz (1960) equivalence the-
orem. It states conditions under which D-optimality and G-optimality are the same;
see Chernoff (1999) for an easy, more recent introduction. Over the last 50 years, the
literature in this general area has become vast. The reader is advised to consult the
classic texts of Box et al. (1978), Dodge et al. (1988), or Pukelsheim (1993).

Selection of design points can also be done sequentially; this is very difficult but poten-
tially avoids the model and sample-size dependence of fixed design-point criteria. The
full solution uses dynamic programming and a cost function to select the explanatory
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values for the next response measurement, given all the measurements previously
obtained. The cost function penalizes uncertainty in the model fit, especially in regions
of particular interest, and perhaps also includes information about different prices for
observations at different locations. In general, the solution is intractable, although
some approximations (e.g., greedy selection) may be feasible. Unfortunately, many
large data sets cannot be collected sequentially.

A separate but related class of design problems is to select points in the domain of
integration so that integrals can be evaluated by deterministic algorithms. Traditional
Monte Carlo evaluation is based on a Riemann sum approximation,

∫
S

f (xxx)dxxx≈
n

∑
i=1

f (XXXi)Δ(Si),

where the Si form a partition of S ⊂ IRp, Δ(Si) is the volume of Si, and the evaluation
point XXXi is uniformly distributed in Si. The procedure is often easy to implement, and
randomness allows one to make uncertainty statements about the value of the integral.
But the procedure suffers from the Curse; error grows faster than linearly in p.

One can sometimes improve the accuracy of the approximation by using nonrandom
evaluation points xxxi. Such sets of points are called quasi-random sequences or low-
discrepancy sequences. They are chosen to fill out the region S as evenly as possi-
ble and do not depend on f . There are many approaches to choosing quasi-random
sequences. The Hammersley points discussed in Note 1.1 were first, but the Halton
sequences are also popular (see Niederreiter (1992a)). In general, the grid of points
must be fine enough that f looks locally smooth, so a procedure must be capable of
generating points at any scale, however fine, and must, in the limit of ever finer scales,
reproduce the value of the integral exactly.

1.2.2 Local Dimension

Nearly all DMML methods try to fit the local structure of a function. The problem is
that when behavior is local it can change from neighborhood to neighborhood. In par-
ticular, an unknown function on a domain may have different low-dimensional func-
tional forms on different regions within its domain. Thus, even though the local low-
dimensional expression of a function is easier to uncover, the region on which that
form is valid may be difficult to identify.

For the sake of exactitude, define f : IRp → IR to have locally low dimension if there
exist regions R1,R2, . . . and a set of functions g1,g2, . . . such that

⋃
Ri ≈ IRp and for

xxx∈Ri, f (xxx)≈ gi(xxx), where gi depends only on q components of xxx for q p. The sense
of approximation and meaning of  is vague, but the point is not to make it precise
(which can be done easily) so much as to examine the local behavior of functions from
a dimensional standpoint.
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As examples,

f (xxx) =

⎧⎨
⎩

3x1 if x1 + x2 < 7
x2

2 if x1 + x2 > 7
x1 + x2 if x1 = x2,

and f (xxx) =
m

∑
k=1

αkIRk(xxx)

are locally low-dimensional because they reduce to functions of relatively few vari-
ables on regions. By contrast,

f (xxx) = β0 +
p

∑
j=1

β jx j for β j 	= 0 and f (xxx) =
p

∏
j=1

x j

have high local dimension because they do not reduce anywhere on their domain to
functions of fewer than p variables.

Fig. 1.2 A plot of 200 points uniformly distributed on the 1-cube in IR3, where the plot is tilted 10
degrees from each of the natural axes (otherwise, the image would look like points on the perimeter
of a square).

As a pragmatic point, outside of a handful of particularly well-behaved settings, suc-
cess in multivariate nonparametric regression requires either nonlocal model assump-
tions or that the regression function have locally low dimension on regions that are not
too hard to identify.

Since most DMML methods use local fits (otherwise, they must make global model
assumptions), and local fitting succeeds best when the data have locally low dimension,
the difficulty is knowing in advance whether the data have simple, low-dimensional
structure. There is no standard estimator of average local dimension, and visualization
methods are often difficult, especially for large p.
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To see how hidden structure, for instance a low-dimensional form, can lurk unsus-
pected in a scatterplot, consider q-cubes in IRp. These are the q-dimensional bound-
aries of a p-dimensional cube: A 1-cube in IR2 is the perimeter of a square; a 2-cube
in IR3 consists of the faces of a cube; a 3-cube in IR3 is the entire cube. These have
simple structure, but it is hard to discern for large p.

Figure 1.2 shows a 1-cube in IR3, tilted 10 degrees from the natural axes in each coor-
dinate. Since p = 3 is small, the structure is clear.
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Fig. 1.3 A plot of 200 points uniformly distributed on the 1-cube in IR10, where the plot is tilted 10
degrees from each of the natural axes (otherwise, the image would look like points on the perimeter
of a square).

In contrast, Fig. 1.3 is a projection of a 1-cube in IR10, tilted 10 degrees from the natural
axes in each coordinate. This is a visual demonstration that in high dimensions, nearly
all projections look Gaussian, see Diaconis and Freedman (1984). This shows that even
simple structure can be hard to see in high dimensions.

Although there is no routine estimator for average local dimension and no standard
technique for uncovering hidden low-dimensional structures, some template methods
are available. A template method is one that links together a sequence of steps but
many of the steps could be accomplished by any of a variety of broadly equivalent
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techniques. For instance, one step in a regression method may involve variable se-
lection and one may use standard testing on the parameters. However, normal-based
testing is only one way to do variable selection and one could, in principle, use any
other technique that accomplished the same task.

One way to proceed in the search for low local dimension structures is to start by
checking if the average local dimension is less than the putative dimension p and, if it
is, “grow” sets of data that can be described by low-dimensional models.

To check if the local dimension is lower than the putative dimension, one needs to have
a way to decide if data can locally be fit by a lower-dimensional surface. In a perfect
mathematical sense, the answer is almost always no, but the dispersal of a portion
of a data set in a region may be tight enough about a lower-dimensional surface to
justify the approximation. In principle, therefore, one wants to choose a number of
points at least as great as p and find that the convex hull it forms really only has q < p
dimensions; i.e., in the leftover p− q dimensions, the convex hull is so thin it can
be approximated to thickness zero. This means that the solid the data forms can be
described by q directions. The question is how to choose q.

Banks and Olszewski (2004) proposed estimating average local dimension in structure
discovery problems by obtaining M estimates of the number of vectors required to
describe a solid formed by subsets of the data and then averaging the estimates. The
subsets are formed by enlarging a randomly chosen sphere to include a certain number
of data points, describing them by some dimension reduction technique. We specify
principal components, PCs, even though PCs will only be described in detail in Chapter
8, because it is popular. The central idea of PCs needed here is that it is a method that
produces vectors from explanatory variable inputs in order of decreasing ability to
explain observed variability. Thus, the earlier PCs are more important than later PCs.
The parallel is to a factor in an ANOVA: One keeps the factors that explain the biggest
portions of the sum of squared errors, and may want to ignore other factors.

The template is as follows.

Let {XXXi} denote n data points in IRp.

� Select a random point xxx∗m in or near the convex hull of XXX1, . . . ,XXXn for m =
1, . . . ,M.

� Find a ball centered at xxx∗m that contains exactly k points. One must choose k > p;
k = 4p is one recommended choice.

� Perform a principal components regression on the k points within the ball.

� Let cm be the number of principal components needed to explain a fixed percent-
age of the variance in the Yi values; 80% is one recommended choice.

The average ĉ = (1/M)∑M
m=1 cm estimates the average local dimension of f . (This

assumes a locally linear functional relationship for points within the ball.) If ĉ is large
relative to p, then the regression relationship is highly multivariate in most of the space;
no method has much chance of good prediction. However, if ĉ is small, one infers there
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are substantial regions where the data can be described by lower-dimensional surfaces.
It’s just a matter of finding them.

Note that this really is a template because one can use any variable reduction technique
in place of principal components. In Chapter 4, sliced inverse regression will be intro-
duced and in Chapter 9 partial least squares will be explained, for instance. However,
one needn’t be so fancy. Throwing out variables with coefficients too close to zero
from goodness-of-fit testing is an easily implemented alternative. It is unclear, a priori,
which dimension reduction technique is best in a particular setting.

To test the PC-based procedure, Banks and Olszewski (2004) generated 10∗2q points

at random on each of the 2p−q

(
p
q

)
sides of a q-cube in IRp. Then independent

N(000, .25III) noise was added to each observation. Table 1.1 shows the resulting esti-
mates of the local dimension for given putative dimension p and true lower-dimensional
structure dimension q. The estimates are biased down because the principal compo-
nents regression only uses the number of directions, or linear combinations, required
to explain only 80% of the variance. Had 90% been used, the degree of underestima-
tion would have been less.

q
7 5.03
6 4.25 4.23
5 3.49 3.55 3.69
4 2.75 2.90 3.05 3.18
3 2.04 2.24 2.37 2.50 2.58
2 1.43 1.58 1.71 1.80 1.83 1.87
1 .80 .88 .92 .96 .95 .95 .98

p=1 2 3 4 5 6 7

Table 1.1 Estimates of the local dimension of q-cubes in IRp based on the average of 20 replications
per entry. The estimates tend to increase up to the true q as p increases.

Given that one is satisfied that there is a locally low-dimensional structure in the data,
one wants to find the regions in terms of the data. However, a locally valid lower-
dimensional structure in one region will typically not extend to another. So, the points
in a region where a low-dimensional form is valid will fit well (i.e., be good relative
to the model), but data outside that region will typically appear to be outliers (i.e., bad
relative to the model).

One approach to finding subsamples is as follows. Prespecify the proportion of a sam-
ple to be described by a linear model, say 80%. The task is to search for subsets of size
.8n of the n data points to find one that fits a prechosen linear model. To begin, select k,
the number of subsamples to be constructed, hoping at least one of them matches 80%
of the data. (This k can be found as in House and Banks (2004) where this method is
described.) So, start with k sets of data, each with q+2 data points randomly assigned
to them with replacement. This is just enough to permit estimation of q coefficients
and assessment of goodness of fit for a model. The q can be chosen near ĉ and then
nearby values of q tested in refinements. Each of the initial samples can be augmented
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by randomly chosen data points from the large sample. If including the extra observa-
tion improves the goodness of fit, it is retained; otherwise it is discarded. Hopefully,
one of the resulting d sets contains all the data well described by the model. These
points can be removed and the procedure repeated.

Note that this, too, is a template method, in the sense that various goodness-of-fit mea-
sures can be used, various inclusion rules for the addition of data points to a growing
“good” subsample can be formulated, and different model classes can be proposed.
Linear models are just one good choice because they correspond locally to taking a
Taylor expansion of a function on a neighborhood.

1.2.3 Parsimony

One strategy for coping with the Curse is the principle of parsimony. Parsimony is the
preference for the simplest explanation that explains the greatest number of observa-
tions over more complex explanations. In DMML, this is seen in the fact that simple
models often have better predictive accuracy than complex models. This, however, has
some qualifications. Let us interpret “simple model” to mean a model that has few
parameters, a common notion. Certainly, if two models fit equally well, the one with
fewer parameters is preferred because you can get better estimates (smaller standard
errors) when there is a higher ratio of data points to number of parameters. Often,
however, it is not so clear: The model with more parameters (and hence higher SEs)
explains the data better, but is it better enough to warrant the extra complexity?

This question will be addressed further in the context of variance bias decompositions
later. From a strictly pragmatic, predictive standpoint, note that:

1. If the true model is complex, one may not be able to make accurate predictions at
all.

2. If the true model is simple, then one can probably improve the fit by forcing selec-
tion of a simple model.

The inability to make accurate predictions when the true model is complex may be due
to n being too small. If n cannot be increased, and this is commonly the case, one is
forced to choose oversimple models intelligently.

The most common kind of parsimony arises in variable selection since usually there
is at least one parameter per variable included. One wants to choose a model that only
includes the covariates that contribute substantially to a good fit. Many data mining
methods use stepwise selection to choose variables for the model, but this breaks down
for large p – even when a multiple regression model is correct. More generally, as
in standard applied statistics contexts, DMML methods try to eliminate explanatory
variables that don’t explain enough of the variability to be worth including to improve
a model that is overcomplex for the available data. One way to do this is to replace a
large collection of explanatory variables by a single function of them.
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Other kinds of parsimony arise in the context of shrinkage, thresholding, and roughness
penalties, as will be discussed in later chapters. Indeed, the effort to find locally low-
dimensional representations, as discussed in the last section, is a form of parsimony.
Because of data limitations relative to the size of model classes, parsimony is one of
the biggest desiderata in DMML.

As a historical note, the principle of parsimony traces back at least to an early logician
named William of Ockham (1285–1349?) from Surrey, England. The phrase attributed
to him is: “Pluralitas non est ponenda sine neccesitate”, which means “entities should
not be multiplied unnecessarily”. This phrase is not actually found in his writings but
the attribution is fitting given his negative stance on papal power. Indeed, William
was alive during the Avignon papacy when there were two popes, one in Rome and
one in Avignon, France. It is tempting to speculate that William thought this level of
theological complexity should be cut down to size.

1.3 Two Techniques

Two of the most important techniques in DMML applications are the bootstrap and
cross-validation. The bootstrap estimates uncertainty, and cross-validation assesses
model fit. Unfortunately, neither scales up as well as one might want for massive
DMML applications – so in many cases one may be back to techniques based on the
central limit theorem.

1.3.1 The Bootstrap

The bootstrap was invented by Efron (1979) and was one of the first and most powerful
achievements of computer-intensive statistical inference. Very quickly, it became an
important method for setting approximate confidence regions on estimates when the
underlying distribution is unknown.

The bootstrap uses samples drawn from the empirical distribution function, EDF. For
simplicity, consider the univariate case and let X1, . . . ,Xn be a random sample (i.e., an
independent and identically distributed sample, or IID sample) from the distribution
F . Then the EDF is

F̂n(x) =
1
n

n

∑
i=1

I(−∞,Xi](x),

where IR(x) is an indicator function that is one or zero according to whether x ∈ IR or
x /∈ IR, respectively. The EDF is bounded between 0 and 1 with jumps of size (1/n) at
each observation. It is a consistent estimator of F , the true distribution function (DF).
Therefore, as n increases, F̂n converges (in a sense discussed below) to F .
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To generalize to the multivariate case, define F̂n(xxx) as the multivariate DF that for
rectangular sets A assigns the probability equal to the proportion of sample points
within A. For a random sample XXX1, . . . ,XXXn in IRp, this multivariate EDF is

F̂n(xxx) =
1
n

n

∑
i=1

IRi(xxx),

where Ri = (−∞,Xi1]× . . .× (−∞,Xip] is the set formed by the Cartesian product of
all halfspaces determined by the components of XXXi. For nonrectangular sets, a more
careful definition must be given using approximations from rectangular sets.

For univariate data, F̂ converges to F in a strong sense. The Glivenko-Cantelli theorem
states that, for all ε > 0,

IP

[
limsup

x
|F̂n(x)−F(x)|< ε

]
= 1 a.s. (1.3.1)

This supremum, sometimes called the Kolmogorov-Smirnov distance, bounds the
maximal distance between two distribution functions. Note that the randomness is in
the sample defining the EDF. Convergence of EDFs to their limit is fast. Indeed, let
ε > 0. Then the Smirnov distributions arise from

lim
n→∞

IP
(√

nsupx∈IR(F(x)− F̂n(x)) < ε
)

= 1− e2ε2
(1.3.2)

and, from the other side,

lim
n→∞

IP
(√

nsupx∈IR(F̂n(x)−F(x)) < ε
)

= 1− e2ε2
. (1.3.3)

Moreover, F̂n also satisfies a large-deviation principle; a large-deviation principle gives
conditions under which a class of events has probability decreasing to zero at a rate
like eαn for some α > 0. Usually, the events have a convergent quantity that is a fixed
distance from its limit. For the EDF, it converges to F in Kolmogorov-Smirnov distance
and, for ε > 0 bounding that distance away from 0, the Kiefer-Wolfowitz theorem is
that ∃α > 0 and N so that for ∀n > N

IP
(
supx∈IR|F̂n(x)−F(x)|> ε

)
≤ e−αn. (1.3.4)

Sometimes these results are called Sanov theorems. The earliest version was due to
Chernoff (1956), who established an analogous result for the sample mean for distri-
butions with a finite moment generating function on a neighborhood of zero.

Unfortunately, this convergence fails in higher dimensions; Fig. 1.4 illustrates the key
problem, namely that the distribution may concentrate on sets that are very badly
approximated by rectangles. Suppose the bivariate distribution for (X1,X2) is con-
centrated on the line from (0,1) to (1,0). No finite number of samples (X1,i,X2,i),
i = 1, ...,n, covers every point on the line segment. So, consider a point x = (x1,x2)
on the line segment that is not in the sample. The EDF assigns probability zero to the
region (−∞,x1]× (−∞,x2], so the limit of the difference is F(xxx), not zero.
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Fig. 1.4 The limsup convergence of the Glivenko-Cantelli theorem does not hold for p ≥ 2. This
figure shows that no finite sample from the (degenerate) bivariate uniform distribution on (0,1) to
(1,0) can have the supremal difference going to zero.

Fortunately, for multivariate data, a weaker form of convergence holds, and this is
sufficient for bootstrap purposes. The EDF converges in distribution to the true F ,
which means that, at each point xxx in IRp at which F is continuous,

lim
n

F̂n(xxx) = F(xxx).

Weak convergence, or convergence in distribution, is written as F̂n ⇒ F . Convergence
in Kolmogorov-Smirnov distance implies weak convergence, but the converse fails.
Although weaker, convergence in distribution is enough for the bootstrap because it
means that, as data accumulate, the EDF does go to a well-defined limit, the true DF,
pointwise, if not uniformly, on its domain. (In fact, the topology of weak convergence
is metrizable by the Prohorov metric used in the next proposition.)

Convergence in distribution is also strong enough to ensure that estimates obtained
from EDFs converge to their true values. To see this, recognize that many quantities to
be estimated can be recognized as functionals of the DF. For instance, the mean is the
Lebesgue-Stieltjes integral of x against F . The variance is a function of the first two
moments, which are integrals of x2 and x against F . More exotically, the ratio of the
7th moment to the 5th quantile is another functional. The term functional just means it
is a real-valued function whose argument is a function, in this case a DF. Let T = T (F)
be a functional of F , and denote the estimate of T (F) based on the sample {XXXi} by
T̂ = T ({XXXi}) = T (F̂n). Because F̂n ⇒ F , we can show T̂ ⇒ T and the main technical
requirement is that T depend smoothly on F .
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Proposition: If T is continuous at F , then T̂ is consistent for T .

Proof: Recall the definition of the Prohorov metric. For a set A and ε > 0, let

Aε = {y|d(y,A) < ε},

where d(y,A) = infz∈Ad(y,z) and d(y,z) = |y− z|. For probabilities G and H, let

ν(G,H) = inf{ε > 0|∀A,G(A) < H(Aε)+ ε}.

Now, the Prohorov metric is Proh(G,H) = max[ν(G,H),ν(H,G)]. Prohorov showed
that the space of finite measures under Proh is a complete separable metric space and
that Proh(Fn,F)→ 0 is equivalent to Fn → F in the sense of weak convergence. (See
Billingsley (1968), Appendix III).

Since T is continuous at F , for any ε > 0 there is a δ > 0 such that Proh(F,G) < δ
implies |T (F)−T (G)|< ε . From the consistency of the EDF, we have Proh(F, F̂n)→
0. So, for any given η > 0 there is an Nη such that n > Nη implies Proh(F, F̂n) < δ
with probability larger than 1−η . Now, with probability at least 1−η , when n > Nη ,
Proh(F, F̂n) < δ and therefore |T − T̂ |< ε . �
Equipped with the EDF, its convergence properties, and how they carry over to func-
tionals of the true DF, we can now describe the bootstrap through one of its simplest
incarnations, namely its use in parameter estimation. The intuitive idea underlying the
bootstrap method is to use the single available sample as a population and the estimate
t̂ = t(x1, · · · ,xn) as the fixed parameter, and then resample with replacement from the
sample to estimate the characteristics of interest. The core idea is to generate bootstrap
samples and compute bootstrap replicates as follows:

Given a random sample xxx = (x1, · · · ,xn) and a statistic t̂ = t(x1, · · · ,xn),

For b = 1 to B:

� Sample with replacement from xxx to get xxx∗b = (x∗b1 , · · · ,x∗bn ).

� Compute θ̂ ∗b = t(x∗b1 , · · · ,x∗bn ).

The size of the bootstrap sample could be any number m, but setting m = n is typical.
The number of replicates B depends on the problem at hand.

Once the B values T̂1,...,T̂B have been computed, they can be used to form a histogram;
for instance, to approximate the sampling distribution of T̂ . In this way, one can eval-
uate how the sampling variability affects the estimation because the bootstrap is a way
to set a confidence region on the functional.

The bootstrap strategy is diagrammed in Fig. 1.5. The top row has the unknown true
distribution F . From this one draws the random sample XXX1, . . . ,XXXn, which is used to
form the estimate T̂ of T and the EDF F̂n. Here, T̂ is denoted T ({Xi},F) to empha-
size the use of the original sample. Then one draws a series of random samples, the
X∗i s, from the EDF. The fourth row indicates that these bootstrap samples are used to
calculate the corresponding estimates, indicated by T ({X∗i },F), to emphasize the use
of the ith bootstrap sample, of the functional for the EDF. Since the EDF is a known
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Fig. 1.5 The bootstrap strategy reflects the reflexivity in its name. The relationship between the true
distribution, the sample, and the estimate is mirrored by the relationship between the EDF, resamples
drawn from the EDF, and estimates based on the resamples. Weak convergence implies that as n
increases the sampling distribution for the EDF estimates goes to the sampling distribution of the
functional.

function, one knows exactly how much error there is between the functional evaluated
for the EDF and its estimate. And since one can draw as many bootstrap samples from
the EDF as one wants, repeated resampling produces the sampling distribution for the
EDF estimates.

The key point is that, since F̂n ⇒ F , the distribution of T ({X∗i }, F̂n) converges weakly
to the distribution of T ({Xi},F), the quantity of interest, as guaranteed by the propo-
sition. That means that a confidence region set from the sampling distribution in the
fourth row of Fig. 1.5 converges weakly to the confidence region one would have set in
the second row if one could know the true sampling distribution of the functional. The
convergence result is, of course, asymptotic, but a great deal of practical experience
and simulation studies have shown that bootstrap confidence regions are very reliable,
Efron and Tibshirani (1994).

It is important to realize that the effectiveness of the bootstrap does not rest on
computing or sampling per se. Foundationally, the bootstrap works because F̂n is
such a good estimator for F . Indeed, (1.3.1) shows that F̂n is consistent; (1.3.2) and
(1.3.3) show that F̂n has a well-defined asymptotic distribution using a

√
n rate, and

(1.3.4) shows how very unlikely it is for F̂n to remain a finite distance away from its
limit.
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1.3.1.1 Bootstrapping an Asymptotic Pivot

As a concrete example to illustrate the power of the bootstrap, suppose {Xi} is a ran-
dom sample and the goal is to find a confidence region for the studentized mean. Then
the functional is

T ({Xi},F) =
√

n

(
X̄ −μ

s

)
,

where X̄ and s are the sample mean and standard deviation, respectively, and μ is the
mean of F . To set a confidence region, one needs the sampling distribution of X̄ in the
absence of knowledge of the population standard deviation σ . This is

IPF

[√
n

X̄−μ
s

≤ t

]

for t ∈ IR. The bootstrap approximation to this sampling distribution is

IPF̂n

[√
n

X̄∗ − X̄
s∗

≤ t

]
(1.3.5)

for t ∈ IR, where X̄∗ and s∗ are the mean and standard deviation of a bootstrap sample
from F̂n and X̄ is the mean of F̂n. That is, the sample mean X̄ , from the one available
sample, is taken as the population mean under the probability for F̂n. The probability
in (1.3.5) can be numerically evaluated by resampling from F̂n.

Aside from the bootstrap, one can use the central limit theorem, CLT, to approximate
the distribution of functionals T ({Xi},F) by a normal distribution. However, since the
empirical distribution has so many nice properties, it is tempting to conjecture that the
sampling distribution will converge faster to its bootstrap approximation than it will to
its limiting normal distribution. Tempting – but is it true? That is, as the size n of the
actual sample increases, will the actual sampling distribution of T be closer on average
to its bootstrap approximation or to its normal limit from the CLT?

To answer this question, recall that a pivot is a function of the data whose distribution
is independent of the parameters. For example, the studentized mean

T ({Xi},F) =
√

n

(
X̄−μ

s

)

is a pivot in the class of normal distributions since this has the Student’s-t distribution
regardless of the value of μ and σ . In the class of distributions with finite first two
moments, T ({Xi},F) is an asymptotic pivot since its asymptotic distribution is the
standard normal regardless of the unknown F .

Hall (1992), Chapters 2, 3, and 5, showed that bootstrapping outperforms the CLT
when the statistic of interest is an asymptotic pivot but that otherwise the two proce-
dures are asymptotically equivalent.

The reasoning devolves to an Edgeworth expansion argument, which is, perforce,
asymptotic. To summarize it, recall little-oh and big-oh notation.
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• The little-oh relation written g(n) = o(h(n)) means that g(n) gets small faster than
h(n) does; i.e., for any ε > 0, there is an M so that for n > M

g(n)/h(n)≤ ε.

• If little-oh behavior happens in probability, then write op(h(n)); i.e.,

lim
n→∞

P [|g(n)/h(n)|< ε] = 1 ∀ ε > 0.

• The big-oh relation written g(n) = O(h(n)) means that there is an M > 0 so that,
for some B, g(n)/h(n)≤ B for n > M.

• If big-oh behavior happens in probability, then write Op(h(n)); i.e.,

lim
B→∞

limsup
n→∞

IP

[
g(n)
h(n)

≤ B

]
= 1.

Under reasonable technical conditions, the Edgeworth expansion of the sampling dis-
tribution of the studentized mean is

IPF

[√
n

(
X̄−μ

s

)
≤ t

]
=Φ(t)+n−1/2 p1(t)φ(t)+ . . .+n− j/2 p j(t)φ(t)+o(n− j/2),

where Φ(t) is the DF of the standard normal, φ(t) is its density function, and the p j(t)
functions are related to the Hermite polynomials, involving the jth and lower moments
of F . See Note 1.5.2 for details. Note that the -oh notation here and below is used to
describe the asymptotic behavior of the error term.

For functionals that are asymptotic pivots with standard normal distributions, the Edge-
worth expansion gives

G(t) = IP [T ({Xi},F)≤ t]

= Φ(t)+n−1/2 p1(t)φ(t)+O(n−1).

But note that the Edgeworth expansion also applies to the bootstrap estimate of the
sampling distribution G(t), giving

G∗(t) = IP
[
T ({X∗i }, F̂n)≤ t |{Xi}

]
= Φ(t)+n−1/2 p̂1(t)φ(t)+Op(n−1),

where

T ({X∗i }, F̂n) =
√

n

(
X̄∗ − X̄

s∗

)
,

and p̂1(t) is obtained from p1(t) by replacing the jth and lower moments of F in its
coefficients of powers of t by the corresponding moments of the EDF. Consequently,
one can show that p̂1(t)− p1(t) = Op(n−1/2); see Note 1.5.3. Thus



1.3 Two Techniques 25

G∗(t)−G(t) = n−1/2φ(t)[p̂1(t)− p1(t)]+Op(n−1) = Op(n−1) (1.3.6)

since the first term of the sum is Op(n−1) and big-oh errors add. This means that using
a bootstrap approximation to an asymptotic pivot has error of order n−1.

By contrast, the CLT approximation uses Φ(t) to estimate G(t), and

G(t)−Φ(t) = n−1/2 p1(t)φ(t)+O(n−1)

= O(n−1/2).

So, the CLT approximation has error of order n−1/2 and thus is asymptotically worse
than the bootstrap.

The CLT just identifies the first term of the Edgeworth expansion. The bootstrap ap-
proximation improves on the CLT approximation by including the extra p1φ/

√
n term

in the Edgeworth expansion (1.3.6) for the distribution function of the sampling dis-
tribution. The extra term ensures the leading normal terms match and improves the
approximation to O(1/n). (If more terms in the Edgeworth expansion were included
in deriving (1.3.6), the result would remain O(1/n)). Having a pivotal quantity is es-
sential because it ensures the leading normal terms cancel, permitting the difference
between the O(n−1/2) terms in the Edgeworth expansions of G and Ĝ to contribute an
extra 1/n−1/2 factor. Without the pivotal quantity, the leading normal terms will not
cancel so the error will remain order O(1/n1/2).

Note that the argument here can be applied to functionals other than the studentized
mean. As long as T has an Edgeworth expansion and is a pivotal quantity, the derivation
will hold. Thus, one can choose T to be a centered and scaled percentile or variances.
Both are asymptotically normal and have Edgeworth expansions; see Reiss (1989). U-
statistics also have well-known Edgeworth expansions. Bhattacharya and Ranga Rao
(1976) treat lattice-valued random variables, and recent work on Edgeworth expan-
sions under censoring can be found in Hwang (2001).

1.3.1.2 Bootstrapping Without Assuming a Pivot

Now suppose the functional of interest T ({Xi},F) is not a pivotal quantity, even
asymptotically. It may still be desirable to have an approximation to its sampling dis-
tribution. That is, in general we want to replace the sampling distribution

IPF [T ({Xi},F)≤ t]

by its bootstrap approximation

IPF̂n

[
T ({X∗i }, F̂n)≤ t

]

for t ∈ IR. The bootstrap procedure is the same as before, of course, but the error de-
creases as O(1/

√
n) rather than as O(1/

√
n). This will be seen from a slightly different

Edgeworth expansion argument.
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First, to see the mechanics of this argument, take T to be the functional U({Xi},F) =
X̄−μ . The bootstrap takes the sampling distribution of

U∗ = U({X∗i }, F̂n) =
√

n(X̄∗ − X̄)

as a proxy when making uncertainty statements about U = X̄ − μ . Although U is not
a pivotal quantity, U/s is. However, for the sake of seeing the argument in a familiar
context of a studentized mean, this fact will not be used. That is, the argument below
is a template that can be applied anytime a valid Edgeworth expansion for a statistic
exists, even though it is written for the mean.

The Edgeworth expansion for the sampling distribution of U is

H(t) = IPF [U ≤ t]

= IPF

[√
n

(
X̄−μ

s

)
≤ t/s

]

= Φ(t/s)+n−1/2 p1(t/s)+O(n−1).

Similarly, the Edgeworth expansion for the sampling distribution of U∗ is

H∗(t) = IP [U∗ ≤ t |{Xi}]
= Φ(t/s∗)+n−1/2 p̂1(t/s∗)φ(t/s∗)+O(n−1).

A careful asymptotic argument (see Note 1.2) shows that

p1(y/s)− p̂1(y/s∗) = Op(n−1/2),

s− s∗ = Op(n−1/2).

Thus the difference between H and H∗ is

H(t)−H∗(t) = Φ(t/s)−Φ(t/s∗) (1.3.7)

+ n−1/2[p1(t/s)φ(t/s)− p̂1(t/s∗)φ(t/s∗)]+Op(n−1).

The second term has order Op(n−1) but the first has order Op(n−1/2).

Obviously, if one really wanted the bootstrap for a studentized mean, one would not use
U but would use U/s and apply the argument from the previous section. Nevertheless,
the point remains that, when the statistic is not an asymptotic pivot, the bootstrap and
the CLT have the same asymptotics because estimating a parameter (such as σ ) only
gives a O(1/

√
n) rate.

The overall conclusion is that, when the statistic is a pivot, the bootstrap is superior,
when it can be implemented, and otherwise the two are roughly equivalent theoreti-
cally. This is the main reason that the bootstrap is used so heavily in data mining to
make uncertainty statements.

Next, observe that if s did not behave well, U/s would not be an asymptotic pivot. For
instance, if F were from a parametric family in which only some of the parameters,
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say μ , were of interest and the rest, say γ , were nuisance parameters on which σ
depended, then while s would remain pivotal under Fμ,γ , it would not necessarily be
pivotal under the mixture

∫
Fμ,γw(dγ). In this case, the data would no longer be IID

and other methods would need to be used to assess the variability of X̄ as an estimator
for μ . For dependent data, the bootstrap and Edgeworth expansions can be applied in
principle, but their general behavior is beyond the scope of this monograph. At best,
convergence would be at the O(1/

√
n) rate. More realistically, pivotal quantities are

often hard to find for discrete data or for general censoring processes. Thus, whether
or not an Edgeworth expansion can be found for these cases, the bootstrap and the CLT
will perform comparably.

1.3.2 Cross-Validation

Just as the bootstrap is ubiquitous in assessing uncertainty, cross-validation (CV) has
become the standard tool for assessing model fit in a predictive accuracy sense. CV
was invented by Stone (1959) in the context of linear regression. He wanted to balance
the benefit of using as much data as possible to build the model against the false op-
timism created when models are tested on the same data that were used to construct
them.

The ideal strategy to assess fit is to reserve a random portion of the data, fit the model
with the rest, and then use the fitted model to predict the response values in the hold-
out sample. This approach ensures the estimate of predictive accuracy is unbiased and
independent of the model selection and fitting procedures. Realistically, this ideal is
nearly impossible to achieve. (The usual exceptions are simulation experiments and
large databases of administrative records.) Usually, data are limited, so analysts want
to use all the data to build and fit the best possible model – even though it is cheating
a little to use the same data for model evaluation as for model building and selection.

In DMML, this problem of sample reuse is exacerbated by the fact that in most prob-
lems many models are evaluated for predictive accuracy in an effort to find a good one.
Using a fresh holdout sample for each model worth considering would quickly exhaust
all available data.

Cross-validation is a compromise between the need to fit and the need to assess a
model. Many versions of cross-validation exist; the most common is the K-fold cross-
validation algorithm:

Given a random sample xxx = (x1, · · · ,xn):

� Randomly divide the sample into K equal portions.

� For i = 1, . . . ,K, hold out portion i and fit the model from the rest of the data.

� For i = 1, . . . ,K, use the fitted model to predict the holdout sample.

� Average the measure of predictive accuracy over the K different fits.
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One repeats these steps (including the random division of the sample) for each model to
be assessed and looks for the model with the smallest error. The measure of predictive
accuracy depends on the situation – for regression it might be predictive mean squared
error, while for classification it might be the number of mistakes. In practice, it may
not be possible to make the sample sizes of the portions the same; however, one does
this as closely as possible. Here, for convenience, set n = �K, where � is the common
size of the portions.

The choice of K requires judgment. If K = n, this is called “leave-one-out” or “loo” CV
since exactly one data point is predicted by each portion. In this case, there is low bias
but possibly high variance in the predictive accuracy, and the computation is lengthy.
(The increased variance may be due to the fact that the intersection between the com-
plements of two holdout portions has n− 2 data points. These data points are used,
along with the one extra point, in fitting the model to predict the point left out. Thus,
the model is fit twice on almost the same data, giving highly dependent predictions;
dependence typically inflates variance.) On the other hand, if K is small, say K = 4,
then although the dependence from predictor case to predictor case is less than with
loo, the bias can be large. Commonly, K is chosen between 5 and 15, depending on n
and other aspects of modeling.

One strategy for choosing K, if enough data are available, is to plot the predictive mean
squared error as a function of the size of the training sample (see Fig. 1.6). Once the
curve levels off, there is no need to increase the size of the portion of the data used for
fitting. Thus, the complement gives the size of the holdout portion, and dividing n by
this gives an estimate of the optimal K.

Fig. 1.6 This graph levels off starting around 200, suggesting the gains per additional data point are
small after that. Indeed, one can interpret this as suggesting that the remaining error is primarily from
reducing the variance in parameter estimation rather than in model selection.
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To see the bias–variance trade-off in choosing K, consider regression. Start with the
sample {Yi,XXXi}n

i=1 and randomly partition it into v subsets S1, . . . ,Sv of size �. Let
f (−k)(·) be the regression function fit using all the data except the observations in Sk.

The predictive squared error (PSE) for f (−k)(·) on Sk is

PSEk =∑
Sk

(
f̂−(k)(XXXi)−Yi

)2
.

Summing over all K subsets gives the CV estimate of the PSE for f :

g(v) =
K

∑
k=1

PSEk =
K

∑
k=1
∑
Sk

(
f̂ (−k)(XXXi)−Yi

)2
.

Minimizing g over K gives the best K for cross-validation.

The function g(K) has a bias–variance decomposition. By adding and subtracting the
terms (1/n)∑K

k=1∑Sk
f̂ (−k)(XXXi) and Ȳ in the double sum for g(K), one can expand to

get

g(K) =
K

∑
k=1
∑
Sk

(
f̂ (−k)(XXXi)− (1/n)

K

∑
k=1
∑
Sk

f̂ (−k)(XXXi)

)2

+ n

(
(1/n)

K

∑
k=1
∑
Sk

f̂ (−k)(Xi)− Ȳ

)2

+
K

∑
k=1
∑
Sk

(Ȳ −Yi)
2
.

(The three cross-products are zero, as in the usual ANOVA decomposition.) The first

term is the empirical variance V̂ar( f ) for f and the covariates together. The second
term is the bias between the means of the predictions and the responses. The last term
is a variance of the response. Thus, optimizing g over K achieves a trade-off among
these three sources of error.

1.3.2.1 Generalized Cross-Validation

Cross-validation is not perfect – some dependency remains in the estimates of pre-
dictive error, and the process can absorb a lot of computer time. Many data mining
techniques use computational shortcuts to approximate cross-validation.

For example, in many regression models, the estimates are linear functions of the ob-
servations; one can write ŷyy = HHHyyy, where HHH = (hi, j)n×n. In multiple linear regression,
HHH = XXX(XXX ′XXX)−1XXX ′. Similar forms hold for kernel and spline regressions, as will be
seen in Chapters 2, 3, and 10. For such linear estimates, the mean squared error of the
cross-validation estimator is

n−1
n

∑
i=1

[yi− f̂ (−i)(xxxi)]2 = n−1
n

∑
i=1

[
yi− f̂ (xxxi)

1−hii

]2

, (1.3.8)
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where f̂ (−i)(xxxi) is the estimate of f at xxxi based on all the observations except (yi,xxxi)
(i.e., the loo cross-validation estimate at xxxi).

Equation (1.3.8) requires only one calculation of f̂ , but finding the diagonal elements
of HHH is expensive when n or p is large. Often it is helpful, and not too far wrong, to ap-
proximate hii by tr(HHH)/n. This approximation is generalized cross-validation (GCV);
provided not too many of the hiis are very large or very small this is a computation-
ally convenient and accurate approximation. It is especially useful when doing model
selection that necessitates repeated fits. See, for instance, Craven and Wahba (1979).

1.3.2.2 The Twin Problem and SEs

Sometimes a data set can contain cases, say {(Yi1 ,XXXi1} and {(Yi2 ,XXXi2}, that are virtu-
ally identical in explanatory variable measurements and dependent variable measure-
ments. These are often called twins. If there are a lot of twins relative to n, leave-
one-out CV may give an overly optimistic assessment of a model’s predictive power
because in fitting the near duplication the model does better than it really should. This
is particularly a problem in short, fat data settings.

This is the exact opposite of extrapolation, in which the values of the sample are not
representative of the region where predictions are to be made. In fact, this is “intrap-
olation” because the values of the sample are overrepresentative of the region where
predictions are to be made. The model cannot avoid overfitting, thereby reducing pre-
dictive power.

Two settings where twin data are known to occur regularly are drug discovery and
text retrieval. Pharmaceutical companies keep libraries of the compounds they have
studied and use them to build data mining models that predict the chemical structure
of biologically active molecules. When the company finds a good molecule it promptly
makes a number of very similar “twin” molecules (partly to optimize efficacy, partly
to ensure an adequately broad patent). Consequently, its library has multiple copies
of nearly the same molecule. If cross-validation were applied to this library, then the
hold-out sample would usually contain one or more versions of a molecule, while
the sample used for fitting contains others. Thus, the predictive accuracy of the fitted
model will seem spuriously good; essentially the same data are being used to both fit
and assess the model.

In the text retrieval context, the TREC program at the National Institute of Standards
and Technology, Voorhees and Harman (2005) makes annual comparisons of search
engines on an archive of newspaper articles. These search engines use data mining
to build a classification rule that determines whether or not an article is “relevant”
to a given search request. But the archive usually contains nearly identical variants
of stories distributed by newswire services. Therefore cross-validation can have the
same basic text in both the fitting and assessment samples, leading to overestimation
of search engine capability.

A related problem is that the data are randomly allocated to the sets Sk. This means
that the CV errors are themselves random; a different allocation would give different
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CV errors. The implication is that, for model selection, it is not enough to choose the
model with the smallest cross-validatory error; the model with the smallest error must
have an error so much smaller than that of the model with the second smallest error
that it is reasonable to identify the first model as better. Often, it is unclear what the
threshold should be. The natural solution would be to find an SE for the CV errors and
derive thresholds from it. There are many ways to do this, and several effective ad hoc
rules for choosing a model based on CV errors have been proposed. However, none
have been universally accepted.

1.3.2.3 CV, GCV, and other model selection procedures

CV and GCV are only two model selection procedures. Many others are available. In
general, the asymptotic performance of a model selection procedure (MSP) depends
strongly on whether there is a fixed, finite-dimensional model in the set of models the
MSP is searching.

Indeed, there is an organized theory that characterizes the behavior of MSPs in a va-
riety of contexts; see Shao (1997) for a thorough treatment. Li (1986, 1987) also pro-
vides good background.

The basic quantity that serves as a general criterion for one unified view of model
selection is

GICλ (m) =
Sn(m)

n
+λ

σ̂2
n pn(m)

n
, (1.3.9)

in which m indicates a model ranging over the set An of models, Sn(m) = ||yyyn −
μ̂n(m)||2 is the squared distance between the data vector and the estimate of the
mean vector for model m (from n outcomes), σ̂2 estimates σ2, pn(m) is the di-
mension of model m, and λ is a constant controlling the trade-off between fit and
variability.

Shao (1997) distinguishes three classes of MSPs of the form (1.3.9) in the linear
models context. He observes that GIC2, Mallows’ Cp, Akaike’s information criterion,
leave-one-out CV, and GCV form one class of methods of the form (1.3.9), which are
useful when no fixed, finite-dimensional model can be assumed true. A second class of
methods of the form (1.3.9) is formed by GICλn when λn→∞ and delete-d GCV when
d/n→ 1. These methods are useful when a true fixed dimension model can be assumed
to exist. The third class contains methods that are hybrids between methods in the first
two classes, for instance, GICλ with λ > 2 and delete-d GCV with d/n→ τ ∈ (0,1).
The key criteria distinguishing the three classes are expressed in terms of the consis-
tency of model selection or the weaker condition of asymptotic loss efficiency (the
loss of the model selected converges to the minimal value of the loss in probability).
Along with detailed proofs for a wide variety of settings, Shao (1997) also provides an
extensive collection of references.
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1.4 Optimization and Search

DMML methods often require searches, and a variety of search procedures are com-
monly used. Indeed, one can argue that DMML as a whole is a collection of statisti-
cally guided search procedures to facilitate good predictive performance. Univariate
search is a search for the value of a unidimensional real value, usually but not always
assumed to vary continuously over an interval. This arises for instance when finding
the best value of a bin width for smoothing or the best K for K-fold CV. Multivari-
ate search is much the same, but multidimensional. The goal is to find the vector that
maximizes some function, such as the likelihood or a goodness-of-fit statistic. This
is harder because, unlike real numbers, vectors usually have a partial ordering rather
than a full ordering. Combinatorial search is the problem of having a finite number of
variables each of which can assume one of finitely many values and then seeking the
optimal assignment of values to variables. This arises in variable selection when one
must decide whether or not to include each variable. More general search procedures
do not take account of the specific structure of the problem; these are “uninformed”
searches. List and tree searches are general and often arise in model selection.

This section reviews some of the main strategies for each of these cases. In practice,
one often creates hybrid techniques that combine more than one strategy. A full dis-
cussion of these methods is beyond the scope of this monograph.

1.4.1 Univariate Search

Suppose the goal is to maximize a univariate function g(λ ) to find

λ ∗ = arg max
λ

g(λ ).

There are several elementary ways to proceed.

Newton-Raphson iteration: If g(λ ) is unimodal and not too hard to differentiate, the
Newton-Raphson method can be used to find a root; i.e., to solve g′(λ ) = 0. Keeping
terms to first order, Taylor expanding gives

g(λ0 + ε)≈ g(λ0)+g′(λ0)ε.

This expression estimates the ε needed to land closer to the root starting from an initial
guess λ0. Setting g(λ0 +ε) = 0 and solving for ε gives ε0 =−(g(λ0))/(g′(λ0)), which
is the first-order adjustment to the root’s position. By letting λ1 = λ0 + ε0, calculating
a new ε1, and so on, the process can be repeated until it converges to a root using εn =
−(g(λn))/(g′(λn)). Unfortunately, this procedure can be unstable near a horizontal
asymptote or a local extremum because the derivative is near zero. However, with a
good initial choice λ0 of the root’s position, the algorithm can be applied iteratively to
obtain a sequence
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λn+1 = λn− (g(λn))/(g′(λn)),

which converges.

If g(λ ) is multimodal, then randomly restarting the procedure is one way to explore
the surface the function defines. The idea is to put diffuse distribution on the domain
of λ , generate a random starting point from it and “hill-climb” to find a local mode.
Hill-climbing means approximating the gradient and taking a step in the direction of
function increase. This can be done by a Newton-Raphson procedure that approxi-
mates the gradient, by a Fibonacci search (to be described shortly), or by many other
methods. Once the top of the “hill” is found, one draws another starting point and
repeats. After several runs, the analyst has a good sense of the number and location
of the modes. Note that this procedure can be applied to functions that are not easily
differentiable, provided the hill-climbing does not require derivatives.

Bracket search: If g is not differentiable but is unimodal, and not too difficult to
evaluate, one strategy is to find values to bracket λ ∗. Once it is bracketed, the searcher
can successively halve the interval, determining on which side of the division λ ∗ lies,
and quickly converge on a very accurate estimate.

Several methods for finding the brackets exist. A popular one with good theoretical
properties is Fibonacci search, see Knuth (1988). Start the search at an arbitrary λ0,
and form the sequence of “test” values λk = λ0 +F(k), where F(k) is the kth Fibonacci
number. At some point, one overshoots and g(λk) is less than a previous value. This
means the value of λ ∗ is bracketed between λk−1 and λk. (If the initial λ0 gives a
sequence of evaluations that decreases, then use λk = λ0−F(k) instead.)

Diminishing returns: Sometimes the goal is not to find a maximum per se but rather
a point at which a trend levels off. For example, one could fit a sequence of regression
models using polynomials of successively higher degree. In this case, lack of fit can
only decrease as the degree increases, so the task is to find the point of diminishing
returns. The standard method is to plot the lack of fit as a function of degree and look
for the degree above which improvement is small. Often there is a knee in the curve,
indicating where diminishing returns begin. This indicates a useful trade-off between
omitting too many terms and including too many terms; it identifies the point at which
the benefit of adding one more term, or other entity, abruptly drops in value.

1.4.2 Multivariate Search

In multivariate search for λλλ ∗ = argmax g(λλλ ), many of the same techniques apply. If
partial derivatives exist, one can find the solution analytically and verify it is an opti-
mum. If the function is multimodal, then random restart can be useful, even when it is
hard to differentiate. One can even generalize a Fibonacci search to find hyperrectan-
gles that bracket λλλ ∗.
However, in multivariate search, the most popular method is the Nelder-Mead algo-
rithm Nelder and Mead (1965). This has a relatively low computational burden and
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works well whenever g(λλλ ) is reasonably smooth. Conceptually, Nelder-Mead uses
preprocessing to find the right domain on which to apply Newton-Raphson. The basic
idea is as follows. To find λλλ ∗ ∈ IRd , choose a simplex in IRd that might contain λλλ ∗, and
evaluate g(λλλ ) at each of its d + 1 vertices. Hopefully, one of the vertices vvvi will give
a smaller value than the others. Reflect vvvi through the d− 1 dimensional hyperplane
defined by the other d vertices to give vvv∗i and find g(vvvi). Then repeat the process. A
new worst vertex will be found at each step until the same vertex keeps being reflected
back and forth. This suggests (but does not guarantee) that the simplex contains a local
mode. At this point, the local mode can be found by Newton-Raphson hill-climbing
from any of the vertices. Actual implementation requires the size of the initial sim-
plex and the distance to which the worst vertex is projected on the other side of the
hyperflat. These technical details are beyond our present scope.

Some researchers advocate simulated annealing for optimization Kirkpatrick et al.
(1983). This is popular, in part, because of a result that guarantees that, with a suf-
ficiently long search, simulated annealing will find the global optimum even for very
rough functions with many modes in high dimensions. See, for instance, Andrieu et al.
(2001) and Pelletier (1998).

The main idea behind simulated annealing is to start at a value λλλ 0 and search randomly
in a region D around it. Suppose the search randomly selects a value λλλ ∗. If g(λλλ ∗) <
g(λλλ 0), then set λλλ 1 = λλλ ∗ and relocate the region on the new value. Otherwise, with
probability 1− p, set λλλ 1 = λλλ 000 and generate a new λλλ ∗ that can be tested. This means
there is a small probability of leaving a region that contains an optimum. It also means
that there is a small probability of jumping to a region that contains a better local
minimum. As the search progresses, p is allowed to get smaller, so the current location
becomes less and less likely to change by chance rather than discovered improvement.
For most applications, simulated annealing is too slow; it is not often used unless the
function g is extremely rough, as is the case for neural networks.

1.4.3 General Searches

Searches can be characterized as general and specific or uninformed versus informed.
The difference is whether or not there is extra information, unique to the application
at hand, available to guide the search. There is some subjectivity in deciding whether
a search is informed or not because a search might use generic features of the given
problem that are quite narrow. The benefit of an uninformed search is that a single
implementation can be used in a wide range of problems. The disadvantage is that the
set of objects one must search for a solution, the searchspace, is often extremely large,
and an uninformed search may only be computationally feasible for small examples.

The use of one or more specific features of a problem may speed the search. Sometimes
this only finds an approximately optimal solution; often the “specific feature” is a
heuristic, making the algorithm preferentially examine a region of the search space.
Using a good heuristic makes an informed search outperform any uninformed search,
but this is very problem-specific so there is little call to treat them generally here.
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An important class of searches is called constraint satisfaction. In these cases, the solu-
tion is a set of values assigned to a collection of variables. These are usually informed
because uninformed methods are typically ineffective. Within this class, combinatorial
searches are particularly important for DMML.

1.4.3.1 Uninformed Searches

List search: The simplest search strategy is list search. The goal is to find an element
of the searchspace that has a specific property. This is a common problem; there are
many solutions whose properties are well known. The simplest algorithm is to examine
each element of the list in order. If n is the number of items on the list, the complexity
(number of operations that need to be performed) is O(n) because each item must be
examined and tested for the property. Often one speaks of O(n) as a “running time”
assuming the operations are performed at a constant rate. Linear search is very slow;
in fact, O(n) is very high but the algorithm is fully general – no preprocessing of the
list is involved.

Binary search: Binary search, by contrast, rules out half the possibilities at each step,
usually on the basis of a direction, or ordering on the list. Bracket search is an instance
of this. Binary search procedures run in O(logn) time, much faster than list searches.
Sometimes a very large sorted list can be regarded as nearly continuous. In these cases,
it may be possible to use an interpolation procedure rather than a binary criterion.

Note that binary search requires the list be sorted prior to searching. Sorting procedures
ensure a list has an order, often numerical but sometimes lexicographical. Other list
search procedures perform faster but may require large amounts of memory or have
other drawbacks.

Tree search: Less general than list search is tree search; however, it is more typical.
The idea is to search the nodes of a tree whether or not the entire tree has been explic-
itly constructed in full. Often, one starts at the root of the tree and searches downward.
Each node may have one or more branches leading to child nodes, and the essence
of the algorithm is how to choose a path through child nodes to find a solution. One
extreme solution is to search all child nodes from a given node and then systematically
search all their child nodes and so forth down to the terminal nodes. This is called
breadth first. The opposite extreme solution, depth first, is to start at a node and then
follow child nodes from level to level down to the terminal nodes without any back-
tracking. It is rare that a search is purely depth first or breadth first; trade-offs between
the extremes are usually more efficient.

1.4.4 Constraint Satisfaction and Combinatorial Search

The point of constraint satisfaction is to find an assignment of values to a set of vari-
ables consistent with the constraint. In the definition of the problem, each variable
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has an associated range of permissible values. Usually, any assignment of permissible
values to variables consistent with the constraints is allowed and there will be many
assignments of values to variables that meet the constraint.

Often, one wants to optimize over the set of solutions, not just enumerate them. Tree
searches can be used to find solutions, but usually they are inefficient because the or-
der of processing of the variables causes an exponential increase in the size of the
searchspace. In such cases, one can attempt a combinatorial search; this is a term that
typifies the hardest search problems, involving large searchspaces necessitating effi-
cient search strategies. However, the time required to find a solution can grow expo-
nentially, even factorially, fast with the size of the problem as measured by the number
of its most important inputs, often the number of variables, but also the number of
values that can be assigned to the variables. For instance, if there are p variables, each
of which assumes k values, there are kp possibilities to examine.

In the general case, the time for solution is intractable, or NP-complete. However,
there are many cases where it is easy to determine if a candidate solution meets the
constraints. Sometimes these are called NP-problems.

Suppose the goal is to find K solutions from the kp possibilities. One approach is a
branch and bound technique that will recur in Chapter 10. The idea is to organize all
the subsets of these kp possibilities into sets of common size, say i, and then form a
lattice based on containment. That is, level i in the lattice corresponds to all sets of
cardinality i, and the edges in the (directional) lattice are formed by linking each set to
its immediate subsets and supersets; this is the branching part. Once any lattice point is
ruled out, so are all of its supersets; this is the bounding part. Now, search algorithms
for the K solutions can be visualized as paths through the lattice, usually starting from
sets at lower levels and working up to higher levels.

In the variable selection context of Chapter 10, p may be large and one wants to discard
variables with little or no predictive power. The lattice of all subsets of variables has
2p subsets. These can be identified with the 2p vertices of the unit hypercube, which
can be regarded as a directed lattice. A clever search strategy over these vertices would
be an attractive way to find a regression model. The Gray code is one procedure for
listing the vertices of the hypercube so that there is no repetition, each vertex is one
edge away from the previous vertex, and all vertices in a neighborhood are explored
before moving on to a new neighborhood. Wilf (1989) describes the mathematical
theory and properties of the Gray code system.

In the lattice context, the simulated annealing strategy would move among sets in the
lattice that contain a full solution to the problem, attempting to find exact solutions
by a series of small changes. If there is no solution in the search space, this kind of
search can continue essentially forever. So, one can fail to get a solution and not be
able to conclude that no solution exists. A partial correction is to repeat the search
from different starting points until either an adequate solution is found or some limit
on the number of points in the search space is reached. Again, one can fail to get a
solution and still be unable to conclude that no solution exists.

Alternatively, one can seek solutions by building up from smaller sets, at lower levels.
The usual procedure is to extend an emerging solution until it is complete or leads to
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an endpoint past which there can be no solutions. Once an endpoint has been hit, the
search returns to one of its earlier decision points, sometimes the first, sometimes the
most recent, and tests another sequence of extensions until all paths are exhausted. If
this is done so that the whole space is searched and no solution is found, then one can
conclude that the problem is unsolvable.

An extension of tree search is graph search. Both of these can be visualized as searches
over the lattice of subsets of possibilities. Graph searches, whether on the lattice of
possibilities or on other search spaces, rest on the fact that trees are a subclass of graphs
and so are also characterized as depth first or breadth first. Many of the problems
with graphical search spaces can be solved using efficient search algorithms, such
as Dijkstra’s or Kruskal’s. There are also many classes of search problems that are
well studied; the knapsack problem and the traveling salesman problem are merely
two classes that are well understood. Both are called NP-complete because they do
not admit polynomial time solutions. A standard reference for classes of NP-complete
problems and their properties is Garey and Johnson (1979).

1.4.4.1 Search and Selection in Statistics

Bringing the foregoing material back to a more statistical context, consider list search
on models and variable selection as a search based on ideas from experimental design.

First, with list search, there is no exploitable structure that links the elements of the
list, and the list is usually so long that exhaustive search is infeasible. So, statistically,
if one tests entries on the list at random, then one can try some of the following: (1)
Estimate the proportion of list entries that give results above some threshold. (2) Use
some modeling to estimate the maximum value on the list from a random sample of list
entries. (3) Estimate the probability that further search will discover a new maximum
within a fixed amount of time. (4) Use the solution to the secretary problem. These are
routine, but one may not routinely think of them.

Another strategy, from Maron and Moore (1997), is to “race” the testing. Essentially,
this is based on pairwise comparisons of models. At first, one fits only a small random
fraction of the data (say a random 1%) to each model on the list. Usually this is suffi-
cient to discover which model is better. If that small fraction does not distinguish the
models, then one fits another small fraction. Only very rarely is it necessary to fit all
or most of the data to select the better model. Racing can extend one’s search by about
100-fold.

Variable selection can be done using ideas from experimental design. One method is
due to Clyde (1999). View each explanatory variable as a factor in an experimental
design. All factors have two levels, corresponding to whether or not the explanatory
variable is included in the model. Now, consider a 2p−k fractional factorial experiment
in which one fits a multiple regression model with the included variables and records
some measure of goodness of fit. Obviously, k must be sufficiently large that it is
possible to perform the computations in a reasonable amount of time and also to limit
the effect of multiple testing.
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Possible measures of goodness of fit include: (1) adjusted R2, the proportion of vari-
ance in the observations that is explained by the model, but with an adjustment to
account for the number of variables in the model; (2) Mallows’ Cp, a measure of pre-
dictive accuracy that takes account of the number of terms in the model; (3) MISE, the
mean integrated squared error of the fitted model over a given region (often the hy-
perrectangle defined by the minimum and maximum values taken by each explanatory
variable used in the model); (4) the square root of the adjusted R2 since this transforma-
tion appears to stabilize the variance and thereby supports use of analysis of variance
and response surface methodology in the model search. Weisberg (1985), pp. 185–190
discusses the first three and Scott (1992), Chapter 2.4, discusses MISE.

Treating the goodness-of-fit measure as the response and the presence or absence of
each variable as the factor levels, an analysis of variance can be used to examine which
factors and factor combinations have a significant influence on the “observations”. Sig-
nificant main effects correspond to explanatory variables that contribute on their own.
Significant interaction terms correspond to subsets of variables whose joint inclusion
in the model provides explanation. In multiple linear regression, these results are im-
plicit in significance tests on the coefficients. However, this also helps find influential
variables for the nonparametric regression techniques popular in data mining (e.g.,
MARS, PPR, neural nets; see Chapter 4).

1.5 Notes

1.5.1 Hammersley Points

To demonstrate the Hammersley procedure, consider a particular instance. The bivari-
ate Hammersley point set of order k in the unit square starts with the integers from 0 to
2k−1. Write these in binary notation, put a decimal in front, and denote the ith number
by ai for i = 1, . . . ,2k. From each ai, generate a bi by reversing the binary digits of ai.
For example, with k = 2, the ai are .00, .01, .10, .11 (in base 2), or 0, 1/4, 1/2, 3/4.
Similarly, the bi are .00, .10, .01, .11, or 0, 1/2, 1/4, 3/4. Define the Hammersley points
as xxxi = (ai,bi); this gives (0, 0), (1/4, 1/2), (1/2, 1/4), and (3/4, 3/4).

To extend this construction to higher dimensions, represent an integer j between 0 and
bk−1 by its k-digit expansion in base b:

j = a0 +a1b+ . . .+ak−1bk−1.

The radical inverse of j in base b is

ψb( j) = a0
1
b

+a1
1
b2 + . . .+ak−1

1
bk .

The integer radical inverse representation of j is
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bkψb( j) = ak−1 + . . .+a1bk−2 +a0bk−1.

This is the mirror image of the digits of the usual base b representation of j.

The Hammersley points use a sequence of ψbs, where the bs are prime numbers. Let
2 = b1 < b2 < .. . be the sequence of all prime numbers in increasing order. The Ham-
mersley sequence with n points in p dimensions contains the points

xxxi =
(

i
n
,ψb1(i),ψb2(i), . . . ,ψbp−1(i)

)
,

where i = 0, . . . ,n−1. The points of a Hammersley point set can be pseudorandomized
by applying a permutation to the digits of i before finding each coordinate.

It can be verified pictorially that {xxx1, ...,xxxn} fills out the space evenly and therefore
is a good choice. In particular, the point set is uniform, without clumping or preferred
directions. This is accomplished by the Hammersley sequence by using different prime
numbers at different stages.

There are a variety of formal ways to measure how well a set of points fills out a
space. In general, Hammersley points, see Niederreiter (1992b), are a design that max-
imizes dispersion and minimizes the discrepancy from the uniform distribution in the
Kolmogorov-Smirnov test. Wozniakowski (1991) proved that a modification of Ham-
mersley points avoids the Curse in the context of multivariate integration for smooth
functions (those in a Sobolev space), see Traub and Wozniakowski (1992). Moreover,
the computations are feasible, see Weisstein (2009). Thus, for high-dimensional in-
tegration, one can use Wozniakowski’s points and guarantee that the error does not
increase faster than linearly in p, at least in some cases. Unfortunately, this result is
not directly pertinent to multivariate regression since it does not incorporate errors
from model selection and fitting.

1.5.2 Edgeworth Expansions for the Mean

The characteristic function (Fourier transform) of a random sum Sn = ∑n
j=1 Yj is

χn(t) = E[eitSn ] = χ(t/
√

n)n,

where χ is the characteristic function (CS) of Y1. A Taylor expansion of lnχ(t) at t = 0
gives

lnχ(t) = κ1it +κ2(it)2 +κ3(it)3 + . . . . (1.5.1)

The coefficients κ j are the cumulants of Yi. To simplify the discussion, assume the
standardization Y = (X−μ)/σ .

Taylor expand the exponential in the integrand of an individual χ , and take logarithms
to get another series expansion:
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lnχ(t) = ln

[
1+E(Y )it +

1
2

E(Y 2)(it)2 + . . .

]
. (1.5.2)

By equating the right-hand sides in (1.5.1) and (1.5.2), one sees

∞

∑
j=1

κ j

j!
(it) j = ln

[
1+

∞

∑
j=1

1
j!

E(Y j)(it) j

]
. (1.5.3)

Taylor expanding the logarithm shows that the jth cumulant is a sum of products of
moments of order j or less and conversely.

When E(Sn) = 0, one has κ1 = 0, and when Var(Sn) = 1, one has κ2 = 1. Using this
and transforming back to χn from χ gives

χn(t) = exp

[
−1

2
t2 +

1

3!n1/2
κ3(it)3 + . . .+

1

j!n( j−2)/2
κ j(it) j + . . .

]

= e−t2/2 exp

[
1

3!n1/2
κ3(it)3 + . . .+

1

j!n( j−2)/2
κ j(it) j + . . .

]
.

Taylor expanding the exponential term-by-term and grouping the results in powers of
1/
√

n shows there are polynomials r j(it) of degree 3 j with coefficients depending on
κ3, . . . ,κ j+2 such that

χn(t) = e−t2/2
[

1+
r1(it)
n1/2

+
r2(it)

n1 +
r3(it)
n3/2

+ . . .

]
. (1.5.4)

Next, we set up an application of the inverse Fourier transform (IFT). Write R j(x) for

the IFT of r j(it)e−t2/2. That is, R j is the IFT of r j, weighted by the normal, where r j is
a polynomial with coefficients given by the κ coefficients. Since the IFT of the N(0,1)
distribution is e−t2/2 (A.4) gives

IP(Sn ≤ x) =Φ(x)+
R1(x)
n1/2

+
R2(x)

n
+

R3(x)
n3/2

+ . . . . (1.5.5)

This is almost the Edgeworth expansion; it remains to derive an explicit form for the
R js in terms of the Hermite polynomials.

An induction argument on the IFT (with the induction step given by integration by
parts) shows ∫ −∞

∞
eitxd

[
(−D) jΦ(x)

]
= (it) je−t2/2,

where D is the differential operator d
dx . By linearity, one can replace the monomial in

−D by any polynomial and it will appear on the right-hand side. Take r j(−D), giving

∫ −∞

∞
eitxd [r j(−D)Φ(x)] = r j(it)e−t2/2.

So the (forward) Fourier transform shows
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R j(x) =
∫ −∞

∞
e−itxr j(it)e−t2/2 = r j(−D)Φ(x),

which can be used in (1.5.5). Let Hj−1(x) denote the Hermite polynomial that arises
from the jth signed derivative of the normal distribution:

(−D) jΦ(x) = Hj−1(x)φ(x).

So r j(−D)Φ(x) is a sum of Hermite polynomials, weighted by the coefficients of
r j, which depend on the cumulants. To find R j, one must find the r js, evaluate the
Hermite polynomials and the cumulants, and do the appropriate substitutions. With
some work, one finds R1(x) =−κ3(x2−1)φ(x), R2(x) =−[κ4x(x2−3)/24+κ2

3 (x4−
10x + 15)]φ(x) etc. Writing R j(x) = q j(x)φ(x) shows that the Edgeworth expansion
for the distribution of the standardized sample mean is

IP(Sn ≤ x) = Φ(x)+
q1(x)φ(x)

n1/2
(1.5.6)

+
q2(x)φ(x)

n
+ . . .+

q j(x)φ(x)
n j/2

+o

(
1

n j/2

)
. (1.5.7)

Note that in (1.5.7) there is no explicit control on the error term; that requires more
care with the Taylor expansion of the CF, see Bhattacharya and Ranga Rao (1976),
Petrov (1975). Also, (1.5.7) is pointwise in x as n→ ∞. It is a deterministic expansion
for probabilities of the random quantity Sn. Thus, for finite n, it is wrong to regard an
infinite Edgeworth expansion as necessarily having error zero at every x. The problem
is that the limit over n and the limit over j cannot in general be done independently.
Nevertheless, Edgeworth expansions tend to be well behaved, so using them cavalierly
does not lead to invalid expressions very often.

1.5.3 Bootstrap Asymptotics for the Studentized Mean

Hall (1992), Sections 2.4 and 2.6, details the mathematics needed to find the Edgeworth
expansion for the studentized mean. He shows that the expansion

IP

(
(X̄−μ)

s
≤ x

)
= Φ(x)+

p1(x)φ(x)
n1/2

(1.5.8)

+
p2(x)φ(x)

n
+ . . .+

p j(x)φ(x)
n j/2

+o

(
1

n j/2

)

exists, but the p j terms are different from the q j terms derived previously. In particular,
the studentized mean is asymptotically equivalent to the standardized mean, but only
up to order Op(1/n). In fact,

X̄−μ
σ

− X̄ −μ
s

=
(s−σ)(X̄−μ)

σs
, (1.5.9)
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and both factors in the numerator are Op(1/
√

n). So although the first term in their
Edgeworth expansions is the same (normal), later terms are not.

For an IID sample of size n from F , let Tn denote the studentized sample mean. Also,
for an IID sample of size n from F̂n (a bootstrap sample), let T ∗n be the studentized
mean. Then the Edgeworth expansions are

IP(Tn ≤ t) = Φ(t)+
p1(t)φ(t)√

n
+O

(
1
n

)

IP(T ∗n ≤ t) = Φ(t)+
p∗1(t)φ(t)√

n
+O

(
1
n

)
.

Note that p∗1 and p1 are polynomials in the same powers of t with coefficients that are
the same function of the cumulants of F and F̂n, respectively. And recall from (1.5.3))
that the cumulants are determined by the moments.

Bootstrap asymptotics for the studentized mean require three technical points about
convergence rates:

A. p̂1(t)− p1(t) = Op(1/
√

n),

B. p1(y/s)− p̂1(y/s∗) = Op(1
√

n),

C. s− s∗ = Op(1
√

n).

The first is needed in (1.3.6); B and C are needed in (1.3.8).

If the moments of F̂n converge to the moments under F at the desired rate, then A
follows. So, we need that

√
n[μk(F̂n)−μk(F)] = OP(1), (1.5.10)

where k indicates the order of the moment. Expression (1.5.10) follows from the CLT;
the convergence is in F .

Next, we show C. Write

√
n(s− s∗) =

√
n

[(
n

n−1
X̄2− X̄2

)1/2( n
n−1

X̄2∗ − X̄2,∗
)1/2

]
, (1.5.11)

in which the superscript ∗ indicates the moment was formed from bootstrap samples
rather than the original sample. The convergence is in F , but note that s∗ is from a boot-
strap sample drawn from F̂n as determined by the original sample. The conditional
structure here matters. The bootstrap samples are taken conditional on the original
sample. So, moments from a bootstrap sample converge, conditionally on the original
sample, to the original sample, which itself converges unconditionally to the popula-
tion mean. Another way to see this is to note that, for any function g, EF̂n

[g(X)] = ¯g(X)
and EF [ ¯g(X)] = μg. More formally, for ε > 0, we have, conditional on Xn, that for any
function Z∗ converging in distribution in F̂n to a constant, say 0,

g(Xn) = IPF̂n
(|Z|> ε)→ 0.
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Now, EXn g(Xn) is bounded by 1 and converges to 0 pointwise, so the dominated con-
vergence theorem gives its convergence to 0 unconditionally. This is convergence in
probability, which implies convergence in distribution in the “joint” distribution of
F × F̂ , which reduces to F . Now, moments such as X̄k,∗ for k = 1,2, ... are choices
of g, and the convergence of functions of moments, like standard deviations, can be
handled as well.

Now, s is a function of the first and second moments from the actual sample which
converge at a O(

√
n) rate to μ = μ1(F) and μ2(F) by the CLT. The first and second

moments in s∗ converge at rates O(
√

n) to μ1(F̂n) and μ2(F̂n) in F̂n conditional on
the original data by a conditional CLT. So, the unconditional CLT gives that the first
and second moments in s∗ converge at rate O(

√
n) to μ1(F) and μ2(F) in F . Since

the moments converge, a delta method argument applies to functions of them such
as s and s∗. (The delta method is the statement that if X̄ is N(0,1/n), then g(X̄) is
N(g(0),(g′(0))2/n), which follows from a Taylor expansion argument.) Now, (1.5.11)
is Op(1) giving C.

With these results, B follows: The polynomials p1(y/s) and p̂1(y/s) have the same
powers, and each power has a coefficient that is a function of the cumulants of F̂n

and F , respectively. By (1.5.3), these coefficients are functions of the moments of
F̂n and F , so the multivariate delta method applies. A typical term in the difference
p1(y/s)− p̂1(y/s∗) has the form

α(EF(X), . . . ,EF(Xk))
(y

s

)�
−α(EF̂(X), . . . ,EF̂(Xk))

( y
s∗

)�
, (1.5.12)

where k is the number of moments and � is the power of the argument. As in the proof
of A, for fixed y, the moments under F̂n converge to the moments under F in probability
at a

√
n rate, as does s∗ to s (and as both do to σ ). So the delta method gives a

√
n rate

for the term. There are a finite number of terms in the difference p1(y/s)− p̂1(y/s∗),
so their sum is O(1/

√
n).

1.6 Exercises

Exercise 1.1. Consider a sphere of radius r in p dimensions. Recall from (1.1.1) that
the volume of such a sphere is given by

Vr(p) =
π p/2rp

Γ (p/2+1)
.

1. Write the expression for Vr(2).

2. Let ε > 0 and r > ε and consider the following game. You throw a coin of radius
ε onto a table on which a circle of radius r has been drawn. If the coin lands inside
the circle, without touching the boundary, then you win. Otherwise you lose. Show
that the probability you win is
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IP[You Win] =
(

1− ε
r

)2
.

3. Using this show that, in p dimensions, the fraction of the volume Vr(p) for the
portion (r− ε,r) is

δ = 1−
(

1− ε
r

)p
.

Exercise 1.2. The website http://www.no-free-lunch.org/ is home to a
long list of contributions discussing the No-Free-Lunch Theorem (NFLT) introduced
in Wolpert and Macready (1995). Applied to the field of combinatorial optimization,
the NFLT states that

... all algorithms that search for an extremum of a cost function perform exactly the same, when
averaged over all possible cost functions. In particular, if algorithm A outperforms algorithm B
on some cost functions, then loosely speaking there must exist exactly as many other functions
where B outperforms A.

In other words,

over the set of all mathematically possible problems, each search algorithm will do on average
as well as any other. This is due to the bias in each search algorithm, because sometimes the
assumptions that the algorithm makes are not the correct ones.

Ho and Pepyne (2002) interpret the No Free Lunch Theorem as meaning that

a general-purpose universal optimization strategy is theoretically impossible, and the only
way one strategy can outperform another is if it is specialized to the specific problem under
consideration.

In the supervised machine learning context, Wolpert (1992) presents the NFLT through
the following assertion:

This paper proves that it is impossible to justify a correlation between reproduction of a train-
ing set and generalization error off of the training set using only a priori reasoning. As a result,
the use in the real world of any generalizer which fits a hypothesis function to a training set
(e.g., the use of back-propagation) is implicitly predicated on an assumption about the physical
universe.

1. Give a mathematical formalism for the NFLT.

2. Visit the website and read the contributions on this topic.

3. How large is the range of formalisms for the NFLT? Do some seem more reasonable
than others?

4. Construct arguments for or against this result.

Exercise 1.3. Write the Kth order term in a multivariate polynomial in p dimensions
as

p

∑
i1=1

p

∑
i2=1

· · ·
p

∑
iK=1

ai1i2···iK xi1 xi2 · · ·xiK . (1.6.1)
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Show that (1.6.1) can expressed in the form

p

∑
i1=1

i1

∑
i2=1

· · ·
iK−1

∑
iK=1

ai1i2···iK xi1 xi2 · · ·xiK . (1.6.2)

Hint: Use the redundancy in some of the ai1i2···iK s in (1.6.1) to obtain (1.6.2).

Exercise 1.4. Let D = {(Xi,Yi), i = 1, · · · ,n} be an IID sample of size n arising from
an underlying function f . Consider a loss function �(·, ·) and an estimator f̂n of f based
on D . Explain how the bootstrap can be used the estimate the generalization error

E
[
�(Ynew, f̂n(Xnew))

]
.

Hint: First clearly identify what aspect of the expression creates the need for tech-
niques like resampling, then explain how bootstrapping helps provide an approximate
solution to the problem.

Exercise 1.5. Let θ be a parameter for which an estimate is sought. The standard two-
sided 100(1−α)% confidence interval for θ is given by

[θ̂n−q1−α/2, θ̂n−qα/2],

where qα is the α-quantile of θ̂n−θ . Note that calculating the confidence interval rests
on knowing compute the quantiles, which requires knowing the distribution of θ̂n−θ .
In practice, however, the distribution of θ̂n−θ is unknown.

1. Explain how the bootstrap can be used to generate an interval with approximate
confidence 1−α .

2. Simulate n = 100 IID observations from Xi ∼ N(9,22), and consider estimating μ
from X1, · · · ,X100.

a. Give an exact 95% confidence interval for μ .

b. Use the bootstrap to give a 95% confidence interval for μ .

Exercise 1.6. Let D = {(Xi,Yi), i = 1, · · · ,n} be an IID sample of size n arising from
a simple linear regression through the origin,

Yi = βxxxi + εi.

Inferential tasks related to this model require knowledge of the distribution of
√

n(β̂n−
β ). Often, the noise terms εis are taken as IID N(0,σ2) so that

√
n(β̂n− β ) is dis-

tributed as a N
(
0,σ2/∑n

i=1 (xi− x̄)2
)
. In practice, however, this distribution is not

known, and approximate techniques are used to obtain summary statistics.

1. Describe a bootstrap approach to making inferences about β .

2. Consider
√

n(β̂ ∗n − β̂n), the bootstrap approximation of
√

n(β̂n−β ). Since the boot-
strap is consistent, the consistency of both bias and variance estimators holds. That
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is,
E
∗[β̂ ∗n ]− β̂n

E[β̂n]−β
P−→ 1

and
Var∗(β̂ ∗n )

Var(β̂n)
P−→ 1.

a. Simulate from Yi = 2πxxxi + εi, where xxxi ∈ [−1,1] and εi ∼ N(0, .52).

b. Estimate β .

c. Develop and discuss a computational verification of the consistency of the boot-
strap bias and variance.

Exercise 1.7. Let D = {(Xi,Yi), i = 1, · · · ,n} be an IID sample of size n arising from
the nonparametric regression model

Yi = f (xxxi)+ εi,

where f is an underlying real-valued function of a real variable defined on a domain
X . Suppose a nonparametric smoothing technique is used to construct an estimate
f̂ of f . Write f̂ff n = ( f̂ (xxx1), f̂ (xxx1), · · · , f̂ (xxxn))T = ( f̂1, f̂2, · · · , f̂n)T to be the vector of
evaluations of the estimator at the design points. Most smoothers that will be studied
in Chapters 2 and 3 are linear in the sense that

f̂ff n = HHHyyy,

where HHH = (hi, j)n×n is a square matrix whose elements hi, j are functions of both the
explanatory variables xxxi and the smoothing procedure used. Note that the hiis are the
ith diagonal elements of HHH. Show that for linear smoothers

n−1
n

∑
i=1

[yi− f̂ (−i)
n−1 (xxxi)]2 = n−1

n

∑
i=1

[
yi− f̂n(xxxi)

1−hii

]2

.

Hint: Recognize that yyy− f̂ff n = (III−HHH)yyy and that f̂ff n = f̂ff
(−i)
n−1 + fieeei, where eeei is the unit

vector with only the ith coordinate equal to 1.

Exercise 1.8. The World Wide Web is rich in statistical computing resources. One
of the most popular with statisticians and machine learners is the package R. It is
free, user-friendly, and can be download from http://www.r-project.org.
The software package MATLAB also has a wealth of statistical computing resources,
however, MATLAB is expensive. A free emulator of MATLAB called OCTAVE can be
downloaded from the web. There are also many freely available statistical computing
libraries for those who prefer to program in C.

1. Download your favorite statistical computing package, and then install it and get
acquainted with its functioning.
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2. Implement the cross-validation technique on some simple polynomial regressions
to to select the model with the lowest prediction error. For instance, set

Y = 1−2x+4x3 + ε,

where ε ∼N(0,1), to be a true model. Let x∈ [−1,1] and suppose the design points
xi are equally spaced.

a. Generate n = 200 data points (xi,yi).

b. Perform cross-validation to compute the estimate of the prediction error for each
of the following candidate models: M1 : Y = β0 +β1x+ ε , M2 : Y = β0 +β1x+
β2x2 +ε , M3 :Y = β0 +β1x+β2x2 +β3x3 +ε , M4 :Y = β0 +β1x+β2x2 +β3x3 +
β4x4 + ε .

c. Which model does the technique select? Are you satisfied with the performance?
Explain.

Exercise 1.9. Consider a unimodal function g defined on an interval [a,b]. Suppose
your goal is to find the point x∗ in [a,b] where g achieves its maximum. The Fibonacci
approach for finding x∗ consists of constructing successive subintervals [an,bn] of [a,b]
that zero in ever closer on x∗. More specifically, starting from [a0,b0] = [a,b], succes-
sive subintervals [an,bn] are constructed such that

an+1−an = bn−bn+1 = ρn(bn−an).

The gist of the Fibonacci search technique lies in using the classical Fibonacci se-
quence as a device for defining the sequence {ρn}. Recall that the Fibonacci sequence
is defined as the sequence F1,F2,F3, · · · such that ∀ n≥ 0

Fn+1 = Fn +Fn−1.

By convention, F−1 = 0 and F0 = 1.

1. Show that, for n≥ 2,
Fn−2Fn+1−Fn−1Fn = (−1)n.

2. Show that

Fn =
1√
5

[(
1+

√
5

2

)n+1

−
(

1−
√

5
2

)n+1]
.

3. From the definition of the Fibonacci sequence above, one can define another se-
quence, ρ1,ρ2, · · · ,ρk, where

ρ1 = 1− Fk

Fk+1
, ρ2 = 1− Fk−1

Fk
, · · · , ρn = 1− Fk−n+1

Fk−n+2
, · · · , ρk = 1− F1

F2
.

a. Show that, for each n = 1, · · · ,k,

0≤ ρn ≤ 1/2.
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b. Show that, for each n = 1, · · · ,k−1,

ρn+1 = 1− ρn

1−ρn
.

c. Reread the description of the Fibonacci search technique, and explain how this
sequence of ρn applies to it.

Exercise 1.10. Consider using

θ (k+1) = θ (k)−α(k)
[
H(θ (k))

]−1
g(k),

where

α(k) = arg min
α≥0

f

(
θ (k)−α

[
H(θ (k))

]−1
g(k)

)
,

g(k) =∇ f (θ (k)) is the gradient, and H(θ (k)) is the Hessian matrix of f evaluated at the
current point θ (k) to find the minimum of a twice-differentiable function f (θ). This is
called the modified Newton’s algorithm because the updating scheme in the original
Newton’s algorithm is simply

θ (k+1) = θ (k)−
[
H(θ (k))

]−1
g(k),

which clearly does not have the learning rate α(k). Apply the modified Newton’s algo-
rithm to the quadratic function:

f (θ) =
1
2
θTQθ −θTb where Q = QT > 0.

Recall that, for quadratic functions, the standard Newton’s method reaches the point
θ ∗ such that ∇ f (θ ∗) = 0 in just one step starting from any initial point θ (0).

1. Does the modified Newton’s algorithm possess the same property?

2. Justify your answer analytically.

Exercise 1.11. Consider Rosenbrock’s famous banana valley function

f (x1,x2) = 100(x2− x2
1)

2 +(1− x1)2.

Using your favorite software package (MATLAB, R, or even C):

1. Plot f , and identify its extrema and their main characteristics.

2. Find the numerical value of the extremum of this function. You may use any of the
techniques described earlier, such as Newton-Raphson or modified Newton (Exer-
cise 1.10).

3. Consider the following widely used optimization technique, called gradient de-
scent/ascent, which iteratively finds the point at which the function f (θ) reaches
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its optimum by updating the vector θ = (x1,x2)�. The updating formula is

θ (k+1) = θ (k)−α(k)∇ f (θ (k)),

where ∇ f (θ (k)) is the gradient and α(k) is a positive scalar known as the step size
or learning rate used to set the magnitude of the move from θ (k) to θ (k+1). In the
version of gradient descent known as steepest descent, α(k) is chosen to maximize
the amount of decrease of the objective function at each iteration,

α(k) = arg min
α≥0

f (θ (k)−α∇ f (θ (k))).

Apply it to the banana valley function, and compare your results to those from 1
and 2.

Exercise 1.12. Let �(·, ·) be a loss function and let f̂ (−i)
n−1 (Xi) be an estimate of a func-

tion f using the deleted data; i.e., formed from the data set {(xi,yi) | i = 1, · · · ,n} by
deleting the i data point.

1. Show that the variance of the leave-one-out CV error is

Var

(
1
n

n

∑
j=1

�(Yi, f̂ (−i)
n−1 (Xi))

)
=

1
n2

n

∑
i=1

n

∑
i=1

Cov(�(Yi, f̂ (−i)
n−1 (Xi)), �(Yj, f̂ (− j)

n−1 (Xj))).

2. Why would you expect

Cov(�(Yi, f̂ (−i)
n−1 (Xi)), �(Yj, f̂ (− j)

n−1 (Xj)))

to be typically large? Hint: Even though the data points are mutually independent,
does it follow that functions of them are?

3. Now consider the bias of leave-one-out CV: Do you expect it to be low or high?
Give an intuitive explanation.

Exercise 1.13. One limitation of K-fold CV is that there are many ways to partition
n data points into K equal subsets, and K-fold CV only uses one of them. One way
around this is to sample k data points at random, use them as a holdout set for test-
ing. Sampling with replacement allows this procedure, called leave-k-out CV, to be
repeated many times. As suggested by the last Exercise, leave-one-out CV can be un-
stable so leave-k-out CV for k ≥ 2, may give better performance.

1. How would you expect the variance and bias of leave-k-out CV to behave? Use this
to suggest why it would be preferred over leave-one-out CV if k ≥ 2.

2. How many possible choices are there for a random sample of size k from D?

3. Let �(·, ·) be a loss function and set q =
(

n
k

)
. What does the formula
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1
q

q

∑
s=1

1
k ∑i∈Ds

�
(

Yi, f̂ (−Ds)
n−k (Xi)

)
(1.6.3)

compute? In (1.6.3), Ds denotes a sample of size k drawn from D .

4. Briefly explain the main advantage leave-k-out CV has over the K-fold CV.

5. What is the most obvious computational drawback of the leave-k-out CV formula
in item 3? Suggest a way to get around it.

Exercise 1.14. It will be seen in Chapter 2 that the best possible mean squared error
(MSE) rate of the nonparametric density estimator in p dimensions with a sample of
size n is

O
(

n−4/(4+p)
)

.

1. Compute this rate for d = 1 and n = 100.

2. Construct an entire table of similar MSE rates for d = 1,2,5,10,15 and n =
100,1000,10000,100000.

3. Compare the rates for (d = 1,n = 100) and (d = 10,n = 10000), and provide an
explanation in light of the Curse of Dimensionality.

4. Explain why density estimation is restricted to d = 2 in practice.

Exercise 1.15. Let H = {h1,h2, · · · ,hp} be a set of basis functions defined on a do-
main X . Consider the basis function expansion

f (x) =
p

∑
j=1

β jh j(x)

widely used for estimating the functional dependencies underlying a data set D =
{(x1,y1), · · · ,(xn,yn)}.

1. Provide a detailed explanation of how the Curse of Dimensionality arises when the
set of basis functions is fixed, i.e. the his are known prior to collecting the data and
remain fixed throughout the learning process.

2. Explain why the use of an adaptive set of basis functions – i.e., possibly rechoosing
the list of his at each time step – has the potential of evading the Curse of Dimen-
sionality.

Exercise 1.16. It has been found experimentally that leave-one-out CV also referred
to as LOOCV is asymptotically suboptimal. In the context of feature selection, for
instance, it could select a suboptimal subset of features even if the sample size was
infinite.

Explore this fact computationally and provide your own insights as to why this is the
case. Hint: Set up a simulation study with p explanatory variables. Consider the case
of a truly p-dimensional function and also consider the case where the p dimensions
arise from one single variable along with its transforms like x and x2, and xp. For
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example, contrast the genuinely three-dimensional setup using x1, x2, and x3 with the
setup using x1, x2

1, and x3
1 + 2x2

1. Compare the two and see whether LOOCV does or
does not yield a suboptimal set of variables. Imagine, for instance, x1 and x3

1 in the
interval [−1,1] or [0,1], and note that in this interval the difference may be too small
to be picked up by a naive technique.

Exercise 1.17. It is commonly reported in Machine Learning circles that Ronald Ko-
havi and Leo Breiman independently found through experimentation that 10 is the best
number of “folds” for CV.

1. Consider an interesting problem and explore a variety of “folds” on it, including
of course the 10-fold CV. You may want to explore benchmarks problem like the
Boston Housing data set in multiple regression or the Piman Indian diabetes data set
in classification, since the best performances of learning machines for these tasks
can be found on the Web – at the University of California-Irvine data set repository,
for example. Is it clear in these benchmark problems that the 10-fold CV yields a
better model?

2. Explore the properties of the different folds through a simulation study. Consider
regression with orthogonal polynomials, for instance under different sample sizes,
and different model complexities. Then perform CV with k smaller than 10, k = 10,
and k larger than 10 folds.

a. Do you notice any regularity in the behavior of the estimate of the prediction
error as a function of both the number of folds and the complexity of the task?

b. Is it obvious that smaller folds are less stable than larger ones?

c. Whether or not you are convinced by the 10-fold CV, could you suggest a way
of choosing the number of folds optimally?

Exercise 1.18. Let H = {h1,h2, · · · ,hp} be a set of basis functions defined on a do-
main X . Consider the basis function expansion

f (x) =
p

∑
j=1

β jh j(x)

and the data set D = {(x1,y1), · · · ,(xn,yn)}.

1. Explain what the concept of generalization means in this context. Particularly dis-
cuss the interrelationships among model complexity, sample size, model selection
bias, bias–variance trade-off, and the choice of H . Are there other aspects of func-
tion estimation that should be included?

2. Provide a speculative (or otherwise) discussion on the philosophical and technical
difficulties inherent in the goal of generalization.

3. How can one be sure that the estimated function based on a given sample size is
getting close to the function that would be obtained in the limit of an infinite sample
size?
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Exercise 1.19. Cross-validation was discussed earlier as a technique for estimating
the prediction error of a learning machine. In essence, the technique functions in two
separate steps.

1. Indicate the two steps of cross-validation.

2. Discuss why having two separate steps can be an impediment to the learning task.

3. Cross-validation and generalized cross-validation are often used in regularized
function estimation settings as a technique for estimating the tuning parameter. Al-
though GCV provides an improvement over CV in terms of stability, the fact that
both are two-step procedures makes them less appealing than any procedure that
incorporates the whole analysis into one single sweep. In the Bayesian context,
the tuning parameter that requires GCV for its estimation is incorporated into the
analysis directly through the prior distribution.

a. In the regression context, find the literature that introduces the treatment of the
tuning parameter as a component of the prior distribution.

b. Explain why such a treatment helps circumvent the problems inherent in CV and
GCV.

Exercise 1.20. Consider once again the task of estimating a function f using the data
set D = {(x1,y1), · · · ,(xn,yn)}. Explain in your own words why there isn’t any single
“one size fits all model” that can solve this problem.

Hint: A deeper understanding of the No Free Lunch Theorem should provide you with
solid background knowledge for answering this question. To see how, do the following:

• Find two problems and call the first one A and the second B. For example, let A be
a prediction problem and B be a hypothesis-testing problem.

• Our question is whether or not there is a strategy, call it S∗, that does optimally well
on both A and B. What one knows in this context is that there is a strategy P that is
optimal for A but that performs poorly on B and a strategy T that is optimal for B
but performs poorly on A.

1. Search the literature to find what P and T are. Be sure to provide the authors and
details of their findings on the subject.

2. Is there a way to combine P and T to find some S∗ that performs optimally on
both A and B?

3. If the answer to question 2 is no, can you find in the literature or construct your-
self two qualitatively different tasks and one single strategy that performs opti-
mally on both of them?



Chapter 2

Local Smoothers

Nonparametric methods in DMML usually refers to the use of finite, possibly small
data sets to search large spaces of functions. Large means, in particular, that the ele-
ments of the space cannot be indexed by a finite-dimensional parameter. Thus, large
spaces are typically infinite-dimensional – and then some. For instance, a Hilbert space
of functions may have countably many dimensions, the smallest infinite cardinal num-
ber, ℵ0. Other spaces, such as the Banach space of bounded functions on [0,1] under
a supremum norm, L∞[0,1], have uncountably many dimensions, ℵ1, under the con-
tinuum hypothesis. Spaces of functions containing a collection of finite-dimensional
parametric families are also called nonparametric when the whole space equals the
closure of the set of parametric families and is infinite-dimensional. By construction,
it is already complete. Usually, the dimension of the parametric families is unbounded,
and it is understood that the whole space is “reasonable” in that it covers a range of
behavior believed to contain the true relationship between the explanatory variables
and the dependent variables.

This is in contrast to classical nonparametrics including ranking and selection, permu-
tation tests, and measures of location, scale and association, whose goal is to provide
good information about a parameter independent of the underlying distributions. These
methods are also, typically, for small sample sizes, but they are fundamentally intended
for finite-dimensional parametric inference. That is, a sample value of, say, Spearman’s
ρ or Kendall’s τ is an estimator of its population value, which is a real number, rather
than a technique for searching a large function space. Moreover, these statistics often
satisfy a CLT and so are amenable to conventional inference. Although these statistics
regularly occur in DMML, they are conceptually disjoint from the focus here.

Roughly speaking, in DMML, nonparametric methods can be grouped into four cate-
gories. Here, by analogy with the terms used in music, they are called Early, Classi-
cal, New Wave, and Alternative. Early nonparametrics is more like data summariza-
tion than inference. That is, an Early nonparametric function estimator, such as a bin
smoother, is better at revealing the picture a scatterplot is trying to express than it is
for making inferences about the true function or for making predictions about future
outcomes. The central reason is that no optimization has occurred and good properties
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cannot necessarily be assumed. So, even if the bin smoother is good for inference and
prediction, that cannot be determined without further work.

This central limitation of Early methods is corrected by Classical methods. The key
Classical methods in this chapter are LOESS, kernels, and nearest neighbors. LOESS
provides a local polynomial fit, generalizing Early smoothers. The idea behind kernel
methods is, for regression, to put a bump at each data point, which is achieved by op-
timization. A parameter is chosen as part of an optimization or inference to ensure the
function being fit matches the scatterplot without over- or underfitting: If the match is
too close, it is interpolation: if it is too far, one loses details. In kernel methods, the
parameter is the bandwidth, or h, used for smoothing. Finite data sets impose severe
limits on how to search nonparametric classes of functions. Nearest-neighbor meth-
ods try to infer properties of new observations by looking at the data points already
accumulated that they resemble most.

LOESS is intermediate between Early and Classical smoothers; kernel methods and
nearest neighbors are truly Classical. Another Classical method is splines, which are
covered in Chapter 3. Chapter 4 provides an overview of many of the main techniques
that realistically fall under the heading of New Wave nonparametrics; some of these –
generalized additive models for instance – are transitions between Classical and truly
New Wave. The key feature here is that they focus on the intermediate tranche of
modeling. Alternative methods, such as the use of ensembles of models, are taken up
in Chapter 6; they are Alternative in that they tend to combine the influences of many
models or at least do not focus exclusively on a single true model.

While parametric regression imposes a specific form for the approximating function,
nonparametric regression implicitly specifies the class the approximand must lie in,
usually through desirable properties. One property is smoothness, which is quantified
through various senses of continuity and differentiability. The smoothest class is linear.
Multiple linear regression (MLR) is one ideal for expressing a response in terms of
explanatory variables. Recall that the model class is

Y = β0 +β1X1 + . . .+βpXp + ε, (2.0.1)

where the εs are IID N(0,σ2), independent of x1, . . . ,xp, and usually have normal
distributions. The benefits of multiple regression are well known and include:

• MLR is interpretable – the effect of each explanatory variable is captured by a single
coefficient.

• Theory supports inference for the βis, and prediction is easy.

• Simple interactions between Xi and Xj are easy to include.

• Transformations of the Xis are easy to include, and dummy variables allow the use
of categorical information.

• Computation is fast.

The structure of the model makes all the data relevant to estimating all the parameters,
no matter where the data points land. However, in general, it may be unreasonable to
permit xis far from some other point x to influence the value of Y (xxx). For instance,
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x̄xx is meaningful for estimating the βis in (2.0.1) but may not be useful for estimating
Y (xxx) if the right-hand side is a general, nonlinear function of XXX , as may be the case in
nonparametric settings. Nevertheless, nonparametric regression would like to enjoy as
many of the properties of linear regression as possible, and some of the methods are
rather successful.

In fact, all the Early and Classical methods presented here are local. That is, rather
than allowing all data points to contribute to estimating each function value, as in
linear regression, the influence of the data points on the function value depends on the
value of xxx. Usually, the influence of a data point xxxi is highest for those xxxs close to it
and its influence diminishes for xxxs far from it. In fact, many New Wave and Alternative
methods re local as well, but the localization is typically more obvious with Early and
Classical methods.

To begin, a smoothing algorithm takes the data and returns a function. The output is
called a smooth ; it describes the trend in Y as a function of the explanatory variables
X1, . . . ,Xp. Essentially, a smooth is an estimate f̂ of f in the nonparametric analog of
(2.0.1),

Y = f (xxx)+ ε, (2.0.2)

in which the error term ε is IID, independent of f and x, with some symmetric, uni-
modal distribution, sometimes taken as N(0,σ2).

First let p = 1, and consider scatterplot smooths. These usually generalize to p = 2
and p = 3, but the Curse quickly renders them impractical for larger dimensions. As
a running example for several techniques, assume one has data generated from the
function in Fig. 2.1 by adding N(0, .25) noise. That is, the function graphed in Fig.
2.1 is an instance of the f in (2.0.1), and the scatter of Y s seen in Fig. 2.2 results
from choosing an evenly spaced collection of x-values, evaluating f (x) for them, and
generating random εs to add to the f (x)s. Next, pretend we don’t know f and that the
εis are unavailable as well. The task is to find a technique that will uncover f using
only the yis in Fig. 2.2.

This chapter starts with Early methods to present the basics of descriptive smoothers.
Early, simple smoothing algorithms provide the insight, and sometimes the building
blocks, for later, more sophisticated procedures. Then, the main Classical techniques,
LOESS, kernel and nearest neighbors in this chapter and spline regression in the next,
are presented.

2.1 Early Smoothers

Three Early smoothers were bin, running line, and moving average smoothers. For
flexibility, they can be combined or modified by adjusting some aspects of their con-
struction. There are many other Early smoothers, many of them variants on those pre-
sented here, and there is some ambiguity about names. For instance, sometimes a bin
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Fig. 2.1 This graph shows the true function f (x) that some of the smoothing techniques presented
here will try to find.
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Fig. 2.2 This graph shows the simulated data generated using evenly spaced values of x on [−1,5],
the f from Fig. 2.1, and ε = N(0, .25), IID. For several techniques, the smoothers’ performances will
be compared using these data as the yis.

smoother is called a regressogram, see Tukey (1961), and sometimes a moving average
smoother is called a nearest neighbors smoother, see Fix and Hodges (1951).

In bin smoothing, one partitions IRp into prespecified disjoint bins; e.g., for p = 1, one
might use the integer partition {[i, i+1), i∈Z }. The value of the smooth in a bin is the
average of the Y -values for the xxx-values inside that bin. For example, Fig. 2.3 shows
the results of applying the integer partition above to the data in our running example.
Clearly, summarizing the data by their behavior on largish intervals is not very effective
in general. One can choose smaller intervals to define the bins and get, hopefully,
a closer matching to f . Even so, however, most people consider bin smoothing to
be undesirably rough. However, bin smoothers are still often used when one wants
to partition the data for some purpose, such as data compression in an information-
theoretic context. Also, histogram estimators for densities are bin smoothers; see Yu
and Speed (1992).
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Fig. 2.3 This graph shows the bin smoother for an integer partition of the data in Fig. 2.2. It is always
discontinuous, and the steps do not in general track the function values particularly well.

To improve bin smoothing, one might use variable-sized bins containing a fixed num-
ber of observations rather than fixed-width bins with a variable number of observations.
This smoother is called a moving average; usually the bins are required to contain the
nearest x-values – this is called a k-nearest-neighbor smoother, discussed in Section 4.
However, other choices for the xs are possible. One could, for instance, take the closest
x-values only on one side (making an allowance for the left boundary) or from more
distant regions believed to be relevant. Moreover, instead of averaging all the closest
data points with equal weights, one can weight the data points closer to x more than to
those farther away. These are called weighted average smoothers. If the median is used
in place of the mean for the sake of robustness, one gets the running median smoother
of Tukey (1977).

Weighted or not, moving average smoothers tend to reflect the local properties of a
curve reasonably well. They don’t tend to look as coarse as bin smoothers, but they are
still relatively rough. Figure 2.4 shows a moving average in which each variable bin
contains the three nearest x-values. If one increases the number of observations within
the bin above three, the plot becomes smoother.

A further improvement is the running line smoother. This fits a straight line rather than
an average to the data in a bin. It can be combined with variable bin widths as in the
moving average smoother to give better local matching to the unknown f . As before,
one must decide how many observations a bin should contain, and larger numbers give
smoother functions. Also, one can fit a more general polynomial than a straight line;
see Fan and Gijbels (1996). Figure 2.5 shows the smooth using a linear fit tends to be
rough. However, it is typically smoother than the bin smoother for the same choice of
bins as in Fig. 2.4.

In all three of these smoothers, there is flexibility in the bin selection. Bins can be
chosen by the analyst directly or determined from the data by some rule. Either way, it
is of interest to choose the bins to ensure that the function is represented well.

In the context of running line smoothers, Friedman (1984) has used cross-validation
(see Chapter 1) to select how many xs to include in variable-length bins.
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Fig. 2.4 This graph shows the moving average smoother for 3-nearest-neighbor bins and the data in
Fig. 2.2. It is always discontinuous, but gives adequate local matching. Note that the values on the
bins are often so close as to be indistinguishable in the figure.
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Fig. 2.5 This graph shows the running-line smoother for the 3-nearest-neighbor bins and the data in
Fig. 2.2. It is smoother than the curves in Figs. 2.3 and 2.4 because it is a more flexible family, at the
cost of less severe summarization inside the bins.

SuperSmoother chooses among three different numbers of observations: n/2, n/5, and
n/20. Except near the endpoints of the domain of xs, the values f̂ (x) are found using
half of the closest observations on each side of x; this forced symmetry is different
from merely using, say, the nearest n/2 xs, in which more or less than (1/2)(n/2)
may be to one side of x. The choice among the three options is made by finding f̂1(x),
f̂2(x), and f̂3(x) for the three options and then using leave-one-out cross-validation to
determine which has the smallest predictive mean squared error.

Note that the smoothers exhibited so far are linear in an important sense. In squared
error, it is well known that the best predictor for Y from XXX is f (x) = E(Y |XXX = xxx).
So, the smooths developed so far can be regarded as estimators of E(Y |XXX) in (2.0.2).
Different from the linearity in (2.0.1), a smooth in (2.0.2) is linear if and only if
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f̂ (x) =
n

∑
i=1

Wi(x)yi = Ln(x)yyy, (2.1.1)

in which the Wjs are weights depending on the whole data set (yi,xi)n
i=1 and Ln(x) is

a linear operator on yyy with entries defined by the Wjs . In this notation, the choice of
bins is implicit in the definition of the Wjs. For fixed bins, for instance, Wj(x0) only
depends on the xs in the bin containing x0. In this form, it is seen that f̂ = Lnyyy means
that Var( f̂ (x)) = Var(Ln(x)yyy) = Ln(x)Var(yyy)Ln(x)T, which is σ2Ln(x)Ln(x)T for IID
N(0,σ2) errors.

Just as there are many other Early smoothers, there are even more linear smoothers;
several will be presented in the following sections. Linear smoothers have a common
convenient expression for the MSE, bias, and variance. In particular, these expressions
will permit the optimizations typical of Classical methods. This will be seen explicitly
in the next section for the case of kernel estimators, which are linear. For these and
other smoothers, expression (2.1.1) implies that averages of linear smoothers are again
linear, so it may be natural to combine linear smoothers as a way to do nonparametric
regression better.

2.2 Transition to Classical Smoothers

Early smoothers are good for data summarization; they are easy to understand and
provide a good picture. Early smoothers can also be computed quickly, but that has
become less important as computational power has improved.

Unfortunately, because their structure is so simplified, Early smoothers are generally
inadequate for more precise goals such as estimation, prediction, and inference more
generally. Some of the limitations are obvious from looking at the figures. For in-
stance, Early smoothers do not optimize over any parameter, so it is difficult to control
the complexity of the smooth they generate. Thus, they do not automatically adapt to
the local roughness of the underlying function. In addition, there is no measure of bias
or dispersion. Unsurprisingly, Early smoothers don’t generalize well to higher dimen-
sions.

A separate point is that Early smoothers lack mathematical theory to support their use,
so it is unclear how well they quantify the information in the data. Another way to
say this is that often many, many smooths appear equally good and there is no way to
compare them to surmise that one curve, or region of curves, is more appropriate than
another. Practitioners are often comfortable with this because it reflects the fact that
more information – from data or modeling assumptions – is needed to identify the right
curve. Indeed, this indeterminacy is just the sort of model uncertainty one anticipates
in curve fitting. On the other hand, it is clearly desirable to be able to compare smooths
reliably and formally.

At the other end of the curve-fitting spectrum from the Early smoothers of the last
section is polynomial interpolation. Motivated perhaps by Taylor expansions, the initial
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goal was to approximate a function over its domain by a single polynomial. Recall that
polynomials are just a basis for a function space; they can be orthogonalized in the L2

inner product to give the Legendre polynomials. Thus, more generally, the goal was to
use basis expansions to get a global representation for a function. The extreme case of
this is interpolation, where the approximand equals the function on the available data.

In fact, global polynomial interpolation does not work well because of an unexpected
phenomenon: As the degree increases, the oscillations of the approximand around the
true function increase without bound. That is, requiring exact matching of function
values at points forces ever worse matching away from those points. If one backs off
from requiring exact matching, the problem decreases but remains. This is surprising
because Taylor expansions often converge uniformly. What seems to be going on is
that forcing the error term too small, possibly to zero, at a select number of points in
polynomials of high enough degree (necessary for the error term to get small) creates
not just a bad fit elsewhere but a bad fit resulting from ever-wilder oscillations. This
is another version of bias–variance trade-off. Requiring the bias to be too small forces
the variability to increase. In practice, estimating the coefficients in such an expansion
will give the same problem.

2.2.1 Global Versus Local Approximations

There exists a vast body of literature in numerical analysis that deals with the approx-
imation of a function from a finite collection of function values at specific points, one
of the most important results being the following.

Weierstrass Approximation Theorem: Suppose f is defined and continuous on [a,b].
For each ε > 0, there exists a polynomial g(x), defined on [a,b], with the property that

| f (x)−g(x)|< ε, ∀x ∈ [a,b]. � (2.2.1)

This theorem simply states that any continuous function on an interval can be ap-
proximated to arbitrary precision by a polynomial. However, it says nothing about the
properties of g or how to find it.

Unsurprisingly, it turns out that the quality of an approximation deteriorates as the
range over which it is used expands. This is the main weakness of global polynomial
approximations. To see how global approximation can break down, consider univariate
functions. Let X = [−1,1] and f (x) : X → IR be the Runge function

f (x) =
1

1+25x2 . (2.2.2)

Let x1,x2, · · · ,xn ∈X , be uniformly spaced points

xi =−1+(i−1)
2

n−1
, i = 1, · · · ,n.
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C. D. Runge showed that if f is interpolated on the xis by a polynomial gk(x) of degree
≤ k, then as k increases, the interpolant oscillates ever more at the endpoints −1 and
1. This is graphed in Fig. 2.6.
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Fig. 2.6 The solid curve is the Runge function. As the dashes in the other curves get smaller, the order
of the polynomial gets larger, representing the 5th-, 7th-, and 9th-degree polynomials. As the degree
increases, the oscillations of the interpolant at the endpoints are seen to increase as well.

But it’s worse than Fig. 2.6 shows: The interpolation error tends to infinity at the end-
points as the degree k increases; i.e.,

lim
k→∞

(
max
−1≤x≤1

∣∣ f (x)−gk(x)
∣∣)= ∞. (2.2.3)

That is, as k increases, the interpolating polynomial (quickly) gets much bigger than the
function it is interpolating; see Exercise 2.3. Although Runge’s phenomenon has now
been seen only for one function, it clearly demonstrates that high-degree polynomials
are generally unsuitable for interpolation. After all, there is nothing unusual about the
shape of f .

There is a resolution to Runge’s phenomenon. If global approximation won’t work
well, then patch together a sequence of local approximations that will be more sensitive
to the local features of the underlying function, especially near the endpoints. One way
to do this is by using splines – a special class of local polynomials – to be discussed in
Chapter 3. Comparing Fig. 2.6 to Fig. 2.3, 2.4 and 2.5 suggests that local polynomials
(splines) will outperform global polynomial interpolation on the Runge function f .
It will be seen later that piecewise fitting the spline does make it a great improvement
over global polynomials. (Any decent spline approximation to Runge’s function in Fig.
2.6 is indistinguishable from Runge’s function up to the resolution of the printer.)

Quantifying the sense in which using low-degree local polynomials with enough pieces
does better than high-degree global polynomials requires some definitions. Let f :
X −→ IR, and consider the function space F ≡ IRX under the supremum norm; i.e.,
for f ∈F , ‖ f‖∞ ≡ supx∈X | f (x)|. The space F is so vast that searching it is simply
unreasonable. So, consider a linear subspace G ⊂F of dimension k with a basis B.
The space of polynomials of degree less than or equal to k is a natural choice for G .
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Let T be an operator, for instance an interpolant, acting on functions f ∈F . If, for
f ∈F , T F ∈ G , then a measure of the worst-case scenario is defined by the norm on
T inherited from ‖ · ‖∞, given by

‖T‖∞ ≡ sup f∈F
‖T f‖∞
‖ f‖∞

. (2.2.4)

The operator norm in (2.2.4) is a generalization of the largest absolute eigenvalue for
real symmetric matrices; it is the biggest possible ratio of the size of T f compared with
the size of f . The larger ‖T‖∞ is, the bigger the difference between some function f
and its interpolant can be. Note that although this is expressed in the supremum norm
‖ · ‖∞, the properties of the norms used here hold for all norms; later, when a Hilbert
space structure is assumed, the norm will be assumed to arise from an inner product.
If T is linear in the sense of (2.2.4),

‖T‖∞ = sup
‖ f‖∞=1

‖T f‖∞.

(In general, the norm ‖ · ‖∞ does not arise from an inner product, so linear spaces
equipped with ‖ · ‖∞ become Banach spaces rather than Hilbert spaces.)

In terms of (2.2.4), if T is the polynomial interpolant, expression (2.2.3) means that
‖T‖∞ = ∞. In other words, there is a sequence of functions f j such that the norm
‖T f j‖∞ of the interpolant is getting much larger than the norm ‖ f j‖∞ of the function,
as is visible in Fig. 2.6. In fact, there are many such sequences f j.

One popular interpolant is the nth Lagrange polynomial gn, seen to be unique in the
following.

Theorem (Lagrange interpolation): If x0,x1, · · · ,xn are n + 1 distinct points and f
is a function whose values at these points are y0 = f (x0),y1 = f (x1), · · · ,yn = f (xn),
respectively, then there exists a unique polynomial g(x) = gn(x) of degree at most n
with the property that

yi = g(xi) for each i = 0,1, · · · ,n,

where

g(x) = y0�0(x)+ y1�1(x)+ · · ·+ yn�n(x)

=
n

∑
i=0

yi�i(x) (2.2.5)

with

�i(x) =
(x− x0)(x− x1) · · ·(x− xi−1)(x− xi+1) · · ·(x− xn)

(xi− x0)(xi− x1) · · ·(xi− xi−1)(xi− xi+1) · · ·(xi− xn)

=
n

∏
j=0, j 	=i

x− x j

xi− x j
(2.2.6)

for each i = 0,1, · · · ,n. �
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Because of the uniqueness of the interpolating polynomial, one can use a slightly dif-
ferent norm to provide a theoretical quantification of the quality of an interpolation.
Specifically, one can represent the interpolating polynomial using the Lagrange inter-
polation basis [�0, �1, · · · , �n] so that

T f (x) =
n

∑
i=0

yi�i(x)

and then define a new norm

‖T‖� = sup
x∈X

n

∑
i=1
|�i(x)|.

Equipped with this norm, one can easily compare different interpolation operators. In
the Runge function case (2.2.2), choosing n = 16 uniformly spaced points in [−1,1]
in (2.2.5) gives that ‖T‖� for interpolating operators can be found straightforwardly:
‖Tpoly‖� ≈ 509.05 for the polynomial interpolant and ‖Tspline‖� ≈ 1.97 for the cubic
spline interpolant. The difference is huge. Moreover, it can be shown that, as n in-
creases, ‖Tpoly‖� = O(exp(n/2)), while ‖T‖� ≈ 2 regardless of n, see Exercise 3.1.

Naturally, it is desirable not only to match a specific polynomial but to ensure that the
procedure by which the matching is done will be effective for a class of functions. After
all, in practice the function to be “matched” is unknown, apart from being assumed to
lie in such a class. So, consider a general class G . Since T f ∈ G , the norm ‖ f −T f‖∞
cannot be less than the distance

dist( f ,G ) = inf
g∈G
‖ f −g‖∞

from f to G . Also, since ‖T‖∞ is the supremum over all ratios ‖T f‖∞/‖ f‖∞, we have

‖T f‖∞ ≤ ‖T‖∞‖ f‖∞, f ∈F ,

when T has a finite norm. By the definition of interpolation, T g = g for all g ∈ G , so
restricted to G , T would have a finite norm. On the other hand, if T is a linear operator,
then T has a finite norm if and only if it is continuous (in the same norm, ‖ ·‖∞), and it
is natural to write

f −T f = f −g+T g−T f = ( f −g)+T (g− f ).

Therefore

‖ f −T f‖∞ ≤ ‖ f −g‖∞+‖T‖∞‖g− f‖∞ = (1+‖T‖∞)‖ f −g‖∞

for any g ∈ G . Choosing g to make ‖ f −g‖∞ as small as possible gives the Lebesgue
inequality: For f ∈F ,

dist( f ,G )≤ ‖ f −T f‖∞ ≤ (1+‖T‖∞)dist( f ,G ).
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This means that when the norm ‖T‖∞ of an interpolation operator is small, the inter-
polation error ‖ f − T f‖∞ is within an interpretable factor of the best possible error.
From this, it is seen that there are two aspects to good function approximation:

� The approximation process T should have a small norm ‖T‖∞.

� The distance dist( f ,G ) of f from G should be small.

Note that these two desiderata are stated with the neutral term approximation. Inter-
polation is one way to approximate, more typical of numerical analysis. In statistics,
however, approximation is generally done by function estimation. In statistical terms,
these two desiderata correspond to another instance of bias–variance trade-off. Indeed,
requiring a “small norm” is akin to asking for a small bias, and requiring a small dis-
tance is much like asking for a small variance. As a generality, when randomness is
taken into account, local methods such as kernel and cubic spline smoothers will tend
to achieve these goals better than polynomials.

2.2.2 LOESS

In the aggregate, the limitations of Early smoothers and the problems with global
polynomials (or many other basis expansions) motivated numerous innovations to deal
with local behavior better. Arguably, the most important of these are LOESS, kernel
smoothing, and spline smoothing. Here, LOESS (pronounced LOW-ESS) will be pre-
sented, followed by kernel methods in the next section and splines in the next chapter.

Overall, LOESS is a bridge between Early and Classical smoothers, leaning more to
Classical: Like Early smoothers, it is descriptive and lacks optimality, but like Classi-
cal smoothers it is locally responsive and permits formal inferences. Locally weighted
scatterplot smoothing (i.e., LOESS) was developed by Cleveland (1979) and Cleve-
land and Devlin (1988). More accurately, LOESS should be called locally weighted
polynomial regression. In essence, LOESS extends the running line smooth by using
weighted linear regression in the variable-width bins. A key strength of LOESS is its
flexibility because it does not fit a closed-form function to the data. A key weakness of
LOESS is its flexibility because one does not get a convenient closed-form function.

Informally, the LOESS procedure is as follows. To assign a regression function value
to each xxx in the domain, begin by associating a variable-length bin to it. The bin for
xxx is defined to contain the q observations from the points in the data xxx1, ...,xxxn that
are closest to xxx. On this bin, use the q data points to fit a low-degree polynomial by
locally weighted least squares. The closer an xxxi in the bin is to xxx, the more weight
it gets in the optimization. After finding the coefficients in the local polynomial, the
value of the regression function Ŷ (xxx) is found by evaluating the local polynomial from
the bin at xxx. It is seen that LOESS can be computationally demanding; however, it is
often satisfactorily smooth, and for reasonable choices of its inputs q and the weights,
tracks the unknown curve without overfitting or major departures. As will be seen in



2.2 Transition to Classical Smoothers 65

later sections, this kind of method suffers the Curse of Dimensionality. However, for
low-dimensional problems, local methods work well.

There are three ways in which LOESS is flexible. First, the degree of the polynomial
model can be any integer, but using a polynomial of high degree defeats the purpose.
Usually, the degree is 1, 2, or 3. In actuality, there is no need to limit the local func-
tions to polynomials, although polynomials are most typical. Any set of functions that
provides parsimonious local fits will work well. Second, the choice of how to weight
distances between xxx and xxxi is also flexible, but the tri-cube weight (defined below) is
relatively standard. Third, the number of data points in the bins ranges from 1 to n, but
n/4≤ q/n≤ 1/2 is fairly typical.

More formally, recall that weighted least squares finds

β̂ββ = arg min
βββ∈IRp

n

∑
i=1

wi(Yi−XXXT
i βββ )2, (2.2.7)

in which wi is a weight function, often derived from the covariance matrix of the εis.
This β̂ββ is used in the model

Ê(Y )(xxx) = xxxTβ̂ββ (2.2.8)

for inference and prediction.

By contrast, LOESS replaces the wi with a function w(xxx) derived from the distances
between the xxxis and xxx for the q xxxis closest to xxx and set to zero for the n−q xxxis furthest
from xxx. To see how this works for a value of xxx, say xxxk from the data set (for conve-
nience), write di = ||xxxk−xxxi|| using the Euclidean norm and sort the dis into increasing
order. Fix α to be the fraction of data included in a bin so that q = max(�αn�,1). Now,
dq is the qth smallest distance from any xxxi to xxxk. To include just the q closest points in
a bin, one can use the tri-cube weight for any xxxi:

wi(xxxk) = χ{||xxxi−xxxk||≤dq}

(
1−

∥∥∥∥xxxi− xxxk

dq

∥∥∥∥
3
)3

. (2.2.9)

Now, given these weights, the weighted polynomial fit using the xxxis in the bin of cardi-
nality q around xxxk can be found by the usual weighted least squares minimization. The
resulting function gives the LOESS fit at xxxk and the procedure works for any xxx 	= xxxk.

It is seen that the βis obtained at one xxx are in general different from the βis obtained
for a different xxx. Moreover, LOESS uses weighted linear regression on polynomials;
(2.2.7) is like a special case of LOESS using linear functions and one bin, q = n. Thus,
the corresponding p for LOESS, say p∗, is not the same as the p in (2.2.7); p∗ depends
on the choice of local functions and n. It’s as if (2.2.7) became

β̂ββ (xxx) = arg min
βββ ∗∈IRp∗

n

∑
i=1

wi(xxx)(yi− f (xxx,xxxi,βββ ∗))2, (2.2.10)
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in which wi(xxx) is the weight function with local dependence and f is the local poly-
nomial, parametrized by βββ ∗, for the bin containing the xxxis associated to xxx. Note that
β̂ββ depends continuously on xxx, the point the regression is fitting. The resulting β̂ββ (xxx)
would then be used in the model

Ê(Y )(xxx) = f (xxx, β̂ββ (xxx)), (2.2.11)

in which the dependence of f on the data xxxi is suppressed because it has been used to
obtain β̂ββ (xxx). The expression in (2.2.11) is awkward because the LOESS “model” can
only be expressed locally, differing from (2.2.8), which holds for all xxx ∈ IRp. How-
ever, the regression function in (2.2.11) is continuous as a function of xxx, unlike earlier
smoothers.

The statistical properties of LOESS derive from the fact that LOESS is of the form
(2.1.1). Indeed, if we write

f̂ (x) =
n

∑
i=1

Wi(xxx)yi,

so that the estimate f̂ (xxx) is a linear function Ln of the yis, with fitted values ŷi = f̂ (xxxi),
we get

ŷyy = Lnyyy.

The residual vector is ε̂εε = (In×n−Ln)yyy, so In×n−Ln plays the same role as the pro-
jection operator in the usual least squares formulation, although it is not in general
symmetric or idempotent, Cleveland and Devlin (1988), p. 598.

Theorems that characterize the behavior of LOESS estimators are straightforward to
establish. Here, it will be enough to explain them informally. The key assumptions are
on the distribution of Y , typically taken as normal, and on the form of the true function
fT , typically assumed to be locally approximable by the polynomial f .

Indeed, for local linear or quadratic fitting, one only gets true consistency when fT

is linear or quadratic. Otherwise, the consistency can only hold in a limiting sense
on neighborhoods of a given xxx on which fT can be well approximated by the lo-
cal polynomial. Under the assumption of unbiasedness, the usual normal distribu-
tion theory for weighted least squares holds locally. That is, under local consis-
tency and normality, ŷyy and ε̂εε are normally distributed with covariances σ2LT

n Ln and
σ2(In×n−Ln)T(In×n−Ln). Thus, the expected residual sum of squares is

E(ε̂εεTε̂εε) = σ2trace(In×n−Ln)T(In×n−Ln),

giving the natural estimate σ̂ = ε̂εεTε̂εε/trace(In×n−Ln)T(In×n−Ln). Using the normality
in (2.0.2) gives

V̂ar(ĝ(xxx)) = σ̂2
n

∑
i=1

Wi(xxxi)2.

Again, as in the usual normal theory, the distribution of a quadratic form such as ε̂εεε̂εεT

can be approximated by a constant times a χ2 distribution, where the degrees of free-
dom and the constant are chosen to match the first two moments of the quadratic form.
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As noted in Cleveland and Devlin (1988), setting δ1 = trace(In×n− Ln)(In×n− Ln)T

and δ2 = trace[(In×n−Ln)(In×n−Ln)T]2, the distribution of δ 2
1 σ̂2/(δ2σ2) is approxi-

mately χ2
δ 2

1 /δ2
and the distribution of ( f̂ (xxx)− f (xxx))/σ̂(xxx) is approximately tδ 2

1 /δ2
. Used

together, these give confidence intervals, pointwise in xxx, for fT (xxx) based on f̂ (xxx).

Figure 2.7 gives an indication of how well this approach works in practice. For ap-
propriate choices, LOESS is a locally consistent estimator, but, due to the weighting,
may be inefficient at finding even relatively simple structures in the data. Indeed, it is
easy to see that, past 4, the LOESS curve misses the downturn in the true curve. If
there were more data to the right, LOESS would pick up the downturn, so this can be
regarded as an edge effect. However, the fact that it is so strong even for the last sixth
of the domain is worrisome. Careful adjustment of q and other inputs can improve the
fits, but the point remains that LOESS can be inefficient (i.e., it may need a lot of data
to get good fit). Although LOESS was not intended for high-dimensional regression,
and data sparsity exacerbates inefficiency as p increases, LOESS is often used because
normal theory is easy. Of course, like other methods in this chapter, LOESS works best
on large, densely sampled, low-dimensional data sets. These sometimes occur, but are
hardly typical.
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Fig. 2.7 This graph shows the LOESS smoother for the data in Fig. 2.2 for a normal weighting
function, polynomials of order 2, and q = .75n. The large q makes the graph much smoother than the
Early smoothers, but the fit can be poor for unfortunate choices.

2.3 Kernel Smoothers

The first of three truly Classical methods to be presented here is kernel smoothers.
However, to do this necessitates some definitions and concepts that run throughout
nonparametric function estimation. Although substantial, this is the typical language
for nonparametrics.
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The problem is to recover an entire function from a random sample of observations
(XXX1,Y1), · · · ,(XXXn,Yn), where Yi = f (XXXi)+ εi and E(εi) = 0. Under squared error loss,
the goal is to find an estimator f̂ (xxx) of f (xxx) = E(Y |XXX = xxx). There are a variety of
obvious questions: What do we know, or think we know, about the distribution of X?
How are the εis distributed and how are they related to the Yis? What is a good choice
for f̂ , and how good is it?

The first subsection introduces how the quality of f̂ , sometimes denoted f̂n to empha-
size the sample size, is assessed and describes the modes of convergence of f̂n to f .
The second and following subsections explain the kernel methods for forming f̂ s in
several settings, giving their basic properties, including rates of convergence. The dis-
cussion will focus on the univariate case, although extensions to low-dimensional XXXs
are similar. High-dimensional XXXs suffer the Curse.

2.3.1 Statistical Function Approximation

There are a variety of modes of convergence, some more appropriate than others in
some contexts. At the base, there is pointwise convergence. Let < fn > be a sequence
of functions defined on a common domain X ⊂ IR. The sequence < fn > converges
pointwise to f (·) if

lim
n→∞

fn(x) = f (x)

for each x ∈X . This can also be expressed as

∀ε > 0, ∃N, ∀n≥ N such that | fn(x)− f (x)|< ε

for each x ∈X . Note that this is just the usual notion of convergence for real numbers
that happen to be function values at x.

Extending from individual xs to sets of xs is where the complications begin. First,
pointwise convergence is not the same as convergence of integrals. This can be seen
in standard examples. For instance, consider the sequence of functions fn(x) = nx
(1− x2)n. It can be seen that

lim
n→∞

fn(x) = lim
n→∞

nx(1− x2)n = 0,

but

lim
n→∞

∫ 1

0
fn(x)dx = lim

n→∞

n
2n+2

=
1
2
.

Since the integral of the limiting function over the domain is different from the limit of
the sequence of integrals, it follows that pointwise convergence is not a strong mode.

Uniform convergence on a set is clearly stronger than pointwise convergence on that
set. Formally, let < fn > be a sequence of functions all defined on a common domain
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X ⊂ IR. The sequence < fn > converges uniformly to f (x) if

∀ε > 0, ∃N, ∀x ∈X ∀n≥ N | fn(x)− f (x)|< ε.

Uniform convergence means that the error between fn and f can be made arbitrarily
small uniformly over X . A fortiori uniform convergence implies pointwise conver-
gence, but the converse fails. (Consider fn(x) = xn on [0,1], for example.) Uniform
convergence also implies that integrals converge.

Theorem: Let fn be a sequence of continuous functions defined on a closed interval
[a,b]. If fn converges uniformly to f (x) on [a,b], then

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f (x)dx.

In a measure-theoretic context, the monotone convergence theorem, the dominated
convergence theorem, and Egorov’s theorem together mean that pointwise conver-
gence almost gives convergence of integrals and each of the two modes is almost
equivalent to uniform convergence. In this context, behavior at specific points is not
important because functions are only defined up to sets of measure zero.

In an inner product space, uniform convergence is expressed in terms of the norm ‖ · ‖
derived from the inner product. A sequence fn in an inner product space converges to
f if and only if

∀ε > 0, ∃N, such that ∀n≥ N‖ fn− f‖< ε.

The x does not appear in the definition since the norm is on the function as an entity,
not necessarily dependent on specific points of its domain.

A sequence < fn > in an inner product space is Cauchy if

∀ε > 0, ∃N, such that ∀n,m≥ N ‖ fn− fm‖< ε.

In most common topological spaces, sequences converge if and only if they are
Cauchy. A space in which every Cauchy sequence converges in its norm to a mem-
ber of the space (i.e., the space is closed under Cauchy convergence) is complete. A
complete linear space together with a norm defined on it is called a Banach space. A
closed Banach space in which the norm arises from an inner product is called a Hilbert
space. Finite-dimensional vector spaces IRp and the space of square-integrable func-
tions L2 are both Hilbert spaces. Under ‖ · ‖∞, a linear space such as C [0,1] is usually
Banach but not Hilbert.

Turning to more statistical properties, squared error is used more often than other no-
tions of distance, such as ‖·‖∞ for instance, especially when evaluating error pointwise
in xxx. However, different measures of distance have different properties. Euclidean dis-
tance is the most widely used because in finite dimensions it corresponds well to our
intuitive sense of distance and remains convenient and tractable in higher dimensions.
Starting with this, recall that, for good prediction, the MSE of the predictor must be
small. If the goal is to predict Ynew from XXXnew, having already seen (XXX1,Y1), ...,(XXXn,Yn),
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the mean squared error gives the average of the error for each XXX : For function estima-
tion, the mean squared error (MSE) of f̂ at any xxx is

MSE[ f̂ (x)] = E

[(
f̂ (x)− f (x)

)2
]
.

As before, this breaks down into two parts. The bias of f̂ at x is

Bias( f̂ (x)) = E( f̂ (x))− f (x);

the variance of f̂ at x is

Var( f̂ (x)) = E

[(
f̂ (x)−E( f̂ (x))

)2
]

;

and the MSE can be decomposed:

MSE[ f̂ (x)] = Var( f̂ (x))+Bias( f̂ (x))2.

Naively, the minimum-variance unbiased estimator is the most desirable. After all, if
f̂ is pointwise unbiased (i.e., Bias( f̂ (x)) = 0 for each x ∈X ), then one is certain that
enough data will uncover the true function. However, sometimes unbiased estimators
don’t exist and often there are function estimators with smaller variance and small bias
(that goes to zero as n increases) with smaller MSE.

Another measure of distance that is more appropriate for densities is the mean absolute
error (MAE). The mean absolute error of f̂ at x is

MAE[ f̂ (x)] = E[| f̂ (x)− f (x)|].

Unlike the MSE, the MAE does not allow an obvious decomposition into meaning-
ful quantities such as variance and bias. It also poses severe analytical and computa-
tional challenges. However, applied to densities, it corresponds to probability (recall
Scheffe’s theorem) and is usually equivalent to the total variation distance. Indeed, f̂
is weakly pointwise consistent for f when f̂ (xxx) converges to f (xxx) in probability (i.e.,
f̂ (xxx)→P f (xxx) for each xxx), and f̂ is pointwise consistent for f when

∀xxx ∈X E( f̂ (x))→ f (x).

For the remainder of this section, the focus will be on the global properties of f̂ on
the whole domain X of f rather than on pointwise properties. This means that all the
assessments are in terms of f̂ and f , with no direct dependence on the values xxx.

A general class of norms comes from the Lebesgue spaces, Lp, given by

‖ f̂ − f‖p =
(∫

X
| f̂ (x)− f (x)|pdx

)1/p

,

for f̂ − f . For the norm to be well defined, there are two key requirements: f̂ must be
defined on X , and the integral must exist.
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Three special cases of Lp norms are p = 1,2,∞. The L1 norm, also called integrated
absolute error (IAE) is

IAE[ f̂ ] =
∫

X
| f̂ (x)− f (x)|dx.

The L2 norm, also called integrated squared error (ISE) is

ISE[ f̂ ] =
∫

X
( f̂ (x)− f (x))2dx.

The L∞ norm, also called supremal absolute error (SAE) is

SAE[ f̂ ] = sup
x∈X

∣∣ f̂ (x)− f (x)
∣∣ .

The Csiszar φ divergences are another general class of measures of distance. Instead
of being defined by expectations of powers, Csiszar φ divergences are expectations of
convex functions of density ratios. The power divergence family is a subset of Csiszar
φ divergences. Two of the most important examples are the Kullback-Leibler distance,
or relative entropy, given by

KL[ f̂ , f ] =
∫

X
f̂ (x) log

(
f̂ (x)
f (x)

)
dx,

and the Hellinger distance, given by

H[ f̂ , f ] =
(∫

X

(
f̂ 1/p(x)− f 1/p(x)

)p
dx

)1/p

.

These distances are not metrics. However, they do typically have convex neighbor-
hood bases and satisfy some metric-like properties. In addition, the Kullback-Leibler
distance represents codelength, and the Hellinger distance represents the closest pack-
ing of spheres. (Another φ divergence is the χ-squared distance, which represents
goodness of fit.) Overall, select members of the Csiszar φ divergence class have inter-
pretations that are usually more appropriate to physical modeling than Lp norms have.
Whichever distance is chosen, the consistency of f̂ is studied from a global perspective
by trying to obtain

∫
X

E
(
L( f̂ (x), f (x))

)
dx→ 0,

where L( f̂ (x), f (x)) indicates the distance chosen as the loss function.

Among these global measures, focus usually is on the ISE. It is more mathemat-
ically tractable than the others because the loss function is squared error, giving
L( f̂ (x), f (x)) = ( f̂ (x)− f (x))2. Consequently, a full measure of the quality of f̂ is
often formed by combining the MSE and the ISE into the integrated mean squared
error (IMSE) which turns out to equal the mean integrated squared error (MISE). To
see this, define the integrated squared bias (ISB),
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ISB[ f̂ ] =
∫

X

(
E( f̂ (x))− f (x)

)2
dx,

and the integrated variance (IV),

IV[ f̂ ] =
∫

X
Var( f̂ (x))dx =

∫
X

E

[(
f̂ (x)−E( f̂ (x))

)2
]
dx.

Now, the IMSE is

IMSE[ f̂ ] =
∫

X
E
(
( f̂ (x)− f (x))2)dx

= IV( f̂ )+ ISB( f̂ ).

Assuming a Fubini theorem, the integrated mean squared error is

IMSE[ f̂ ] = E

(∫
X

( f̂ (x)− f (x))2dx

)

= MISE( f̂ ),

the MISE. Unfortunately, as suggested by the Runge function example, global unbi-
asedness generally does not hold. So, in practice, usually both IV( f̂ ) and ISB( f̂ ) must
be examined.

Continuing the definitions for squared error, f̂ is mean square consistent (or L2 consis-
tent) for f if the MISE converges to 0. Formally, this is

∫
X

E
(
( f̂ (x)− f (x))2)dx→ 0.

The expectation in the integral can be removed, in which case the expression is a
function of the data after integrating out the xxx. This reduced expression can still go to
zero in probability as n increases, or with probability one, giving familiar notions of
weak and strong consistency, respectively.

Next, to respect the fact that X is a random variable, not just a real function, it is im-
portant to take into account the stochasticity of X through its density p(x). So, redefine
the MISE to be

MISE( f̂ ) =
∫

X
E
(
( f̂ (x)− f (x))2) p(x)dx.

If a weight function w(x) is included in the ISE, then writing

dI( f̂ , f ) =
∫

( f̂ (x)− f (x))2 p(x)w(x)dx

gives that the MISE is the expectation of dI with respect to X . That is,

MISE( f̂ ) = dM( f̂ , f ) = E(dI( f̂ , f )].
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The notation dM is a reminder that the MISE is a distance from f̂ to f resulting from
another distance dI .

Very often MISE is intractable because it has no closed-form expression. There are two
ways around this problem. Theoretically, one can examine the limit of MISE as n→∞.
This gives the asymptotic mean integrated squared error (AMISE). Alternatively, for
computational purposes, a discrete approximation of dI based on a sample X1, · · · ,Xn

can be used. This is the average squared error (ASE),

ASE( f̂ , f ) = dA( f̂ , f ) =
1
n

n

∑
i=1

( f̂ (Xi)− f (Xi))2w(Xi). (2.3.1)

The ASE is convenient because, being discrete, dA avoids numerical integration. In-
deed, as a generality, the main quantities appearing in nonparametric reasoning must
be discretized to be implemented in practice. (Expressions like (2.3.1) are empirical
risks, and there is an established theory for them. However, it will not be presented
here in any detail.)

2.3.2 The Concept of Kernel Methods and the Discrete Case

In this subsection, the setting for kernel methods is laid out. The basic idea is to smooth
the data by associating to each datum a function that looks like a bump at the data
point, called a kernel. The kernel spreads out the influence of the observation so that
averaging over the bumps gives a smooth. The special case of deterministic choices
of the xis is dealt with here in contrast to (i) the Runge function example, (ii) the
stochastic case, which involves an extra normalization, and (iii) the spline setting to be
developed later.

2.3.2.1 Key Tools

The central quantity in kernel smoothing is the kernel itself. Technically, a kernel K is
a bounded, continuous function on IR satisfying

∀v K(v)≥ 0 and
∫

K(v)dv = 1.

To make this more intuitive, K usually is required to satisfy the additional conditions

∫
vK(v)dv = 0 and

∫
v2K(v)dv < ∞.

For multivariate XXXs, one often takes multiples of p copies of K, one for each xi in XXX ,
rapidly making the problem difficult. For notational convenience, define
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Kh(v) =
1
h

K
( v

h

)
.

Here, Kh is the rescaled kernel and h is the bandwidth or smoothing parameter. It is
easy to see that if the support of K is supp(K) = [−1,+1], then supp(Kh) = [−h,+h].
Also, Kh integrates to 1 over v for each h. It will be seen later that kernel smoothers
are linear in the sense of (2.1.1) because K is the basic ingredient for constructing the
weights {Wi(x)}n

i=1. The shape of the weights comes from the shape of K, while their
size is determined by h.

Clearly, there are many possible choices for K. Some are better than others, but not
usually by much. So, it is enough to restrict attention to a few kernels. The following
table shows four of the most popular kernels; graphs of them are in Fig. 2.8.

Kernel name Equation Range

Epanechnikov K(v) =
3
4
(1− v2) −1≤ v≤ 1

Biweight K(v) =
15
16

(1− v2)2 −1≤ v≤ 1

Triangle K(v) = (1−|v|) −1≤ v≤ 1

Gaussian (normal) K(v) =
1√
2π

e−v2/2 −∞< v < ∞

Three of the kernels in the table above are zero outside a fixed interval. This restriction
helps avoid computational numerical underflows resulting from the kernel taking on
very small values. In terms of efficiency, the best kernel is the Epanechnikov. The least
efficient of the four is the normal.

It turns out that continuity of a function is not a strong enough condition to permit
statements and proofs of theorems that characterize the behavior of kernel estimators.
A little bit more is needed. This little bit more amounts to continuity with contraction
properties akin to uniform continuity but with a rate on ε as a function of δ . Thus, key
theorems assume Hölder continuity and Lipschitz continuity of the underlying function
f as well as of the other functions (such as kernels) used to estimate it.

Let g be a univariate function with compact domain X ⊂ R. Lipschitz continuity
asks for a uniform linear rate of contraction of the function values in terms of their
arguments. That is, the function g is Lipschitz continuous if

∃δ > 0 such that |g(u)−g(v)| ≤ δ |u− v|

for all u,v ∈ X . A more general version of this criterion allows upper bounds that
are not first order. A univariate function g on a compact domain X ⊂R is α-Hölder
continuous for some 0 < α ≤ 1 if

∃δα > 0 such that |g(u)−g(v)| ≤ δα |u− v|α
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Fig. 2.8 The graphs of the four kernels from the table show how they spread the weight of a data
point over a region. Only the normal has noncompact support – and it is least efficient.

for all u,v ∈X . Clearly, an α-Hölder continuous function with α = 1 is Lipschitz
continuous. It is easy to see that on compact sets these two conditions are readily
satisfied by most well-behaved functions. Functions that do not satisfy them often have
uncontrolled local oscillations.

2.3.2.2 Kernel Smoothing for Deterministic Designs

Assume (x1,y1), · · · ,(xn,yn) is generated by the model Yi = f (xi)+ εi, i = 1, · · · ,n,
where ε1, · · · ,εn are IID (0,σ2) and the design points are equidistant in [0,1]; i.e.,

xi =
i−1
n−1

, i = 1,2, · · · ,n.

Let f : [0,1] −→ IR be the underlying function to be estimated, and choose a fixed
kernel K symmetric about zero; i.e., K(−v) = K(v).

The Priestley-Chao (PC) kernel estimate of f (see Priestley and Chao (1972)) for a
deterministic design is

f̂ (x) =
1
n

n

∑
i=1

Khn(x− xi)Yi =
1

nhn

n

∑
i=1

K

(
x− xi

hn

)
Yi, (2.3.2)
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where x ∈ [0,1] and {hn} is a sequence of positive real numbers converging to zero at
rate o(1/n); that is, nhn → ∞ as n → ∞. In the presence of Lipschitz continuity, the
behavior of the AMSE at an arbitrary point x is controlled by the proximity of x to a
design point. In this chapter, proofs of theorems are merely sketched since full formal
proofs are readily available from the various sources cited.

Theorem (Gasser and Müller, 1984): Suppose K has compact support and is Lips-
chitz continuous on supp(K). If f is twice continuously differentiable, then the asymp-
totic mean squared error at x ∈ [0,1] is

AMSE( f̂ (x)) =
(μ2(K) f ′′(x))2

4
h4

n +
1

nhn
σ2S(K), (2.3.3)

where S(K) =
∫

K2(t)dt and μ2(K) =
∫

t2K(t)dt.

Proof: Recall that the MSE can be decomposed into bias and variance, namely

MSE( f̂ (x)) = Var( f̂ (x))+Bias2( f̂ (x)).

The first ingredient for obtaining the bias is

E( f̂ (x)) = E

[
1

nhn

n

∑
i=1

K

(
x− xi

hn

)
Yi

]

=
1

nhn

n

∑
i=1

K

(
x− xi

hn

)
E[Yi].

Now, with hn → 0 as n→∞, the summation over i can be approximated by an integral
over x, namely

E( f̂ (x)) =
∫

1
hn

K

(
x− v

hn

)
f (v)dv+O

(
1
n

)
.

The change of variable t = (x− v)/hn gives v = x−hnt, dv =−hndt, and

E( f̂ (x)) =
∫ x/hn

(x−1)/hn

K(t) f (x−hnt)dt +O

(
1
n

)
.

Taylor expanding f (·) at x gives

f (x−hnt) = f (x)−hnt f ′(x)+
1
2

h2
nt2 f ′′(x)+ · · · .

Since K is supported on (−1,1), the Taylor expansion can be substituted into the inte-
gral to give

E( f̂ (x)) =
∫ 1

−1
K(t)

[
p(x)−hnt f ′(x)+

1
2

h2
nt2 f ′′(x)+ · · ·

]
dt

= f (x)
∫

K(t)dt−hn p′(x)
∫

tK(t)dt +
1
2

h2
n f ′′(x)

∫
t2K(t)dt + · · · .
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By definition,
∫

K(v)dv = 1 and
∫

vK(v)dv = 0, so

E( f̂ (x)) = f (x)+
1
2

h2
n f ′′(x)

∫
t2K(t)dt + · · · .

Defining μ2(K) =
∫

t2K(t)dt, the bias is given by

E( f̂ (x))− f (x) =
1
2

h2μ2(K) f ′′(x)+O(h2
n)+O

(
1
n

)
,

and the asymptotic squared bias, as claimed, is

ASB[ f̂ (x)] =
(μ2(K) f ”(x))2

4
h4

n.

For the variance, the same approximation of a sum by an integral and the same change
of variable as above leads to

Var( f̂ (x)) =
1

nhn

[
1
n

n

∑
i=1

1
hn

K2
(

x− xi

hn

)
Var(Yi)

]
=

σ2

nhn

[∫
K2(t)dt

]
+O

(
1

nhn

)

for small enough hn. With S(K) =
∫

K2(t)dt, the asymptotic variance is

AV[ f̂ (x)] =
1

nhn
σ2S(K),

also for small hn, giving the result claimed. �
An immediate consequence of (2.3.3) is the pointwise consistency of f̂ .

Corollary: If hn −→ 0 and nhn −→ ∞ as n−→ ∞, then

AMSE( f̂ (x))−→ 0.

Therefore
f̂ (x)−→

p
f (x),

and f̂ is asymptotically consistent, pointwise in x. �
The expression for AMSE( f̂ (x)) provides a way to estimate the optimal bandwidth,
along with the corresponding rate of convergence to the true underlying curve. Since
this procedure is qualitatively the same for stochastic designs, which are more typical,
this estimation is deferred to the discussion in the next section.
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2.3.3 Kernels and Stochastic Designs: Density Estimation

For stochastic designs, assume (X ,Y ), · · · ,(Xn,Yn) are IID IR× IR-valued random vec-
tors with E(|Y |) < ∞ and that

Yi = f (Xi)+ εi, i = 1,2, · · · ,n,

where X1, · · · ,Xn have common density p(x) and the ε1, · · · ,εn are IID N(0,σ2), inde-
pendent of X1, · · · ,Xn. The goal, as before, is to estimate the regression function

f (x) = E(Y |X = x)

from the data. However, this is different from the Priestley-Chao problem because
the design of the xis is not fixed. Intuitively, the estimator f̂ must be responsive to
whatever value of X occurs and so the weight assigned to a specific x must be random
and generalize the constant nhn in (2.3.2).

The Nadaraya-Watson (NW) kernel estimate of f is given by

f̂ (x) = ∑n
i=1 Kh(x−Xi)Yi

∑n
i=1 Kh(x−Xi)

. (2.3.4)

The denominator is a density estimate, so the NW estimate of f is often expressed in
terms of the Parzen-Rosenblatt kernel density estimate p̂(x) of p(x) by writing

f̂ (x) =
1
n ∑

n
i=1 Kh(x−Xi)Yi

p̂(x)
,

where

p̂(x) =
1
n

n

∑
i=1

Kh(x−Xi). (2.3.5)

In effect, the randomness in X makes the estimation of f (x) essentially the same as
estimating the numerator and denominator of the conditional expectation of Y given
X = x:

E(Y |X = x) =
∫

ypX ,Y (x,y)dy
pX (x)

=
∫

ypX ,Y (x,y)dy∫
pX ,Y (x,y)dy

.

The consistency of the NW smoother rests on the consistency of the Parzen-Rosenblatt
density estimator.

Expectations of kernel estimators are convolutions of the kernel with p(x); i.e.,
E(p̂(x)) = (Kh ∗ p)(x). This can be seen by writing the definitions

E(p̂(x)) =
1
n

n

∑
i=1

E(Kh(x−Xi)) = E(Kh(x−X1))

=
∫

Kh(x− v)p(v)dv = (Kh ∗ p)(x).
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This last expression shows that the kernel estimator p̂(x) of p(x) is a convolution op-
erator that locally replaces each point by a weighted average of its neighbors.

An extension of the technique of proof of the last theorem gives consistency of the
kernel density estimator for stochastic designs. Obtaining the consistency of the NW
smoother using this technique is done in the next theorem.

Theorem: Let K be a kernel satisfying lim
|v|→∞

vK(v) = 0. Then, for any x at which the

density p(x) is defined, we have

p̂(x)
p−→ p(x)

if h −→ 0 and nh −→ ∞ as n −→ ∞. The optimal bandwidth is hopt = O
(

n−
1
5

)
, and

the AMISE decreases at rate n−4/5.

Proof (sketch): First, we sketch the bias. The change of variable t = (x− v)/h gives
v = x−ht and dv =−hdt, so the expectation of p̂(x) is

E(p̂(x)) = E

[
1
h

K

(
x−X1

h

)]

=
∫ b

a

1
h

K

(
x− v

h

)
p(v)dv =

∫ x−a
h

x−b
h

K(t)p(x−ht)dt.

Taylor expanding p(·) at x gives

p(x−ht) = p(x)−ht p′(x)+
1
2

h2t2 p′′(x)+ · · · .

As a special case, if the kernel K is supported on (−ξ ,ξ ), then

E(p̂(x)) =
∫ ξ

−ξ
K(t)

[
p(x)−ht p′(x)+

1
2

h2t2 p′′(x)+ · · ·
]

dt

= p(x)
∫

K(t)dt−hp′(x)
∫

tK(t)dt +
1
2

h2 p′′(x)
∫

t2K(t)dt + · · · .

So, using
∫

K(v)dv = 1 and
∫

vK(v)dv = 0 gives

E(p̂(x)) = p(x)+
1
2

h2 p′′(x)
∫

t2K(t)dt + · · · .

As a result, setting μ2(K) =
∫

t2K(t)dt gives an expression for the bias,

E(p̂(x))− p(x) =
1
2

h2μ2(K)p′′(x)+O

(
1

nh

)
+O

(
1
n

)
.

Now, setting S(p′′) =
∫

(p′′(x))2dx, squaring, and ignoring small error terms gives
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AISB[p̂] =
(μ2(K)S(p′′))2

4
h4. (2.3.6)

For the variance,

Var[p̂(x)] =
1
n

[(
1
h

∫
K2(t)p(x−ht)dt

)
−E(p̂(x))2

]

=
1

nh

∫
K2(t)

[
p(x)−ht p′(x)+

1
2

h2t2 p′′(x)+ · · ·
]

dt− 1
n

[E(p̂(x))]2

=
1

nh
p(x)

∫
K2(t)dt +O

(
1
nh

)
+O

(
1
n

)
.

If h−→ 0 and nh−→ ∞ as n−→ ∞, then the asymptotic variance of p̂(x) becomes

AV[p̂(x)] =
1

nh
p(x)S(K),

where S(K) =
∫

K2(t)dt, and the corresponding asymptotic integrated variance is

AIV[p̂] =
1

nh
S(K). (2.3.7)

Using (2.3.6) and (2.3.7), the expression for the AMISE for p̂ is

AMISE(p̂) =
(μ2(K)p′′(x))2

4
h4 +

1
nh

S(K),

from which one gets the convergence in mean square, and hence in probability, of p̂(x)
to p(x). Also, it is easy to see that solving

∂AMISE(p̂)
∂h

= 0

yields hopt = O
(

n−
1
5

)
, which in turn corresponds to AMISE(p̂) = O

(
n−

4
5

)
. �

In parametric inference, after establishing consistency for an estimator, one tries to
show asymptotic normality. This holds here for p̂(x). Indeed, by writing the kernel
density estimator p̂(x) in the form of a sum of random variables

p̂(x) =
1
n

n

∑
i=1

1
h

K

(
x−Xi

h

)
=

1
n

n

∑
i=1

Zi,

the Lyapunov central limit theorem gives its asymptotic distribution. Thus, if h → 0
and nh→ ∞ as n→ ∞,

√
nh

(
p̂(x)−E(p̂(x))

)
d−→ N(0,σ2

x ),
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where σ2
x = (nh)Var[p̂(x)] = p(x)

∫
K2(t)dt. Later, it will be seen that h = O(n−1/5)

achieves a good bias-variance trade-off, in which case

√
nh

(
p̂(x)− p(x)

)
d−→ N

(
1
2
μ2(K)p′′(x),S(K)p(x)

)
,

where S(K) =
∫

K2(t)dt and μ2(K) =
∫

t2K(t)dt. When the bias is of smaller order
than the standard deviation, the distribution of

√
nh(p̂(x)− p(x)) coincides with that

of
√

nh(p̂(x)−E(p̂(x))), which is more appealing because the estimator p̂ is available.

2.3.4 Stochastic Designs: Asymptotics for Kernel Smoothers

There are two core results for kernel smoothers. First is consistency, and second is
an expression for the AMISE, since variance alone is not enough. Both results are
based on analyzing a variance-bias decomposition and extend the result from the last
subsection on the consistency of the kernel density estimator. The last theorem will
be used for both the numerator and denominator of the NW kernel estimator for f ,
pulling them together with Slutzky’s theorem. Recall that Slutzky’s theorem gives the
behavior of sequences of variables under convergence in distribution and probability.
Thus, let a be a constant, X be a random variable, and {Xn} and {Yn} be sequences

of random variables satisfying Xn
d→ X and Yn

p→ a. Then (1) YnXn
d−→ aX and (2)

Xn +Yn
d−→ X +a.

To see how this gets used, write the NW estimator as a fraction,

f̂ (x) =
q̂(x)
p̂(x)

,

so that q̂(x) = f̂ (x)p̂(x). The content of the last theorem was that when h→ 0 and nh→
∞, the denominator p̂(x) of f̂ (x) is a consistent estimate of p(x). Similar techniques to
deal with q̂ are at the core of consistency of the kernel smoother as seen in the proof
of the following.

Theorem: Let K be a kernel satisfying lim
|v|→∞

vK(v) = 0, and suppose X gives a stochas-

tic design with p̂(x) consistent for p(x). If E(Y 2
i ) < ∞, then for any x at which p(x)

and f (x) are continuous and p(x) > 0,

f̂ (x)
p−→ f (x)

if h−→ 0 and nh−→ ∞ as n−→ ∞.

Proof (sketch): The central task is to verify that, under the same conditions as the last
theorem,
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q̂(x)−→
p

q(x)≡ f (x)p(x).

To see this, it is enough to show that the MSE of q̂(x) for q(x) goes to zero. Since the
MSE is the “squared bias plus variance”, it is enough to show that their sum goes to
zero under the conditions in the theorem.

First, we address the bias of q̂(x). The change of variable t = (x−u)/h gives

E(q̂(x)) = E

[
1

nh

n

∑
i=1

K

(
x−Xi

h

)
·Yi

]
= E

[
1

nh

n

∑
i=1

K

(
x−Xi

h

)
· f (Xi)

]

=
∫

1
h

K

(
x−u

h

)
f (u)p(u)du =

∫
K (t) f (x−ht)p(x−ht)dt. (2.3.8)

For convenience, (2.3.8) can be rewritten as

E(q̂(x)) =
∫

K (t)q(x−ht)dt, (2.3.9)

which is of the same form as E(p̂(x)). Assuming that q(x) = f (x)p(x) is twice contin-
uously differentiable, and Taylor expanding as before in E(p̂(x)), the bias is

E(q̂(x))−q(x) =
μ2(K)q′′(x)

2
h2 +o(h2) = O

(
h2)+o(h2) = O

(
h2)

where μ2(K) =
∫

t2K(t)dt and q′′(x) is

q′′(x) = ( f (x)p(x))′′ = f ′′(x)p(x)+2 f ′(x)p′(x)+ p′′(x) f (x).

Using an argument similar to the one above, the variance of q̂(x) is

Var(q̂(x)) = Var

[
1
n

n

∑
i=1

1
h

K

(
x−Xi

h

)
·Yi

]
=

1
n

E

[
1
h

K

(
x−Xi

h

)
·Yi

]2

− 1
n

(E(q̂(x)))2

=
1
n

∫
1
h2 K2

(
x−u

h

)
[σ2 + f 2(u)]p(u)du− 1

n
(E(q̂(x)))2

=
1

nh

∫
K2(t)(σ2 + f 2(x−ht))p(x−ht)dt− 1

n
(E(q̂(x)))2

=
(σ2 + f 2(x))p(x)

nh

∫
K2(t)dt +o

(
1

nh

)

= O

(
1

nh

)
+o

(
1

nh

)
= O

(
1
nh

)
.

Note that f (·) and p(·) are evaluated at x because, as h→ 0, f (x− ht) and p(x− ht)
converge to f (x) and p(x). Also, 1/n = o(1/nh).

From the expressions for the bias and variance, the MSE of q̂(x) is [O(h2)]2 +
O (1/(nh)). As a result, if h→ 0 and nh→ ∞ as n→ ∞, then
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q̂(x) L2
−→ q(x), implying that q̂(x)

p−→ q(x).

Since p̂(x)
p→ p(x), Slutzky’s theorem completes the proof:

f̂ (x) =
q̂(x)
p̂(x)

p−→ q(x)
p(x)

=
f (x)p(x)

p(x)
= f (x). �

The main step in the proof was consistency of q̂(x) for q(x). As in the last subsec-
tion, asymptotic normality for q̂(x) holds for individual xs: The Lyapunov central limit
theorem can be applied directly. In this case, if h→ 0 and nh→ ∞ as n→ ∞,

√
nh

(
q̂(x)−E(q̂(x))

)
d−→ N

(
0,(σ2 + f 2(x))p(x)

∫
K2(t)dt

)
.

Parallel to p̂(x) and q̂(x), it would be nice to have an asymptotic normality result for
f (x). Unfortunately, since the kernel smoother f̂ (x) is a ratio of two random variables,
direct central limit theorems cannot be used to find its asymptotic distribution. Another,
more elaborate technique must be used. Moreover, in general it is not the pointwise
behavior in x but the overall behavior for X measured by AMISE that is important. An
expression for AMISE will also lead to values for h = hn. Both results – asymptotic
normality for f̂ (x) and an expression for AMISE – are based on the same bias-variance
trade-off reasoning.

For intuition and brevity, consider the following heuristic approach. (Correct mathe-
matics can be found in the standard references.) Start by writing

f̂ (x)− f (x)≈ p̂(x)
p(x)

( f̂ (x)− f (x)) =
1

p(x)
q̂(x)− f (x)

p(x)
p̂(x). (2.3.10)

Having established results about both q̂(x) = f̂ (x)p̂(x) and p̂(x), asymptotic results for
f̂ (x)− f (x) can now be obtained using (2.3.10). It is seen that the difference between

f̂ (x)− f (x) and its “linearized” form 1
p(x) q̂(x)− f (x)

p(x) p̂(x) is op

(
1/
√

nh
)

.

The bias E f̂ (x)− f (x) is approximately

E

[
q̂(x)− f (x)p̂(x)

p(x)

]
=

E(q̂(x))− f (x)E(p̂(x))
p(x)

=
[

E(p̂(x))
p(x)

][
E(q̂(x))
E(p̂(x))

− f (x)
]

≈ E(q̂(x))
E(p̂(x))

− f (x), assuming that E(p̂(x))≈ p(x).

Adding and subtracting f (x)p(x) and using E(p̂(x))≈ p(x) leads to
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E(q̂(x))
E(p̂(x))

− f (x) ≈ (p(x))−1

{
E(q̂(x))− f (x)p(x)+ f (x)p(x)− f (x)E(p̂(x))

}

= (p(x))−1

{
Bias(q̂(x))− f (x)Bias(p̂(x))

}

≈ (p(x))−1

{
h2

2
μ2(K)q′′(x)− f (x)

h2

2
μ2(K)p′′(x)

}

=
h2

2
μ2(K)

[
f ′′(x)+2 f ′(x)(p′(x)/p(x))

]

by using q′′(x) = ( f (x)p(x))′′ = f ′′(x)p(x) + 2 f ′(x)p′(x) + p′′(x) f (x). Next, an ap-
proximation for the variance can be found similarly. It can be easily verified that

q̂(x)
p̂(x)

− E(q̂(x))
E(p̂(x))

=
[

q̂(x)
p(x)

− p̂(x)
p(x)

E(q̂(x))
E(p̂(x))

][
p(x)
p̂(x)

]
.

Using
p(x)
p̂(x)

p−→ 1, and pretending E f̂ (x) = Eq̂(x)/Ep̂(x), the desired variance is ap-

proximately the same as the variance of

Gn(x) =
q̂(x)
p(x)

− p̂(x)
p(x)

E(q̂(x))
E(p̂(x))

.

Now rewrite Gn(x) in terms of p̂(x) and q̂(x) as

Gn(x) =
1

p(x)

[
q̂(x)−E(q̂(x))

]
− f (x)

p(x)

[
p̂(x)−E(p̂(x))

]

= γ1

[
p̂(x)−E(p̂(x))

]
+ γ2

[
q̂(x)−E(q̂(x))

]
,

where γ1 = − f (x)/p(x) and γ2 = 1/p(x). Using the asymptotic normal distributions
of p̂(x)−E(p̂(x)) and q̂(x)−E(q̂(x)) stated earlier, the delta method gives that Gn(x)
is also asymptotically normally distributed and identifies the variance.

For completeness, the delta method is the content of the following.

Theorem: Let < Yn > be a sequence of random variables satisfying
√

n(Yn− θ) d→
N(0,σ2). Given a differentiable function g and a fixed value of θ with g′(θ) 	= 0,

√
n [g(Yn)−g(θ)] d−→ N(0,σ2[g′(θ)]2). �

Now, it is seen that the variance of Gn(x) is
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nhVar[Gn(x)] = [γ2
1 +2γ1γ2 f (x)+ γ2

2 ( f 2(x)+σ2)]p(x)S(K)

=

[
( f (x))2

(p(x))2 −2
f (x)
p(x)

1
p(x)

f (x)+
1

(p(x))2 ( f 2(x)+σ2)

]
p(x)S(K)

=
σ2

p(x)
S(K),

in which the results for the variance of p̂(x), q̂(x) have been used along with the cor-
responding result for their correlation derived by the same reasoning, which gives the
term with 2γ1γ2 f (x).

Now, putting together the bias and variance expressions gives the two desired theo-
rems. First, we have the asymptotic normality of the NW estimator.

Theorem: Let K be a bounded, continuous kernel that is symmetric about zero
(thus

∫
tK(t)dt = 0). Assume f (x) and p(x) are twice continuously differentiable and

E(|Yi|2+δ |Xi = x) < ∞ for all x for some δ > 0. Set h = O(n−1/5). Then, for all x with
p(x) > 0, the limiting distribution of f̂ (x) is

√
nh( f̂ (x)− f (x)) d−→ N(B(x),V (x)) (2.3.11)

with asymptotic bias

B(x) =
(

f ′′(x)+2 f ′(x)
p′(x)
p(x)

)
μ2(K) (2.3.12)

and asymptotic variance

V (x) =
σ2S(K)

p(x)
, (2.3.13)

where μ2(K) =
∫

t2K(t)dt and S(K) =
∫

K2(t)dt.

Proof: The proof is an application of the Lyapunov central limit theorem since the
Lyapunov condition (the 2+δ conditional moment) is satisfied. �
Finally, the key result of this subsection can be stated. The global measure of accuracy
of the NW estimator is the AMISE( f̂ ), and it admits an asymptotic expression as a
function of h, n, and several other fixed quantities determined from f and K.

Theorem: Assume the noise εi to be homoscedastic with variance σ2. Then, for h→ 0
and nh→ ∞ as n→ ∞, the AMISE( f̂ ) of the NW estimator is

AMISE( f̂ ) =
h4

4
(μ2(K))2

∫ (
f ′′(x)+2 f ′(x)

p′(x)
p(x)

)2

dx

+
σ2S(K)

nh

∫
1

p(x)
dx, (2.3.14)

where μ2(K) =
∫

t2K(t)dt and S(K) =
∫

K2(t)dt. The optimal bandwidth hopt de-

creases at rate n−
1
5 , which corresponds to an n−

4
5 rate of decrease of the AMISE.
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Proof: The derivation of the expression of AMISE( f̂ ) follows directly from the previ-
ous heuristics. To find hopt, write the AMISE as

AMISE( f̂h) = C2
Bμ2

2 (K)h4 +CV S(K)n−1h−1,

where CV = σ2
∫

1
p(x)

dx and CB =
1
2

∫ (
f ′′(x)+2 f ′(x)

p′(x)
p(x)

)
dx are constants. By

solving ∂AMISE( f̂h)
∂h = 0, it is straightforward to see that the bandwidth that minimizes

the AMISE above is

hopt =
[

CV

4C2
B

]1/5 [ S(K)
μ2

2 (K)

]1/5

n−1/5,

with the corresponding optimal AMISE given by

AMISEopt = C4/5
V C2/5

B [41/5 +4−4/5][S(K)]4/5[μ2(K)]2/5n−4/5.� (2.3.15)

Note that all the expressions for the measure of accuracy of estimators encountered
so far depend on the smoothing parameter (bandwidth) h, hence the central role of
estimating h in theory and in practice. Expression (2.3.15) for the optimal AMISE
depends on the two kernel constants μ2(K) and S(K). This latter fact will be used later
in the argument for determining the optimal kernel as a measure of accuracy of the
estimator. Extensions of the results here to use derivatives of f of higher order result
in faster rates, as will be seen in the next subsection.

2.3.5 Convergence Theorems and Rates for Kernel Smoothers

Although studied in separate subsections, the difference between PC and NW as re-
gression estimators is small in the sense that NW generalizes PC. That is, if X were
uniformly distributed to correspond to equispaced points xi and K(u) = I{|u|≤(1/2)}(u)
were used as a kernel, then p̂ in (2.3.5) would become h in the limit of large n. In fact,
the key difference between PC and NW is that NW is a convex version of the same
weights as used in PC by normalization. This is why the two kernel smoothers (PC
and NW) along with the kernel density estimator have expressions for certain of their
MSEs that are of the form C1h4 +C2(1/nh), where the constants C1 and C2 depend on
the local behavior of f , the properties of K, and σ2; see (2.3.3), (2.3.6), (2.3.7), and
(2.3.14).

Looking at the technique of proof of these results for MSE, it is seen that the properties
of the kernels and the order of the Taylor expansion are the main hypotheses. Indeed,
assuming

∫
vK(v)dv = 0 made the contribution of the first derivative p′ zero in (2.3.6)

so that the second derivative was needed in the expression. It is possible to generalize
the generic form of the MSEs by making assumptions to ensure lower-order terms
drop out. Since it is only the terms with an even number of derivatives that contribute,
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one can obtain a general form C1h2d +C2(1/nh) and therefore an optimal hopt = hn =
1/n1/(2d+1), where d is the number of derivatives assumed well behaved and the Cis
are new but qualitatively similar.

Rates of this form are generic since they come from a variance-bias decomposition
using properties of kernels and Taylor expansions; see Eubank (1988), Chapter 4. To
see how they extend to derivatives of f , consider the natural estimator for the kth
derivative, k≤ d, of f in the simplest case, namely the PC kernel smoother. This is the
kth derivative f̂ (k)(x) of the PC estimator f̂ (x),

f̂ (k)(x) =
1

nh(k+1)

n

∑
i=1

K(k)

(
x−Xi

h

)
Yi; (2.3.16)

see Eubank (1988), Chapter 4.8 for more details. The result for the PC estimator is the
following; it extends to the NW as well.

Proposition: Consider the deterministic design and the estimate f̂ (k)(x) of f (k)(x),
where x ∈X ⊂ R as defined in (2.3.16). Let S(k)(K) =

∫
[K(k)(t)]2dt and μ(k)

2 (K) =∫
t2+kK(k)(t)dt, and assume:

1. K ∈ C k with support [−1,1] and K( j)(−1) = K( j)(1) = 0, j = 0, · · · ,k−1.

2. f (k) ∈ C 2; i.e., f (k) is k times continuously differentiable.

3. V(εi) = σ2 for i = 1,2, · · · ,n.

4. Xi = i−1
n−1 for i = 1,2, · · · ,n.

5. h→ 0 and nhk+1 → ∞ as n→ ∞.

Then

AMSE( f̂ (k)(x)) =
σ2

nh2k+1 S(k)(K)+
[μ(k)

2 (K) f (k+2)(x)]2

[(k +2)!]2
h4.

Proof: This follows the same reasoning as was used to get (2.3.3). �
Given that all these kernel-based function estimators are so similar in their behavior
– in terms of the rates for pointwise AMISE as well as the averaged AMISE – it
is possible to state generic rates for the estimators and their sense of errors. Hardle
(1990) observes that the rate of convergence depends on four features:

1. Dimension of the covariate X , here p;

2. Object to be estimated; e.g., f (k), the kth derivative of f ;

3. Type of estimator used;

4. Smoothness of the function f .

When the dimension of X is p ≥ 2, it is understood that the appropriate kernel is the
product of the univariate kernels for the components Xj, j = 1, ..., p of XXX .

To be more formal, observe that parametric techniques typically produce convergence
rates of order O(n−1/2), whereas nonparametric estimation is slower, with convergence
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rates of order n−r for some r ∈ (0,1/2) for the function class F = C d,α(X ). This is
the smoothness class of d times continuously differentiable functions f on X such
that the dth derivative f (d)(x) of f (x) is globally α-Hölder continuous. The rate is
defined by r = r(p,k,d,α); the constant in the rate depends on the form of error used
and other aspects of the estimator such as the kernel, σ , and derivatives of f . How
large n must be for the rate to kick in is an open question. Clearly, the slower the rate,
the more complicated the estimand, so the more data will be needed, pushing the n
needed to observe the rate further out. Moreover, under appropriate uniformity criteria
on the values of x and n, the pointwise rates can be integrated to give the corresponding
AMISE rates.

Hardle (1990) gives an expression for r that establishes its dependence on the four
qualitative features above.

Theorem: Let f be d times continuously differentiable. Assume that f (d) is α-Hölder
continuous for some α , and let K ≥ 0 be a nonnegative, continuous kernel satisfying

∫
K(v)dv = 1,

∫
vK(v)dv = 0, and

∫
|v|2+αK(v)dv < ∞.

Then, based on IID samples (X1,Y1), · · · ,(Xn,Yn) ∈ IRp× IR, kernel estimates of f (k)

have optimal rates of convergence n−r, where

r =
2(d− k +α)
2(d +α)+ p

.

Proof (sketch): The proof uses the variance-bias decomposition, Taylor expansions,
properties of the kernel, and so forth, as before. A detailed presentation of the proof
can be found in Stone (1980), see also Stone (1982). Other authors include Ibragimov
and Hasminksy (1980), Nussbaum (1985), and Nemirovsky et al. (1985).

For the case p = 1, the proposition shows the variance of f̂ k(x) is

Var( f̂ (k)(x)) =
σ2

nh2k+1 S(k)(K)

and the bias is
E[ f̂ (k)(x)]− f (k)(x) = Cd+α,k f (k+2)(x)hd+α−k.

The leading term of the mean squared error of f̂ (k) is such that

AMSE( f̂ (k)(x)) =
σ2

nh2k+1 S(k)(K)+ [Cd+α,k f (k+2)(x)]2h2(d+α−k).

Taking the partial derivative of AMSE( f̂ (k)(x)) with respect to h and setting it to zero
yields

hopt =
[

2k +1
2(d +α− k)

σ2S(K)
n[Cd+α,k f (k+2)(x)]2

] 1
2(d+α)+1

.

The mean squared error obtained using hopt is therefore approximately
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AMSE0 ≈C0[Cd+α,k f (k+2)(x)]
2(2k+1)

2(d+α)+1

[
σ2S(K)

n

] 2(d+α−k)
2(d+α)+1

. �

Corollary: Suppose IID samples (X1,Y1), · · · ,(Xn,Yn) ∈ IRp× IR are used to form the
kernel smoothing estimate f̂ of a Lipschitz-continuous function f . Then α = 1, d = 1,
and k = 0, and the rate of convergence is

n−
4

4+p .

For the univariate regression case considered earlier, this corollary gives the rate
n−(4/5), as determined in (2.3.14) and (2.3.15). �
The expression provided in the last theorem for finding the rate of convergence of
kernel smoothers has the following implications:

• As (d +α) increases, the rate of convergence r increases. Intuitively, this means
that smooth functions are easier to estimate.

• As k increases, the rate of convergence r decreases, meaning that derivatives are
harder to estimate.

• As p increases, the rate of convergence r decreases, which is simply the Curse of
Dimensionality discussed at length in Chapter 1.

One of the most general results on the convergence of the NW estimator is due to
Devroye and Wagner (1980). Their theorem is a distribution-free consistency result.

Theorem (Devroye and Wagner, 1980): Let (X1,Y1), · · · ,(Xn,Yn) be an IRp × IR-
valued sample, and consider the NW estimator

f̂ (x) = ∑n
i=1 Kh(x−Xi)Yi

∑n
i=1 Kh(x−Xi)

for f (x) = E(Y |XXX = xxx). If E(|Y |q) < ∞ , q≥ 1, hn −→n 0, and nhp
n −→n ∞, and if (i)

K is a nonnegative function on IRd bounded by k∗ <∞; (ii) K has compact support; and
(iii) K(u) ≥ β IB(u) for some β > 0 and some closed sphere B centered at the origin
with positive radius, then

E

{∫
|mn(xxx)−m(xxx)|qμ(dxxx)

}
−→n 0. �

Although the results of these theorems are highly satisfying, they only hint at a key
problem: The risk, as seen in AMISE f̂n

(h), increases quickly with the dimension of
the problem. In other words, kernel methods suffer the Curse of Dimensionality. The
following table from Wasserman (2004) shows the sample size required to obtain a
relative mean square error less than 0.1 at 0 when the density being estimated is a
multivariate normal and the optimal bandwidth has been selected.
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Dimension Sample size
1 4
2 19
3 67
...

...
9 187,000
10 842,000

Wasserman (2004) expresses it this way: Having 842,000 observations in a ten-
dimensional problem is like having four observations in a one-dimensional problem.
Another way to dramatize this is to imagine a large number of dimensions; 20,000
is common for many fields such as microarray analysis. Suppose you had to use the
NW estimator to estimate f̂ (xxx) when p = 20,000 and data collection was not rapid.
Then, humans could well have evolved into a different species rendering the analysis
meaningless, before the NW estimator got close to the true function.

2.3.6 Kernel and Bandwidth Selection

There are still several choices to be made in forming a kernel estimator: the kernel itself
and the exact choice of h = hn. The first of these choices is easy because differences
in Ks don’t matter very much. The choice of h is much more delicate, as will be borne
out in Section 2.5.

2.3.6.1 Optimizing over K

Observe that the expression for the minimal AMISE in (2.3.15) depends on the two
kernel constants μ2(K) and S(K) through

V (K)B(K) = [S(K)]2μ2(K) =
[∫

K2(t)dt

]2 [∫
t2K(t)dt

]
.

The obvious question is how to minimize over K. One of the major problems in seek-
ing an optimum is that the problems of finding an optimal kernel K∗ and an optimal
bandwidth h are coupled. These must be uncoupled before comparing two candidate
kernels. The question becomes: What are the conditions under which two kernels can
use the same bandwidth (i.e., the same amount of smoothing) and still be compared to
see which one has the smaller MISE?

The concept of canonical kernels developed by Marron and Nolan (1988) provides a
framework for comparing kernels. For the purposes of the sketch below, note that the
standardization V (K) = B(K) makes it possible to optimize MISE as a function of K.
So, the original goal of minimizing V (K)B(K) becomes
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minimize
∫

K2(t)dt

subject to

(i)
∫

K(t)dt = 1, (ii) K(t) = K(−t), and (iii) μ2(K) = 1.

Using Lagrange multipliers on the constraints, it is enough to minimize

∫
K2(t)dt +λ1

[∫
K(t)dt−1

]
+λ2

[∫
t2K(t)dt−1

]
.

Letting�K denote a small variation from the minimizer of interest gives

2
∫

K(t)�K(t)dt +λ1

[∫
�K(t)dt

]
+λ2

[∫
t2�K(t)dt

]
= 0,

which leads to
2K(t)+λ1 +λ2t2 = 0.

It can be verified that the Epanechnikov kernel, defined by

K(t) =
3
4
(1− t2) for −1≤ t ≤ 1,

satisfies the conditions and constraints above, and is therefore the optimum.

Although the Epanechnikov kernel emerges as the optimum under (2.32), there are
other senses of optimality that result in other kernels; see Eubank (1988). Neverthe-
less, it is interesting to find out how suboptimal commonly used kernels are relative
to Epanechnikov kernels. Hardle (1990) addresses this question by computing the ef-
ficiency of suboptimal kernels, with respect to the Epanechnikov kernel K∗, based on
V (K)B(K). The natural ratio to compute is

D(K∗,K) =
[

V (K)B(K)
V (K∗)B(K∗)

] 1
2

,

and some values for it for certain kernels are provided in the table below.

Kernel name Expression Range V (K)B(K) D(K∗,K)

Epanechnikov K(v) = (3/4)(1− v2) −1≤ v≤ 1 9/125 1

Biweight K(v) =
15
16

(1− v2)2 −1≤ v≤ 1 25/343 1.0061

Triangle K(v) = (1−|v|) −1≤ v≤ 1 2/27 1.0143

Gaussian K(v) = e−v2/2/
√

2π −∞< v < ∞ 1/4π 1.0513
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The table above makes it clear that if minimizing the MISE by examining V (K)B(K)
is the criterion for choosing a kernel, then nonoptimal kernels are not much worse
than the Epanechnikov kernel. Indeed, in most applications there will be other sources
of error, the bandwidth for instance, that contribute more error than the choice of
kernel.

2.3.6.2 Empirical Aspects of Bandwidth Selection

The accuracy of kernel smoothers is governed mainly by the bandwidth h. So, write
d•(h) in place of d•( f̂ , f ). This givesdI for the ISE, dA for the ASE, and dM for the
MSE. The first result, used to help make selection of h more data driven, is the sur-
prising observation that the ASE and ISE are the same as the MSE in a limiting sense.
Formally, let Hn be a set of plausible values of h defined in terms of the dimension
p of the covariate XXX , and the sample size n. For the theorem below, Hn is the inter-
val Hn = [nδ−1/d ,n−δ ], with 0 < δ < 1/(2d). In fact, one can put positive constants
into the expressions defining the endpoints while retaining the essential content of the
theorem; see Hardle (1990), Chapters 4 and 5 and also Eubank (1988), Chapter 4 and
Marron and Härdle (1986).

Theorem: Assume that the unknown density p(x) of the covariate X and the kernel
function K are Hölder continuous and that p(x) is positive on the support of the w(x).
If there are constants Ck, k = 1, ...,∞ so that E(Y k|X = x) ≤ Ck < ∞, then for kernel
estimators

sup
h∈Hn

|dA(h)−dM(h)|
dM(h)

→ 0 a.s.,

sup
h∈Hn

|dI(h)−dM(h)|
dM(h)

→ 0 a.s.�

This theorem gives insight about optimal bandwidth, but identifying a specific choice
for h remains.

The importance of choosing h correctly has motivated so many contributions that it
would be inappropriate to survey them extensively here. It is enough to note that none
seem to be comprehensively satisfactory. Thus, in this subsection, it will be enough to
look at one common method based on CV because a useful method must be given even
if it’s not generally the best. It may be that a systematically ideal choice based on p,
the data, K, and the other inputs to the method (including the true unknown function)
just does not exist apart from local bandwidth concepts discussed briefly in Section
2.4.1 and indicated in Silverman’s theorem in Section 3.3.2.

Clearly, the bandwidth should minimize an error criterion over a set of plausible values
of h. For instance, consider selecting the bandwidth that achieves the minimum of
dM(h) = MISE( f̂h) over Hn; i.e., let

ĥ = arg min
h∈Hn

dM(h).
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In this expression, it is pragmatically understood that Hn just represents an interval to
be searched and that Hn shrinks to zero. Note that dI(h) and dM(h) cannot be computed
but that dA(h) can be computed because it is the empirical approximation to MISE.

The theorem above assures dA(h) is enough because, for δ > 0,

dA(h)
dM(h)

a.s.−→ 1

uniformly for h ∈Hn. Therefore, the minimizer of dA(h) is asymptotically the same as
the minimizer of dM(h), the desired criterion. By writing

dA(h) =
1
n

n

∑
i=1

w(Xi) f̂ 2
h (Xi)+

1
n

n

∑
i=1

w(Xi) f 2(Xi)−2C(h),

where C(h) = 1
n ∑

n
i=1 w(Xi) f̂h(Xi) f (Xi), it is easy to see that the middle term does not

depend on h and so does not affect the minimization. Dropping it leaves

ĥ = arg min
h∈Hn

dA(h)≈ arg min
h∈Hn

(
1
n

n

∑
i=1

w(Xi) f̂ 2
h (Xi)−2Ĉ(h)

)
. (2.3.17)

Note that, to get the approximation, C(h) is replaced by Ĉ(h), in which Yi is used in
place of f (Xi). That is,

Ĉ(h) =
1
n

n

∑
i=1

w(Xi) f̂h(Xi)Yi.

On the right-hand side of (2.3.17), complete the square by adding and subtracting
1
n ∑

n
i=1 w(Xi)Y 2

i , which does not depend on h. The resulting objective function is

π(h) =
1
n

n

∑
i=1

w(Xi)(Yi− f̂h(Xi))2.

This leads to defining

ĥπ = arg min
h∈Hn

π(h). (2.3.18)

It is important to note that ĥπ and ĥ are different since they are based on slightly dif-
ferent objective functions when n is finite, even though they are asymptotically equiv-
alent; i.e., ĥ≈ ĥπ in a limiting sense. After all, the objective function for ĥπ is derived
to approximate bias2 +variance while ĥ is the “pure” bandwidth, effectively requiring
knowledge of the unknown f . It is easy to imagine optimizing other objective functions
that represent different aspects of bias and variance.

Despite the apparent reasonableness of (2.3.18), the bandwidth ĥπ is not quite good
enough; it is a biased estimate of argmindA(h). Indeed, using Yi in the construction
of f̂h(Xi) means that |Yi− f̂h(Xi)| will systematically be smaller than |Yi− f (Xi)|; i.e.,
π(h) will typically underestimate dA(h). So, one more step is required.
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This is where CV comes in. It permits removal of the Yi from the estimate used to
predict Yi. That is, the bias can be removed by using the optimal bandwidth

ĥCV = arg min
h∈Hn

CV (h),

where

CV (h) =
n

∑
i=1

w(Xi)(Yi− f̂ (−i)
h (Xi))2

and f̂ (−i)
h is the estimator of f obtained without the ith observation. Intuitively, each

term in the sum forming CV (h) is the prediction of a response not used in forming the
prediction. This seems fundamental to making CV (h) less prone to bias than π(h).

There is a template theorem available from several sources (Hardle 1990 is one) that
ensures the CV-generated bandwidth works asymptotically as well as bandwidths se-
lected by using dA(h) directly.

Theorem: Let Hn be a reasonable interval, such as [nδ−1/d ,n−δ ]. Suppose f , K, p(x),
and the moments of ε are well behaved. Then, the bandwidth estimate ĥCV is asymp-
totically optimal in the sense that

dA(ĥCV )
inf

h∈Hn
dA(h)

a.s.−→ 1 for n→ ∞.

Although ĥCV is now well defined and optimal in certain cases, CV is computationally
onerous. The need to find n estimates of f̂h(·) becomes prohibitive even for moder-
ately large sample sizes. Fortunately, the burden becomes manageable by rewriting the
expression for CV (h) as

CV (h) =
n

∑
i=1

νi(Yi− f̂h(Xi))2,

where

νi =

⎡
⎣1− K(0)

∑n
j=1 K

(
xi−x j

h

)
⎤
⎦
−2

.

In this form, the estimate f̂h is found only once; the rest of the task consists of searching
for the minimum of CV (h) over Hn.

To conclude this subsection, the role of the weight function w(·) in ASE, see (2.3.1) or
(2.3.17), bears comment. Recall that outliers and extreme values are different. Outliers
are anomalous measurements of Y and extreme values are values of X far from the
bulk of X measurements. Extreme values, valid or not, are often overinfluential, and
sometimes it is desirable to moderate their influence. Choice of w is one way to do
this. That is, if necessary in a particular application, one can choose w to stabilize π(h)
to prevent it from being dominated by an extreme point, or outlier. The stability is in
terms of how sensitive the choice of h is to small deviations in the data. Roughly, one
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can choose w to be smaller for those values of Xi that are far from a measure of location
of the Xs, such as X̄ , provided the values of X are clustered around their central value,
say X̄ . When a Yi is “far” from where it “should” be the problem is more acute and
specialized, requiring techniques more advanced than those here.

2.3.7 Linear Smoothers

It was observed in (2.1.1) that a linear form was particularly desirable. In this section it
is seen that the NW estimator (and PC estimator) are both linear because the smooth-
ing they do gives a weighted local average f̂ to estimate the underlying function f .
The Wj(x)s for j = 1, ...,n are a sequence of weights whose size and form near x are
controlled by h from the (rescaled) kernel Kh. By their local nature, kernel smoothers
have weights Wj(x) that are large when x is close to Xj and that are smaller as x moves
away from Xj.

It can be checked that the NW kernel smoother admits a linear representation with

Wj(x) =
Kh(x−Xj)
n

∑
i=1

Kh(x−Xi)
.

However, the linearity is only for fixed h; once h becomes dependent on any of the
inputs to the smoother, such as the data, the linearity is lost.

Let W = (Wij) with Wi j = Wj(xi). Then, (2.1.1) can be expressed in matrix form as

f̂ = Wyyy, (2.3.19)

where

f̂ =

⎡
⎢⎢⎢⎣

f̂ (x1)
f̂ (x2)

...
f̂ (xn)

⎤
⎥⎥⎥⎦ , W =

⎡
⎢⎢⎢⎣

W1(x1) W2(x1) · · · Wn(x1)
W1(x2) W2(x2) · · · Wn(x2)

...
...

...
...

W1(xn) W2(xn) · · · Wn(xn)

⎤
⎥⎥⎥⎦ , and yyy =

⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦ .

It will be seen that spline smoothers, like LOESS and kernel smoothers, are linear in
the sense of (2.1.1).

One immediate advantage of the linear representation is that important aspects of f̂ can
be expressed in interpretable forms. For instance,

Var(f̂) = Var(Wyyy) = WVar(yyy)WT.

In the case of IID noise with variance σ2, this reduces to

Var(f̂) = σ2WWT, (2.3.20)

generalizing the familiar form from linear regression.
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2.4 Nearest Neighbors

Consider data of the form (Yi,XXXi) for i = 1, ...,n, in which the XXXs and the Y s can
be continuous or categorical. The hope in nearest-neighbor methods is that when co-
variates are close in distance, their ys should be similar. The idea is actually more
natural to classification contexts, but generalizes readily to regression problems. So,
the discussion here goes back and forth between classification and regression. In its
regression form, nearest neighbors is a Classical method in the same spirit as kernel
regression.

In first or 1-nearest neighbors classification, the strategy for binary classification is to
assign a category, say 0 or 1, to Ynew based on which old set of covariates xxxi is closest
to xxxnew the covariates of Ynew. Thus, the 1-nearest-neighbor rule for classification of
Ynew based on xxxnew = (x1,new, ...,xp,new) looks for the set of covariates xclosest that has
already occurred that is closest to xxxnew and assigns its y-value. Thus, ŷnew = yclosest .
More generally, one looks at the k closest xxxis to xxxnew to define the k nearest neighbor
rule, k-NN. Thus, find the k sets of covariates closest to xxxnew that have already occurred,
and assign the majority vote of their y values to be ŷnew. More formally, if xxxi1 ,...,xxxik
are the k closest sets of covariates to xxxnew, in some measure of distance on IRp, then
(1/k)∑k

j=1 yi j ≥ (1/2) implies setting ŷnew = 1.

The same procedure can be used when Y is continuous. This is called k-NN regression
and the k nearest (in x) y-values are averaged.

The main free quantities are the value of k and the choice of distance. It is easiest to
think of k as a sort of smoothing parameter. A small value of k means using few data
points and accepting a high variance in predictions. A high value of k means using
many data points and hence lower variance at the cost of high bias from including a lot
of data that may be too far away to be relevant. In principle, there is an optimal value
of k that achieves the best trade-off.

Good values of k are often found by cross-validation. As in other settings, divide the
sample into, say, � subsets (randomly drawn, disjoint subsamples). For a fixed value
of k, apply the k-NN procedure to make predictions on the �th subset (i.e., use the
�−1 subsets as the data for the predictions) and evaluate the error. The sum of squared
errors is the most typical choice for regressions; for classification, the most typical
choice is the accuracy; i.e., the percentage of correctly classified cases. This process
is then successively applied to each of the remaining �− 1 subsets. At the end, there
are � errors; these are averaged to get a measure of how well the model predicts future
outcomes. Doing this for each k in a range permits one to choose the k with the smallest
error or highest accuracy.

Aside from squared error on the covariates, typical distances used to choose the near-
est neighbors include the sum of the absolute values of the entries in xxx− xxx′ or their
maximum (sometimes called the city block or Manhattan distance).
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Given k and the distance measure, the k-NN prediction for regression is

Ŷnew(xxxnew) =
1
k ∑

i∈K(xxxnew)
Yi,

where K(xnew) is the set of covariate vectors in the sample closest to xnew.

In the general classification setting, suppose there are K classes labeled 1,..., K and
xxxnew is given. For j = 0,1, let Cj(xnew) be the data points xi among the k values of xxx
closest to xxxnew that have yi = j. Then the k nearest-neighbor assignment is the class j
having the largest number of the k data points’ xxxis in it,

Ŷnew(xxxnew) = argmax{ j | #(Ĉ j(xxxnew))}.

To avoid having to break ties, k is often chosen to be odd.

An extension of k-NN regression, or classification, is distance weighting. The idea is
that the xxx closest to an xxxnew should be most like it, so its vote should be weighted higher
than the second closest xxxi or the 3rd closest xxxi, and so on to the kth closest. Indeed,
once the form of the weights is chosen, k can increase so that all the data points are
weighted giving a sort of ensemble method over data points. In effect, a version of this
is done in linear smoothing, see (2.1.1).

Let xxx(i),new be the ith closest data point to xxxnew. Given a distance d, weights wi for
i = 1, ...,k can be specified by setting

wi(xxxnew,xxx(i),new) =
ed(xxxnew,xxx(i),new)

∑k
i=1 ed(xxxnew,xxx(i),new).

Now, ∑k
i=1 wi(xxxnew,xxx(i),new) = 1. For classification, one takes the class with the maxi-

mum weight among the k nearest-neighbors. For regression, the predictor is

ŷnew =
k

∑
i=1

wi(xxxnew,xxx(i),new)yxxx(i),new
,

in which yxxx(i),new
is the value of the ith closest data point to xxxnew. In either case, it is con-

ventional to neglect weights and associate an assessment of variance to the predicted
value from

V̂ar(ynew) =
1

k−1

k

∑
i=1

(y− yxxx(i),new
)2.

2.4.0.1 Some Basic Properties

Like kernel methods, nearest neighbors does not really do any data summarization:
There is no meaningful model of the relationship between the explanatory variables
and the dependent variable. It is a purely nonparametric technique so k-NNs is not



98 2 Local Smoothers

really interpretable and so not as useful for structure discovery or visualization as later
methods.

Second, another problem with k-NNs is that it is sensitive to predictors that are useless
when their values are close to those in an xxxnew. This is the opposite of many New Wave
methods (like recursive partitioning and neural networks), which often exclude irrele-
vant explanatory variables easily. To work well, k-NNs needs good variable selection
or a distance measure that downweights less important explanatory variables.

Third, on the other hand, k-NNs has the robustness properties one expects. In partic-
ular, when data that can safely be regarded as nonrepresentative are not present, the
removal of random points or outliers does not affect predictions very much. By con-
trast, logistic regression and recursive partitioning can change substantially if a few,
even only one, data point is changed.

Overall, k-NNs is useful when a reliable distance can be specified easily but little
modeling information is available. It suffers the Curse on account of being little more
than a sophisticated look-up table.

Perhaps the biggest plus of k-NNs is its theoretical foundation, which is extensive since
k-NNs was one of the earliest classification techniques devised.

One theoretical point from the classification perspective is decision-theoretic and will
be pursued in Chapter 5 in more detail. Let L j,k be the loss from assigning the jth
class when the kth class is correct. The expected loss or misclassification risk is R j =
∑M

k=1 L jkP(k|x), where W (k|x) is the posterior probability of class k given x. Now, the
best choice is

jopt = arg min
i≤ j≤M

R j(xxx),

which reduces to the modal class of the posterior distribution on the classes when
the cost of misclassification is the same for all classes. In this case, the risk is the
misclassification rate and one gets the usual Bayes decision rules in which one can use
estimates Ŵ ( j|xxx). It is a theorem that the classification error in k = 1 nearest-neighbor
classification is bounded by twice the Bayes error; see Duda et al. (2000). Indeed, when
both k and n go to infinity, the k nearest-neighbor error converges to the Bayesian error.

An even more important theoretical point is the asymptotics for nearest-neighbor meth-
ods. Let f j(xxx) = E(Yi|xxx); in classification this reduces to f(xxx) = IP( j|xxx) = IP(Yj = 1|xxx).
Clearly, the “target” functions f j satisfy

f j(xxx) = arg min
f

E((Yj− f (xxx))2|xxx),

where 0≤ f j(xxx)≤ 1 and ∑ j f j(xxx) = 1. One way to estimate these functions is by using
the NW estimator

f̂ j(xxx) = ∑n
i=1 YiKh(xxx−XXXi)
∑n

i=1 Kh(xxx−XXXi)
,

where h > 0 is a smoothing parameter and the kernel K is absolutely integrable.

An alternative to the NW estimator based on k-NN concepts is the following. Suppose
the f js are well behaved enough that they can be locally approximated on a small
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neighborhood R(xxx) around xxx by an average of evaluations. Then,

f j(xxx)≈
1

#(R̃(xxx)) ∑
x′∈R̃(xxx)

f j(xxx′),

where R̃(xxx) is a uniformly spread out collection of points in a region R(xxx) around xxx.
Then, approximating again with the data gives an estimate. Let

f̂ j(xxx) =
1

#(R̂(xxx)) ∑
xi∈R̂(xxx)

y(xxxi),

in which R̂(xxx) = {xxxi|xxxi ∈ R(xxx)}. In the classification case, this reduces to

f̂ j(xxx) =
1

#(R̂(xxx))
#({xxxi ∈ R(xxx)|yi = j}).

Note that R̂(xxx) contains all the points close to xxx. There may be more than k of them if
R(xxx) is fixed and n increases.

Heuristically, to ensure that f̂ j converges to f j on the feature space, it is enough to
ensure that these local approximations converge to their central value f j(xxx) for each xxx.
This means that as more and more data points accumulate near xxx, it is important to be
more and more selective about which points to include in R̂(xxx) when taking the local
average. That is, as n gets large, #(R̂(xxx)) must get large and, most importantly, the sum
must be limited to the k closest points xxxi to xxx. The closest points get closer and closer to
xxx as n increases. This is better than including all the points that are close (i.e., within a
fixed distance of xxx) because it means that the k closest points are a smaller and smaller
fraction of the n data points available.

However, it turns out that fixing k will not give convergence: k must be allowed to
increase, albeit slowly, with n so that the points near xxx not only get closer to xxx but
become more numerous as well. Thus, to ensure f j(xxx) = limn→∞ f̂ j(xxx), both n → ∞
and k→∞ are necessary. An extra condition that arises is that the points in the sum for
a given xxx mustn’t spread out too much. Otherwise, the approximation can be harmed if
it becomes nonlocal. So, a ratio such as k/n→∞ also needs to be controlled. Finally, it
can be seen that if the f̂ js converge to their target f js the limiting form of the nearest-
neighbor classifier or regression function achieves the minimum risk of the Bayes rule.

Exactly this sort of result is established in Devroye et al. (1994). Let (XXX1,Y1),...,
(XXXn,Yn) be independent observations of the p× 1 random variable (XXX ,Y ), and let μ
be the probability measure of XXX . The Yis are the responses, and the XXXis are the fea-
ture vectors. The best classifier, or best regression function, under squared error loss is
f (xxx) = E(Y |XXX = xxx). Write the k-NN estimate of f (xxx) as

f̂n(xxx) =
n

∑
i=1

Wni(xxx;XXX1, ...,XXXn)Yi;

it is a linear smoother in which Wni(xxx;XXXn) is 1/k when XXXi is one of the kth near-
est neighbors of xxx among the XXX1, ...,XXXn and zero otherwise. Clearly, ∑i Wni = 1.
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The desired result follows if

Jn =
∫
| f (xxx)− f̂n(xxx)|dμ(xxx)→ 0

without knowing μ .

Theorem (Devroye et al., 1994): Let Y be bounded, |Y | ≤M. Then,

lim
n→∞

k = ∞ and lim
n→∞

k
n

= 0,

taken together, imply that ∀ε > 0, ∃N0, so that n≥ N0 ensures

P(Jn ≥ ε)≤ e
−n ε2

8M2c2 ,

where c is a constant related to the minimal number of cones centered at the origin of
angle π/6 required to cover the feature space. A converse also holds in the sense that
the conclusion is equivalent to Jn → 0 in probability or with probability 1. �
The proof of such a general result is necessarily elaborate and is omitted.

It is worth noting that nearest neighbors suffers the Curse as dramatically as the other
techniques of this chapter. Indeed, as p increases, the best value for k, kopt goes to
zero because of the curious fact that, as p increases, the distance between points be-
comes nearly constant; see Hall et al. (2008). This means that knowing any number
of neighbors actually provides no help; in binary classification terms, it means that
the classifier does no better than random guessing because noise swamps the signal.
In fact, any time the convergence rates decrease with increasing dimension, the Curse
follows. The implication of this is that variable selection methods are essential.

2.5 Applications of Kernel Regression

To conclude the present treatment of regression, it is worthwhile to see how the meth-
ods work in practice. Two computed examples are presented next. The first uses sim-
ulated data to help understand the method. The second uses real data to see how the
method helps us understand a physical phenomenon. An important source for data for
testing machine learning procedures is http://www.ics.uci.edu/˜mlearn/
MLRepository.html.

2.5.1 A Simulated Example

Before comparing kernel regression and LOESS computationally, note that user-
friendly computer packages, contributed by researchers and practitioners from around
the world, are readily available. In the statistical context, most of the packages are
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written in R, although a decent percentage are in Matlab and pure C. Here, the ex-
amples are based on the R language unless indicated otherwise. For those readers
who are still new to the R environment, a good starting point is to visit http:
//www.r-project.org/, download both the R package and the manual.

For starters, the function for implementing LOESS is a built-in R function (no down-
load needed). Simply type help(loess) from the R prompt to see how to input ar-
guments for obtaining LOESS function estimation. The function loess can also be
used to compute the NW kernel regression estimate, even though there exists yet an-
other function written exclusively for the NW regression, namely ksmooth. Again, use
help(ksmooth) to see how to use it. Among other functions and packages, there is the
R package locfit provided by Catherine Loader, which can be obtained from the web-
site http://www.locfit.info/ or directly installed from within R itself. locfit
allows the computation of the majority of statistics discussed here in nonparametric
kernel regression: estimation of the bandwidth, construction of the cross validation
plot, and flexibility of kernel choice, to name just a few. Use library(locfit) to load the
package and help(locfit) to see the way arguments are passed to it.

Another package of interest is lokern, which has both a global bandwidth form through
its function glkerns and a local bandwidth form through lokerns. Recall that by de-
fault the NW uses a single (global) bandwidth h for all the neighborhoods. However,
for some functions, a global bandwidth cannot work well, making it necessary to de-
fine different local bandwidths for each neighborhood. The idea is that the bandwidth
h is treated as a function h(x) and a second level of nonparametric function estima-
tion is used to estimate h(x). Usually, it is a simple estimator such as a bin smoother
which assigns a value of h to each bin of x-values, but in lokerns it is another kernel
estimate. Deciding when to use a local bandwidth procedure and when a global band-
width is enough is beyond the present scope; it seems to depend mostly on how rapidly
the function increases and decreases. The package lokern uses polynomial kernels, de-
faulting to two plus the number of derivatives, but concentrates mostly on bandwidth
selection. The output automatically uses the optimal h.

A reasonable first example of kernel regression computation is with simulated data.
Let the function underlying the observations be

f (x) =
sin
(π

2 x
)

1+2x2(sign(x)+1)
with x ∈ [−π,π].

Suppose n = 100 equally spaced training points are generated from [−π,π] and de-
noted x, and the corresponding response values denoted y are formed as yi = f (xi)+εi,
where the independent noise terms εi follow a zero-mean Gaussian distribution with
standard deviation 0.2. Since the signal-to-noise ratio is pretty high, good estimation
is expected. To see what happens, use the package lokern since it returns an optimal
bandwidth along with the estimates of variances and fits. So, call glkerns(x, y) to get
the fit using a global bandwidth and lokerns(x, y) to get the fit with local bandwidths:

glkfit <- glkerns(x, y) # fit with global kernel
lokfit <- lokerns(x, y) # fit with local kernel
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The variance of the noise term in this case is estimated by the function glkerns to be
σ2 ≈ 0.044, which is gratifyingly close to the true value 0.04. The global bandwidth
returned by glkerns is ĥ≈ 0.456, but the fit under global bandwidth does not seem to
differ substantially from the fit under local bandwidth, see the top panel in Fig. 2.9. It
is important to note that the curves are formed by joining the estimated function values
at each sampled data point by straight lines. This provides an illusion of continuity in
the estimate that is not really justified: It only makes sense to estimate function values
at points where there really data unless some more sophisticated routine is used with
concomitantly stronger assumptions.

To explain the 2 LOESS plots in Fig. 2.9 and why a kernel package like glkerns would
generate them it is important to look at the structure of equations (2.2.7), (2.2.9), and
(2.2.10). In effect, LOESS is a kernel method. The tri-cube weight (2.2.9) is a de
facto compact support kernel, and dq plays the same role as h in terms of representing
how concentrated each component in the estimator is. Moreover, locally optimizing in
(2.2.9) gives a weighted least squares estimator of the same form as the NW estimator.
(Indeed, recall that β̂1 =∑(xi− x̄)(yi− ȳ)/∑(xi− x̄)2 is a one-dimensional least squares
minimization. This is a covariance divided by a variance and for data centered at their
means is of the same form as the NW estimator or the local form of LOESS.)

Given this, it makes sense that the fraction of data included in a bin could be regarded
as an analog to the bandwidth h. Indeed, if q is the number of data points to be included
in a bin, then the fraction is α = q/n and is an analog to the bandwidth. Typically
.25 ≤ α ≤ .5. So, using the value ĥ = 0.4561029 from the earlier fit (as if it were
relevant) and degree 2 (the maximum loess accepts) for the polynomial, the function
loess produced the middle fit in Fig. 2.9. As before, the curve looks continuous only
because the points at which estimates are made are joined by straight lines.

Confidence bands can be found from the normal-based expressions in Section 2.2.2.
These are pointwise confidence intervals, not really a confidence region in function
space. Again, the confidence interval for each function value f̂ (xi) is found; the upper
endpoints are joined with straight lines, as are the lower endpoints. The LOESS fit
along with these 2 SD confidence bands is the bottom panel in Fig. 2.9. (Confidence
bands for the NW estimator will be seen in the next subsection.)

2.5.2 Ethanol Data

To see how kernel methods fare in practice, consider a well-known data set gathered
in the context of the study of exhaust emissions, called ethanol.

In the ethanol data set plotted in Fig. 2.10, the variable NOx represents the exhaust
emissions from a single-cylinder engine and is the response variable. The two predictor
variables are E (the engine’s equivalence ratio) and C (compression ratio). From Fig.
2.10, it can be seen that there are five levels for C and that the shapes of the points in
each of the five planes are roughly similar, suggesting a one dimensional analysis will
suffice. Thus, collapsing all the points into the NOx and E planes gives the scatterplot
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Fig. 2.9 Kernel regression estimation. The top plot shows the true function with two NW estimates,
under global and local bandwidth selection. It is seen that they are pretty close. The middle plot shows
the true function with a LOESS fit, which is, to the eye, only a little worse. The bottom plot shows
what a practitioner would get with LOESS: the fitted curve and the 2SD confidence bands.
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Fig. 2.10 3D scatterplot of the ethanol data set. It is easy to see that the data points for fixed values
of C appear to form a ridge.

of data to be smoothed, as seen on the left-hand panel of Fig. 2.11. Moreover, from
the right-hand panel of Fig. 2.11, the variability in C seems to be independent of the
value of C, suggesting it is not very important and can be neglected. It will therefore
be enough to focus on the relationship between NOx and E.
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Fig. 2.11 Ethanol data scatter for the two predictor variables; the left-hand panel shows the data used
in the numerical work, and the right-hand panel suggests that C is not important.

It now makes sense to model the response NOx as a univariate function of a single
predictor variable E. For the NW estimator, it is enough to find the optimal bandwidth
and find the sum of kernels at each point. First, it turns out that using GCV to search
the interval [0.1,0.7] for values of h gives an optimal bandwidth hopt of around 0.4
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as can be seen from the left-hand panel is Fig. 2.12. The left hand panel in Fig. Fig.
2.12 shows the NW curve with hopt . Clearly, the curve tracks the data, but arguably
not very well: In the middle, it underestimates, while at the two ends it has a tendency
to overestimate. Note that although the NW curve is potentially defined for all points,
not just those at which data were collected, in fact the functional form of the NW
curve is used only at the data points. As in the simulated case, the values at the data
points are joined by straight lines. The reason is that on intermediate points the NW
estimator would be making a point prediction whose variance could not be assessed
without more sophisticated techniques.
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Fig. 2.12 NW best fit for NOx as a function of E, along with GCV plot suggesting the best h.

Figure 2.13 shows typical results from non-optimal values of h, for which the NW es-
timator generally produces worse fits. Indeed, for small h, the fit is erratic, as expected
from theory, and the error tends to inflate the estimate of the variance of the noise term.
At the other end, large h, the fit is too smooth and hence has a high bias.

Another aspect that might be of concern is the effect of the kernel. However, a poly-
nomial kernel of order two is used by default, and the difference in fit from one kernel
to another is small. It usually contributes less to the overall variability than the errors
contributed from other sources, such as variability in the response or the variability
implicit in h. Although not shown, the choice of the kernel here does not affect the fit
substantially.

Finally, it is helpful to have some assessment of the overall variability of the fitted
curve. There are two senses in which this can be done. First, formulating the NW esti-
mator as a linear smoother as in Section 2.3.7 makes it easy to write down an expres-
sion for its variance at the sampled xis. Indeed, from (2.3.20) it is enough to estimate
σ because W is fully specified from its definition once h has been chosen. Under a
normality assumption and the pretense that bias doesn’t matter, it is possible to find
confidence limits using the variance from (2.3.20) in which σ2 is estimated as usual
by the residual sum of squares over the degrees of freedom (recall that the degrees of
freedom in this nonparametric context is estimated using the trace of some function of
the smoothing matrix). Doing this at the xis, joining the upper and lower confidence
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Fig. 2.13 Bad examples: the two extreme NW fits of the ethanol data. The left-hand panel shows a
fit that has low bias but high variance. The right-hand panel shows a fit that has low variance but high
bias.

limits with straight lines, and choosing a normal threshold of, say, 1.96 would give
curves qualitatively like those in Fig. 2.14a plotted on either side of the estimated
curve. In fact, the left-hand panel in Fig. 2.14 was generated by the lokern package,
which does not use a normal approximation but rather a sophisticated approach to ob-
tain a threshold more exact than 1.96. See Sun and Loader (1994) for more details on
this advanced topic. The signal-to-noise ratio for the ethanol data is pretty high, so it
is unclear how much improvement these techniques can give.

In greater generality, it would be desirable to use equations (2.3.11), (2.3.12), and
(2.3.13) over all real values of x. However, while it is easy enough to get point pre-
dictions for xs not in the sample, and in principle a bootstrap technique might be used
to estimate B(x) and V (x), it is extremely difficult to get variances for the predictions.
In practice, (2.3.12) and (2.3.13) are ignored in favor of (2.3.20), and the normality of
(2.3.11) is only invoked at the sampled xis.

A second way to assess overall variability is to find MSE bands for the fitted curve. In-
stead of a confidence interpretation, these admit a prediction interpretation. Examining
the MSE by looking at pointwise bias and variance separately in a function estimation
context is deferred to the end of Chapter 3. Here, it is enough to look at the MSE as a
whole by using the variance estimate already obtained at the sampled xis and adding
an estimate of bias to it. Clearly, the estimate of the bias requires a resampling tech-
nique such as the bootstrap for the bias. The procedure used here is to find the base
NW curve using all the data, draw n independent bootstrap samples from the data to
form n bootstrap estimates of the curve, and then take the average of their n distances
from the base curve. The right-hand panel in Figure 2.14 shows the resulting bootstrap
estimates of the curves f̂±2M̂SE plotted around the fitted base curve. As ever, the illu-
sion of continuity arises from joining the values at the sampled xis with straight lines.
The bands are seen to be rough, or excessively wiggly, most likely due to the variance
of the bootstrap estimates. The MSE bands are much wider than the confidence bands
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and the two have different interpretations (confidence versus prediction) but the widths
of the bands vary similarly in the two cases.
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Fig. 2.14 On the left-hand panel, confidence bands for the NW estimator for the Ethanol data plotted
with the fitted curve. On the right-hand panel, raw MSE bands for the NW estimator for the Ethanol
data plotted with the fitted curve.

2.6 Exercises

Exercise 2.1. Let Y be a response variable with E(Y ) = μ and E(Y 2) < ∞, and let X
be an explanatory variable. The model is

Y = f (X)+ ε,

where the noise term ε has a distribution such that the signal-to-noise ratio allows the
signal to be recovered.

1. Deduce that, for a fixed x,
f (x) = E(Y |X = x)

minimizes the quadratic risk E[(Y − f (X))2].

2. For a parametric model such as simple linear regression, the empirical counterpart
of the quadratic risk E[(Y − f (X))2] is the least squares deviation

R̂2(β0,β1) =
n

∑
i=1

(yi− (β0 +β1x))2,

from which the estimates of β0 and β1 are obtained to form the desired approximat-
ing function. Least squares estimates are, however, sensitive to outliers.
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a. Show why least squares estimates are sensitive to outliers.

b. One of the measures commonly used to circumvent the outlier problem is to
change the loss function from the squared error loss �(u,v) = (u− v)2 to the
absolute deviation loss �(u,v) = |u− v|, so that the empirical risk is

R̂1(β0,β1) =
n

∑
i=1
|yi− (β0 +β1x)|.

c. Why is R̂1 less sensitive to outliers than R̂2?

d. Why is R̂1 not used as much as its desirable properties suggest it should be?

e. Suggest a way to estimate the desired parameters when R̂1 is used. Can you
make any statement about their asymptotic properties such as consistency and
asymptotic normality?

Exercise 2.2. Consider using the polynomial

gp(x) = β0 +β1x+β2x2 + · · ·+βp−1xp−1 +βpxp

to approximate a function underlying a random sample {(xi,yi), i = 1,2, · · · ,n} under
squared error loss.

1. Show that the coefficients β0,β1, · · · ,βp that minimize the squared error loss are
given by the solution to the set of linear equations

p

∑
l=0

Sk+lβl = Tk (2.6.1)

for k = 0,1, · · · , p, where

Sk =
n

∑
i=1

xk
i , Tk =

n

∑
i=1

xk
i yi.

2. Consider the “homogeneous” equations corresponding to the “nonhomogeneous”
system (2.6.1); i.e.,

p

∑
l=0

Sk+lβl = 0. (2.6.2)

Write (2.6.2) in matrix form and verify the determinant is nonzero.

3. Assume that all the xis are uniformly distributed in the interval [0,1].

a. Show that
Sk ≈

p
k +1

.

b. Deduce that the homogeneous system is now
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Bβ = 0, with B jk =
1

j + k +1
.

It can be shown that the determinant of B for a polynomial of degree p,

det(B) =
∣∣∣∣ 1

j + k +1

∣∣∣∣ j,k = 0,1,2, · · · , p,

is

Hp =
p!(p+1)! · · ·(2p−1)!
[1!2!3! · · ·(p−1)!]3

.

Tabulate the values of Hp for p = 1,2,3, · · · ,9, and comment on what happens
to the value of the determinant as p increases. (The ambitious student can try to
derive Hp, as well.)

c. What does this mean for polynomial curve fitting?

Exercise 2.3. Consider a function f defined on the interval [−1,+1]. If f is interpo-
lated on a set of knots xis in [−1,+1] by a polynomial gk(x) of degree ≤ k, then as
k increases, the interpolant oscillates ever more at the endpoints −1 and 1 for a large
class of functions.

1. Show that the interpolation error tends to infinity at the endpoints as the degree k
increases; i.e.,

lim
k→∞

(
max
−1≤x≤1

∣∣ f (x)−gk(x)
∣∣)= ∞.

2. What is the intuitive justification for such a limitation? In general, can you identify
where on the domain this bad behavior typically occurs and for which functions it
occurs?

3. How can you fix this?

Exercise 2.4. Consider the Runge function defined on the interval [−1,+1]. Using
either Matlab or R (or your favorite package), do the following:

1. Generate equally spaced points in the interval along with their Runge function val-
ues.

2. Estimate the coefficients of the interpolating polynomial for various degrees (start
from 1 and go to something really large such as 8, 9, 10, or even 11).

3. Tabulate your results, indicating the coefficient in the column and the degree of the
polynomial in the row, so that the cell contains the estimated value of the coefficient
for that degree of polynomial. (Since the number of coefficients increases with the
degree of the polynomial, your table should be triangular).

4. Comment on what you notice in light of the theoretical assertion made regarding
the limitations of the polynomial in curve fitting seen in exercise (2.3).

Exercise 2.5. Generate n values xi for i = 1, ...,n by setting xi = i/n. Then, let Y1, ...,Yn

be IID draws from a Bernoulli(p) for some p ∈ (0,1). Thus, treated as a data set, the
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collection (xi,yi) for i = 1, ...,n is just noise. Now, instead of defining a model, consider
two predictive schemes. The first is Scheme A which is the 1-nearest-neighbor method.
The second is Scheme B which will be the trivial predictor always predicting zero.

1. What are the expected mean square training error and the expected mean square
leave-one-out CV error for Scheme A?

2. What are the expected mean square training error and the expected mean square
leave-one-out CV error for Scheme B?

Exercise 2.6. Consider a data set xi for i = 1, ...,n where the xis are unidimensional and
distinct. Suppose n is even – take n = 100 for definiteness – and that exactly half the xis
are positive and exactly half are negative. To explore the properties of leave-one-out
CV and nearest-neighbors, try the following.

1. Can you specify the xis so that the leave-one-out CV error for 1-nearest-neighbors
is 0 % ? Explain.

2. Can you specify the xis so that the leave-one-out CV error for 1-nearest-neighbors
is 100 % but for 3-nearest-neighbors in 0 % ? Explain.

Exercise 2.7. It is a theorem that as the amount of training data increases, the er-
ror rate of the 1-nearest-neighbor classifier is bounded by twice the Bayes optimal
error rate. Here one proof of the theorem is broken down into steps so you can
prove it for binary classification of real inputs. (An alternative proof can be found
at http://www.ismll.uni-hildesheim.de/lehre/ml-08w/skript/
nearest.pdf.) Let xi for i = 1, ...,n be the training samples with corresponding
class labels yi = 0,1. Think of xi as a point in p-dimensional Euclidean space. Let
py(x) = p(x|Y = y) be the true conditional density for points in class y. Assume
0 < py(x) < 1 and θ = IP(Y = 1) ∈ (0,1).

1. Write the true probability q(x) = IP(Y = 1|X = x) that a data point x belongs to class
1. Express q(x) in terms of p0(x), p1(x), and θ .

2. Upon receipt of a datum x, the Bayes optimal classification assign the class

arg max
y

P(Y = y|X = x)

to maximize the probability of correct classification. Under q(x), what is the prob-
ability that x will be misclassified using the Bayes optimal classifier?

3. Recall that the 1-nearest-neighbor classifier assigns x to the class of its closest train-
ing point x′. Given x and its x′, what is the probability, terms of q(x) and q(x′), that
x will be misclassified?

4. Suppose that in the limit of large n, the number of training examples in both classes
goes to infinity in such as way as to fill out the space densely. This means that
the nearest neighbor x′ = x′(n) of x satisfies q(x′) → q(x) as n increases. Using
this substitution in item 3, express the asymptotic error for the 1-nearest-neighbor
classifier at x in terms of the limiting value q(x).
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5. Now show that the asymptotic error obtained in item 4 is bounded by twice the
Bayes optimal error obtained in item 2.

6. Why doesn’t the asymptotic bound hold for finite n as well? What goes wrong?

Exercise 2.8. Let {(xi,Yi), i = 1, · · · ,n} be a data set and let wi(x) = K((xi−x)/h) be a
weight function. One way to justify the NW estimator is by the following optimization.
Consider finding the c = f̂n(x) that minimizes the weighted sum of squared errors

n

∑
i=1

wi(x)(Yi− c)2.

1. Show that the minimum is achieved for

c = f̂n(x) = ∑n
i=1 wi(x)Yi

∑n
i=1 wi(x)

.

This means that the NW estimator is the local constant kernel estimator.

2. Consider trying to improve the local constant kernel estimator to a local polynomial
kernel estimator. To do this, write the Taylor expansion on a neighborhood of x,

gx(u;ccc) = c0 + c1(x−u)+
c2

2!
(x−u)2 + · · ·+ cp

p!
(x−u)p.

In this form, the goal is to find the ĉcc = (ĉ0, ĉ1, · · · , ĉn)� that minimizes a sum of
squares modified by a local weight wi,

n

∑
i=1

wi(x)(Yi−gx(xi;ccc))2.

a. Why does ĉcc now depend on x?

b. Show that f̂n(x) = gx(x; ĉcc) = ĉ0(x). Why is this different from the local constant
kernel regressor?

c. To establish linearity, derive the expression for f̂n(x) in matrix form; i.e., define
an appropriate Ln(x) so that

f̂n(x) = Ln(x)yyy.

d. Deduce the expression of f̂n(x) for the local linear kernel regression estimator
for p = 1.

e. Suggest how to estimate the derivative f̂ ′n(x) of f̂n(x).

Exercise 2.9 (Statistical comparison of local constant and local linear estimators).
Let Yi = f (Xi) + εi, where εi is mean zero with variance σ2, and let K be a kernel
function. The variance for both the local constant and the local linear kernel regression
estimators of a function f (x) based on a design with density function p(x) is
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σ2(x)
nhn p(x)

∫
t2K(t)dt +OP

(
1

nhn

)
.

1. Explain why the expression of the variance is the same for both estimators.

2. Show that the bias for the local linear estimator is given by

1
2

h2
n f ′′(x)

∫
t2K(t)dt +OP(h2

n).

3. The bias for the NW estimator is

h2
n

(
1
2

f ′′(x)+
f ′(x)p′(x)

p(x)

)∫
t2K(t)dt +OP(h2

n),

as can be inferred from (2.3.12), or derived from (2.3.9). (It is a good exercise to do
this derivation.)

4. Based on the expressions of the bias for both estimators, what are the strengths and
the weaknesses of the two kernel methods?

Exercise 2.10. Let X1,X2, · · · ,Xn be drawn IID from a distribution with density p and
let p̂n be the kernel density estimator using the boxcar kernel:

K(x) =
{

1 − 1
2 < x < 1

2
0 otherwise.

1. Show that

E(p̂n(x)) =
1
h

∫ x−h/2

x+h/2
p(y)dy

and

Var(p̂n(x)) =
1

nh2

[∫ x−h/2

x+h/2
p(y)dy−

(∫ x−h/2

x+h/2
p(y)dy

)2
]

.

2. Show that if h→ 0 and nh→ ∞ as n→ ∞, then

p̂n(x)
P−→ p(x).

Exercise 2.11. Consider the following kernels encountered earlier in kernel smooth-
ing: (1) the uniform kernel K(u) = 1/2 for −1 < u < 1, (2) the triangular kernel
K(u) = 1− |u| for −1 < u < 1, the quartic kernel K(u) = (15/16)(1− u2)2 for
−1 < u < 1, the Epanechnikov kernel K(u) = (3/4)(1− u2) for −1 < u < 1, and

the Gaussian kernel K(u) = (2π)−
1
2 exp(−0.5u2) for −∞< u < ∞.

1. To contrast the optimal bandwidths for for local constant regression evaluated at a
point x under AMSE optimality for different kernels, show that the AMSE-optimal
bandwidth using the Epanechnikov kernel is (10/3)1/5 times the AMSE-optimal
bandwidth for the uniform kernel.
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2. Again, fix x but now compare minimal AMSE’s rather than bandwidth. Show that
the minimal AMSE at x using the Epanechnikov kernel is 94.3% of the minimal
AMSE at x using the uniform kernel.

3. Redo the first two items, but use the normal kernel in place of the uniform kernel.
Which kernel gives the most efficient estimator? How important is this?

4. Let f be a regression function and suppose f ′′(x) is overestimated by a factor of
1.5. If local constant regression were used to estimate f (x), what effect would this
have on the estimate of the optimal bandwidth? To be specific, suppose f ′′(x) =
σ = 1. Now, using the Epanechnikov kernel, find the AMSE at x using the optimal
bandwidth and the estimated bandwidth.

Exercise 2.12. Let Y = f (X)+ ε , where ε is mean zero with variance σ2. Let the es-
timator f̂ of f be linear. That is, given a collection of outcomes {(x1,y1), · · · ,(xn,yn)}
the vector f̂ff = ( f̂ (x1), · · · , f̂ (xn) can be written as f̂ff = Sy, where S is a smoothing
matrix. Define ν1 = trace(S) and ν2 = trace(STS) and let

s2 =
1

n−2ν1 +ν2

n

∑
i=1

(yi− f̂ (xi))2.

1. Show that

E

[
n

∑
i=1

(yi− f̂ (xi))2

]
= σ2(n−2ν1 +ν2)+ fff T(I−S)T(I−S) fff .

2. Comment on the properties of s2 as an estimator of σ2.

Exercise 2.13. The goal of this exercise is to perform a computational comparison
of the bias and the variance associated with NW smoothing, and local polynomial
smoothing. To do this, compute empirical bias and empirical variance based on m =
1000 data sets D1, · · · ,Dm, each of size n = 199, simulated from the model Yi = f (xi)+
εi with

f (x) =−x+
√

2sin(
1
10
π2/x2), x ∈ [0,3], (2.6.3)

where ε1,ε2, · · · ,εn are IID N(0, .22).

1. Consider the (deterministic) fixed design with equidistant points in [0,3].

a. For each data set D j, compute the NW and the local polynomial estimates at
every point in D j.

b. At each point xi, compute the empirical bias ̂Bias{ f (xi)} and the empirical vari-

ance ̂Var{ f (xi)}, where

̂Bias{ f (xi)}=
1
m

m

∑
j=1

f̂ ( j)(xi)− f (xi),



114 2 Local Smoothers

and
̂Var{ f (xi)}=

1
m−1

m

∑
j=1

( f̂ ( j)(xi)− f (xi))2.

c. Plot these quantities against xi for each estimator. (Plotting is straightforward
with the command matplot along with apply to get the means and the variances
if the values needed are stored in a matrix.)

d. Provide a thorough analysis of what the plots suggest.

Hint: Here is some R code that may help.

## Generate n=101 equidistant points in [-1,1]
m <- 1000
n <- 101
x <- seq(-1,1, length=n)

# Initialize the matrix of fitted values
fvnw <- fvlp <- fvss <- matrix(0, nrow = n, ncol = m)

# Fit the data and store the fitted values
for (j in 1:m){
## Simulate y-values
y <- f(x) + rnorm(length(x))

## Get the estimates and store them
fvnw[,j] <- ksmooth(x, y, kernel = "normal",
bandwidth=0.2, x.points = x)$y
fvlp[,j] <- predict(loess(...), newdata = x)
fvss[,j] <- predict(smooth.spline(...), x=x)$y}

Exercise 2.14. Repeat Exercise 2.13, this time with a design that has nonequidistant
points. The following R commands can be used to generate the design points:

set.seed(79)
x <- sort(c(0.5, -1 + rbeta(50,2,2), rbeta(50,2,2)))

Use span = 0.3365281 for loess and spar = 0.7162681 for smooth.spline to get
the same degrees of freedom.

Exercise 2.15. Consider the Mexican hat function

f (x) = (1− x2)exp(−0.5x2), x ∈ [−2π,2π].

This function is known to pose a variety of estimation challenges. Construct a simu-
lation study like the one described in Exercise 2.13 to explore the difficulties inherent
in the study of this function. Consider both the statistical challenges and the computa-
tional ones.
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Exercise 2.16. The definition of linearity for smoothers, (2.1.1), was that the vector ŷ
of fitted values can be written as ŷ = Sy, where S is the smoothing matrix depending
on the xis and the smoothing technique. In this definition, it is usually assumed that the
outcomes (x1,y1), · · · ,(xn,yn) were drawn independently from the model Y = f (x)+ε
where ε is mean zero with Var(εi) = σ2.

1. Show that
n

∑
i=1

Cov(ŷi,yi) = trace(S)σ2.

2. Recall that in linear regression Y = Xβ + ε and the vector ŷ of fitted values comes
from the projection matrix H; i.e., ŷ = X(X�X)−1Xy = Hy.

a. Compute trace(H).

b. Show that the same identity holds for H in place of S; i.e., ∑n
i=1 Cov(ŷi,yi) =

trace(H)σ2.

c. What does this suggest about the degrees of freedom of linear smoothers?

Exercise 2.17 (Computationally efficient cross validation for linear smoothers).
Consider independent outcomes (x1,y1), · · · ,(xn,yn) drawn from the model Y = f (x)+
ε with Var(ε) = σ2. As in Exercise 2.16, or (2.1.1), if a smoother is linear, it can be
represented by a matrix S so that the vector ŷ of fitted values is ŷ = Sy. The smoothing
matrix S often depends delicately on the smoothing parameter h (as well as on the xis
and the smoothing procedure itself). Often h is estimated by CV. That is, h is chosen
to minimize the leave-one-out objective function

CV (h) =
n

∑
i=1

(
{yi− f̂ (−i)

n−1 (xi)}2
)

. (2.6.4)

Here, f̂ (−i)
n−1 is the estimator of f based on the deleted data; i.e., after leaving out one of

the xi’s.

1. Show that, for linear smoothers,

CV (h) =
n

∑
i=1

(
yi− f̂n(xi)
1−Sii(h)

)2

,

where Sii(h) is the ith diagonal element of S.

2. Show that, for the traditional linear model,

CV =
n

∑
i=1

(
yi− x�i β̂
1−hii

)2

,

where hii is the ith diagonal element of H.

3. In what senses can you argue that the expressions in items 1 and 2 improve on
(2.6.4) as an objective function?
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Exercise 2.18. Recall that linearity for a smoother is defined in (2.1.1) and that a
moving-average smoother is defined in Section 2.1. Suppose a data set of the form
(x1,y1), · · · ,(xn,yn)) is available.

1. Verify that a moving-average smoother is linear by finding LMA
n so that (2.1.1) is

satisfied.

2. Write the kernel regression smoother in the same notation, identifying its matrix
LKR

n .

3. Can LMA
n or LMA

n fail to be symmetric?

4. Can LMA
n or LMA

n have eigenvalues strictly greater than 1?

Hint: To address items 3 and 4, it may help to generate a small data set and see what the
smoothing matrices look like. Note that this exercise can be done for other smoothers
as well, such as bin smoothing.

Exercise 2.19 (This exercise is aimed at showing that using CV or GCV to choose
the bandwidth h overfits; i.e., the h is too small). Let f be the tooth function

f (x) = x+
9

4
√

2π
exp

[
−42(2x−1)2] , x ∈ [0,1].

Generate independent outcomes (xi,yi), i = 1, · · · ,n from the model Y = f (x)+ ε ε is
N(0,σ2) for a reasonable choice of σ , say σ = .2. Use the NW estimator to get an
estimate f̂ h

n . The R command is ksmooth().

1. Plot the simulated data and the fitted curve from the NW estimator. Explain how to
perform the computations to find the overfit caused by CV and GCV.

2. For contrast, try the same procedure using the Akaike criterion in place of CV and
GCV; i.e.,

AICc(h) = n log σ̂2(h)+n
1+ trace(Sh)/n

1−{trace(Sh)+2}/n
,

where

σ̂2(h) = n−1
n

∑
i=1

(yi− f̂ (xi))2.

Use the AIC on the same data to fit a new NW curve and compare your results to
those from item 1.



Chapter 3

Spline Smoothing

In the kernel methods of Chapter 2, the estimator of a function is defined first and
then a measure of precision is invoked to assess how close the estimator is to the true
function. In this chapter, this is reversed. The starting point is a precision criterion, and
the spline smoother is the result of minimizing it. Before presenting and developing
the machinery of smoothing splines, it is worthwhile to introduce interpolating splines.
This parallels the discussion of Early smoothers and the considerations leading to local
smoothers, thereby giving insight into the formulation of smoothing splines. Like the
kernel-based methods of the last chapter, splines suffer from the Curse of Dimension-
ality. Nevertheless, there is a parallel theory for multivariate splines. Eubank (1988),
Chapter 6.2.3 touches on it with some references. Such Laplacian smoothing splines
are neglected here, as are partial splines, which generalize splines to include an extra
nonparametric component.

3.1 Interpolating Splines

First, a spline is a piecewise polynomial function. More formally, let a = x1 < x2 <
· · · < xn = b be ordered design points, and partition the interval X = [a,b] into sub-
intervals [xi,xi+1), i = 1,2, · · · ,n− 1. When each piece of a spline is a polynomial of
degree d, the corresponding spline is said to be a spline of order d. Thus, generically,
a spline of order d is of the form

s(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s1(x), x ∈ [x1,x2);
s2(x), x ∈ [x2,x3);
...

...
sn−1(x), x ∈ [xn−1,xn],

where each si(x) is a polynomial of degree d.

Splines have long been used by numerical analysts as a technique for constructing
interpolants of functions underlying data because they avoid Runge’s phenomenon

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 117
in Statistics, DOI 10.1007/978-0-387-98135-2 3, c© Springer Science+Business Media, LLC 2009



118 3 Spline Smoothing

arising with high-degree polynomials. However, in general, the spline of degree d that
interpolates a data set is not uniquely defined. Consequently, additional degrees of
freedom must be specified to get uniqueness. Unlike splines, global polynomial inter-
polation often yields a unique interpolant.

Bin smoothers and running line smoothers can be regarded as special cases of low-
order splines. For instance, let (x1,y1),(x2,y2), · · · ,(xn,yn) be a set of observations.
The simplest spline is of zero order and corresponds to a piecewise constant function
defined by

s(x) = yi, xi ≤ x < xi+1.

Zero-order splines are step functions, essentially bin smoothers, and not continuous.

Setting d = 1 gives linear interpolating splines, somewhat like running line smoothers.
A linear interpolating spline si is given by

si(x) = yi +(yi+1− yi)
[

x− xi

xi+1− xi

]
, xi ≤ x < xi+1.

This means data points are graphically connected by straight lines. Now,

si(xi) = yi +(yi+1− yi)
[

xi− xi

xi+1− xi

]
= yi

and

si−1(xi) = yi−1 +(yi− yi−1)
[

xi− xi−1

xi− xi−1

]
= yi.

Hence,

si(xi) = si+1(xi), i = 1, · · · ,n−1.

So, first-order splines are continuous at each data point, unlike zero-order splines.
However, the first derivative of a linear spline is a zero-order spline and so not contin-
uous. The loss of continuity is one rung higher on the ladder of differentiability. (Tech-
nically, the low-order polynomials used in LOESS are also splines, although they do
not have any continuity requirements at the design points.)

Linear splines can be quite good. Figure 3.1 shows the result of linear spline interpo-
lation on the function f (x) = (sinx)/x for x ∈ [−10,10]. For comparison, the corre-
sponding graph for noisy data is also plotted. It is the second graph that reveals spline
performance for statistical function estimation with noisy responses. The next level of
splines is quadratic. However, cubic splines have very appealing properties for statis-
tical function estimation. So, the focus is usually on them.

Let a = x1 < x2 < · · · < xn = b be ordered design points. Given observations (xi,yi)
for i = 1, ...,n, the cubic interpolating spline function corresponding to this design is
s ∈ C2, a twice continuously differentiable function with each polynomial of degree
three, si(x), defined on the subinterval [xi,xi+1), i = 1, · · · ,n− 1. In other words, the
function s(x) is a cubic interpolating spline on the interval X = [a,b] if
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(a) Deterministic Linear Spline Interpola-
tion
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(b) Linear Spline Interpolation On Noisy
data

Fig. 3.1 The plot on the left shows the linear spline interpolant for a nonnoisy (deterministic) response
case. The plot on the right shows the linear spline interpolant applied to data with noisy response
variables. The curve on the right is more “wiggly” or “rough”, due to noise.

• s matches the data (i.e., s(xi) = yi, i = 1, · · · ,n);

• s is continuous (i.e., si−1(xi) = si(xi), i = 2, · · · ,n−1);

• s is twice continuously differentiable, in particular

� s′i−1(xi) = s′i(xi), i = 2, · · · ,n−1 (first derivative continuity);

� s′′i−1(xi) = s′′i (xi), i = 2, · · · ,n−1 (second derivative continuity);

• each piece si(x) of s is a cubic polynomial in each subinterval [xi,xi+1):

si(x) = β3i(x− xi)3 +β2i(x− xi)2 +β1i(x− xi)+β0i x ∈ [xi,xi+1].

The dimension of spaces of splines can be evaluated. Observe that each cubic poly-
nomial piece si(x) of s(x) requires four conditions for its construction apart from the
specification of the design points xi, i = 1, ...,n. As a result, a total of 4(n−1) condi-
tions are needed to determine the n−1 cubic polynomial pieces of s(x). The interpo-
lation requirement provides n of these; the continuity constraints for the 0th, 1st, and
2nd derivatives at the xis for i = 2, ...,n−1 each provide n−2 more. These four kinds
of requirements for a cubic spline interpolant provide a total of

n+n−2+n−2+n−2 = 4n−6 = 4(n−1)−2

constraints. On the other hand, it is easy to see that there are 4(n−1) real numbers that
must be specified, apart from the design points xi, for the n− 1 pieces: Each of n− 1
cubics has four coefficients. So, to specify a spline function uniquely, two more condi-
tions are required. Since the behavior of the spline function at its endpoints is, so far,
relatively free, pinning down the behavior of s′′ at x1 and xn finishes the specification.
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It turns out that conditions on the second derivative at the endpoints work well, so

s′′(x1) = s′′(xn) = 0

can be imposed, and the resulting functions are called natural cubic splines.

The obvious question is how much the cubic spline interpolant improves on the linear
spline interpolant. The improvement can be exemplified by using the same function,
f (x) = (sinx)/x for x ∈ [−10,10], as before. In Fig. 3.2, it is obvious that, in the ab-
sence of noise in the response, the cubic interpolant recovers the underlying function
nearly perfectly. However, the subfigure on the right shows that noise complicates
things. Despite the smoothness of the cubic spline interpolant pieces themselves, the
overall spline is still very rough or wiggly. This is due to the noise, and the spline fails
to capture the more slowly varying trend characteristic of the true function. From a sta-
tistical perspective, the smoothness of the estimate alone is therefore not satisfactory.
The roughness from the rapid fluctuations due to the error must be reduced to recover
the underlying function from noisy data.
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(a) Deterministic Cubic Spline Interpolation
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(b) Cubic Spline Interpolation On Noisy data

Fig. 3.2 In both the plots, the dashed curve is the (sinx)/x function and the solid curve represents the
cubic interpolating spline. The plot on the left shows the cubic spline for the nonnoisy (deterministic)
case; the plot on the right shows it when the response is noisy.

A natural way to measure roughness, incorporate it into the smoothing procedure,
and thereby get smoothing that is more representative of the underlying function is
to penalize it. This can be done readily using norms on derivatives. Let f ∈ C2 be a
twice continuously differentiable function defined on X = [a,b] ⊂ IR. A measure of
roughness is given by the total curvature penalty of a function f ,

J( f ) =
∫ b

a
( f ′′(x))2dx.
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For estimation purposes, J( f ) is a good measure of the oscillation of the function for
which interpolation is being carried out. After all, the second derivative forces con-
stant and linear dependence of f on x to zero, but higher-order fluctuations remain. Of
course, a natural question is why we use this roughness penalty rather than something
else. Wouldn’t the square of any sum of derivatives be a suitable penalty? In fact, many
other penalty terms can be used to derive estimates with moderate fluctuations. Green
and Silverman (1994) discuss the choice of roughness penalty in more detail.

The way a roughness measure such as J gets used in regularized optimizations such as
splines is through penalized least squares. Observe that when there is no restriction on
the form of f , the traditional least squares criterion automatically interpolates (passes
through all the points). Due to response noise and other sources of variation, this leads
to unacceptably high variability. Restricting the class of functions – not by imposing a
form as in the parametric context, but by specifying properties such as smoothness that
these functions should have – is a natural way to resolve the problem since it typically
permits optimization over a nonparametric set of alternatives.

For smoothing splines, the function space is determined by penalizing the sum of
squared errors by the total curvature (roughness) for f ∈ C 2. That is, the cubic spline
smoother is (implicitly) defined as

f̂ = arg min
f∈H 2(X )

Eλ ( f ) (3.1.1)

where

Eλ ( f ) =
1
n

n

∑
i=1

(Yi− f (Xi))2 +λ
∫ b

a
( f ′′(t))2dt (3.1.2)

and H 2[a,b] is the Sobolev space defined by

H ≡H 2[a,b] =
{

f : [a,b]→R : f and f ′ are absolutely continuous

and
∫ b

a
[ f ′′(t)]2dt < ∞

}
.

In this formulation, given a λ , one minimizes (3.1.2). It will be seen that the result
is a cubic spline with coefficients that best fit the data; this is a generalization of the
linear regression. It’s as if the terms in a regression function are basis elements of a
spline space and their coefficients correspond to the basis expansion of the unknown
f . The benefit of splines is that they track local behavior well, like LOESS, but have
continuity properties while avoiding the poor behavior of global polynomials.

The class of regularized risk problems exemplified by (3.1.2) generalizes to other
measures of risk (i.e., not just squared error) and to other penalty functions (i.e., not
just regularizers expressible in terms of an inner product). Many instances of these
– LASSO, Bridge, CART, GLMs, SVMs and so on – will be encountered in later
chapters. In all these cases the optimization is merely an extra constraint to enable
estimation of the coefficients in the regression function.
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The smoothing parameter λ helps achieve the balance between two antithetic goals: (a)
goodness of fit of f̂ to the observations (X1,Y1), · · · ,(Xn,Yn) and (b) smoothness of f̂
in the sense that smoothness captures the trends in the data that vary more slowly than
the error terms. Intuitively, λ controls the trade-off between bias expressed through
the empirical risk Eemp( f ) = 1

n ∑
n
i=1 (Yi− f (Xi))2 and variance expressed by J( f ), the

roughness of the function. Figure 3.3 shows how λ controls this trade-off.
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Fig. 3.3 Panel (a) shows that with less smoothing (small λ ) the fitted curve is rougher, while more
smoothing in panel (b) makes the fitted curve track the shape of the true function well, and too much
smoothing (large λ ) in panel (c) makes the fitted curve too close to a straight line. CV was used to
find the optimal value λ = 0.545 used in panel (b); λ = 0.1 for panel (a) and λ = 0.9 for panel (c).

Another interpretation of (3.1.2) is as a regularized empirical risk, so that λ summa-
rizes the trade-off between residual error and local variation. For small values of λ ,
the criterion Eλ ( f ) is dominated by the residual sum of squares Eemp( f ) and the cor-
responding curve in Fig. 3.3(a) tends to interpolate the data. For large values of λ , the
criterion Eλ ( f ) is dominated by J( f ) and the corresponding curve in Fig. 3.3(c) dis-
plays very little curvature (roughness) since J( f ) is forced to be small. In the limiting
case of λ close to infinity, the curve in Fig. 3.3(c) would simply be a straight line be-
cause J( f ) would be forced to zero. It is reasonable therefore to expect an intermediate
value of λ to be most desirable as in Fig. 3.3(b).

Note that λ in (3.1.2) for splines plays the same role as h for kernel methods. Indeed,
in both cases there is a concept of risk – MISE for kernel methods, (3.1.2) for splines –
in which a parameter controls the tradeoff between bias and variability. The qualitative
behavior of these risk functionals is similar and is seen in Fig. 3.4.

It turns out that minimizing Eλ ( f ) in (3.1.2) is a particular instance of a much larger
class of problems. Some of these occur naturally in the context of Reproducing Ker-
nel Hilbert spaces (RKHSs), Hilbert spaces equipped with a 2-argument function that
reproduces elements of the space in terms of the inner product. Indeed, it will be seen
that RKHSs are the natural setting for spline methods in general. The optimality of
cubic spline smoothers transfers readily to the RKHS framework, in which the gener-
alization of (3.1.2) is to minimize
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Optimal Smoothing
Less smoothing

Bias squared

True Risk

More smoothing

Variance

Fig. 3.4 Qualitative behavior of the dependence of bias versus variance on a trade-off parameter such
as λ or h. For small values, the variability is too high; for large values the bias gets large.

Eλ ( f ) =
1
n

n

∑
i=1

(Yi−Fi( f ))2 +λ
∫ b

a
[(L f )(t)]2dt, (3.1.3)

where the Fis are continuous linear functionals and L is a linear differential operator of
order d ≥ 1, say

(L f )(t) = f (d)(t)+
d−1

∑
j=0

w j(t) f ( j)(t), (3.1.4)

in which the weight functions w j(·) are real-valued and continuous. With this general-
ization, the minimization in (3.1.3) is over f in the Sobolev space,

H ≡H d(X ) =
{

f : X →R : f ( j), j = 0,1, · · · ,d−1 are absolutely continuous,

and
∫

X
[ f (d)(t)]2dt < ∞

}
.

Expression (3.1.2) corresponds to Fi( f ) = f (xi) and L f = f ′′ in (3.1.3). In various
applications, different choices of Fi and L are required to capture the functional depen-
dencies underlying the data. This will be taken up briefly later. Indeed, it will be argued
that without prior information to help restrict the search space, the whole smoothing
problem becomes ill-posed in Hadamard’s sense. For now, however, the focus is on the
traditional way smoothing splines are computed in practice.

3.2 Natural Cubic Splines

Let s be a natural cubic spline with knots at x1 < · · · < xn. The representation of s
from Green and Silverman (1994) in terms of second derivatives provides insights into
how to compute a natural cubic spline (NCS) in practice. To see this, first write the
vector of function values of s at its knots as sss = (s1,s2, · · · ,sn)T, where si = s(xi). The
dual use of s as a spline and as a vector will not be confusing because the context will
make clear which is meant. Next, let γγγ = (γ1, ...,γn) be the vector of second derivatives
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of s at its knots. That is, γi = s′′(xi) for i = 1, · · · ,n. For NCSs, s′′(x1) = s′′(xn) = 0,
so γ1 = γn = 0. Taken together, the vectors sss and γγγ specify s completely, however,
the values of si and γi must be restricted to ensure there is an NCS s corresponding
to them. Of course, in many applications, setting the second derivatives to zero at
the endpoints is not “natural” at all and so is not used. However, when all of these
derivative constraints can be used, the extra structure is striking.

For instance, these restrictions can be expressed in terms of two “band” matrices. First,
let δi = xi+1− xi for i = 1, · · · ,n−1 be the distance between successive design points.
Denote the first band matrix by A = (ai, j), where i = 1, ...n and j = 2, ...,n−1, so that
A is n× (n−2). The entries in A are defined to be

a j−1, j = δ−1
j−1, a j j =−δ−1

j−1−δ−1
j , and a j+1, j = δ−1

j ,

for j = 2, · · · ,n− 1, and otherwise ai j = 0 for |i− j| ≥ 2. Clearly, A is a band matrix
in the sense that there is a band of nonzero values along the main diagonal. That is, A
looks like

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a12 0 · · · · · · · · · · · · 0
a22 a23 0 · · · · · · · · · 0
a32 a33 a34 0 · · · · · · 0

...
...

...
...

...
...

...
0 · · · · · · 0 an−2,n−3 an−2,n−2 an−2,n−1

0 · · · · · · · · · 0 an−1,n−2 an−1,n−1

0 · · · · · · · · · · · · 0 an,n−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

To forestall frustration, it is important to note that A is not indexed in the usual way: A
starts with a12 in the upper left corner.

The second band matrix, B, is (n− 2)× (n− 2), symmetric, and has entries bi, j for
i, j = 2, · · · ,n−1 defined by

bii =
1
3
(δi−1 +δi) i = 2, · · · ,n−1,

bi,i+1 = bi+1,i =
1
6
δi i = 2, · · · ,n−2,

and bi j = 0 for |i− j| ≥ 2. Note that the elements are defined by differences in various
xis. Like A, B is not indexed in the usual way: B starts with b22. It turns out that B is
strictly positive definite, so B−1 exists. Now, define

K = AB−1AT.

The main result, due to Green and Silverman (1994), that gives the “compatibility”
conditions a spline must satisfy is the following.

Theorem (Green and Silverman, 1994): The vectors sss and γγγ specify a natural cubic
spline s if and only if

ATsss = Bγγγ (3.2.1)



3.2 Natural Cubic Splines 125

is satisfied. If (3.2.1) is satisfied, then the roughness penalty J(s) will satisfy

∫ b

a
[s′′(x)]2dx = γγγTBγγγ = sssTKsss.

This theorem dramatizes the fact that splines, natural cubic or otherwise, are not the
same as all local polynomials on the partition of an interval [a,b]. Indeed, the collection
of all local polynomials of degree d or less will have dimension (d + 1)(n− 1) for
n− 1 intervals defined by n partition points. The dimension of splines is much lower
because forcing continuity up to, say, second-order derivatives severely restricts the
class of functions. It is important to note that splines of degree d have a leading term
in x of degree d with a nonzero coefficient. The preceding theorem represents all those
constraints on the collection of local polynomials. It can be seen that the constraints
represented by (3.2.1) lead to the uniqueness of the NCS interpolant, as stated in the
next theorem.

Theorem (Uniqueness of NCSs): Suppose n ≥ 2 and x1 < · · ·< xn. Given any set of
responses y1, · · · ,yn, there is a unique natural cubic spline interpolant s with knots at
the xis satisfying

s(xi) = yi, i = 1, · · · ,n.�

Given these results, the NCSs exist and are uniquely characterized. The most important
result is that they are optimal in a roughness sense.

Proposition: Among all interpolating, twice differentiable functions, NCSs minimize
the total curvature of the function. In other words, if s(x) is an NCS and z(x) denotes
any other function in C 2, then

∫ b

a
(s′′(t)2dt ≤

∫ b

a
z′′(t)2dt, where s′′(a) = s′′(b) = 0.

Proof: The proof amounts to a verification that for any other twice continuously dif-
ferentiable interpolating function z(t),

∫ b

a
(s′′(t))2dt−

∫ b

a
(z′′(t))2dt ≤ 0.

Consider the following expansion:

∫ b

a
(s′′(t)− z′′(t))2dt =

∫ b

a
(s′′(t))2dt +

∫ b

a
(z′′(t))2dt−2

∫ b

a
s′′(t)z′′(t)dt

=
∫ b

a
(z′′(t))2dt−

∫ b

a
(s′′(t))2dt−2

∫ b

a
s′′(t)(z′′(t)− s′′(t))dt.

Since the left-hand side is nonnegative, it is enough to show that the last term on the
right-hand side is zero.

Consider h(t) = z(t)− s(t). Using integration by parts and the fact that s′′′(t) is piece-
wise constant (i.e., s′′′(t) = δi) for ti ≤ t < ti+1 one can examine
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Q =
∫ b

a
s′′(t)h′′(t)dt =

∫ b

a
s′′(t)(z′′(t)− s′′(t))dt

= s′′(t)h′(t)

∣∣∣∣∣
b

a

−
∫ b

a
s′′′h′(t)(t)dt

= s′′(b)h′(b)− s′′(a)h′(a)−∑
i

∫ ti+1

ti
s′′′(t)h′(t)dt

= s′′(b)h′(b)− s′′(a)h′(a)−
n−1

∑
i=1

δi[h(ti+1)−h(ti)].

The endpoint conditions are s′′(a) = s′′(b) = 0, and continuity of s(t) and z(t) implies
h(ti+1) = h(ti) for all i. Thus, all the terms in Q are 0. �

3.3 Smoothing Splines for Regression

Up to this point, the focus has been on interpolation. However, it is clear that interpo-
lation is not satisfactory from a statistical perspective because noise in the data causes
rapid local fluctuations in the interpolant. So, turning to smoothing splines for regres-
sion, it is time to prove that the optimal solution to the penalized least squares objective
function in (3.1.1) is a cubic smoothing spline. This can be shown using vectors γγγ and
sss and matrices A, B, and K.

Recall that the objective function is

Eλ ( f ) =
1
n

n

∑
i=1

(Yi− f (xi))2 +λ
∫ b

a
[ f ′′(t)]2dt,

where the (fixed) knots x1 < · · ·< xn have random responses Y1, · · · ,Yn. The penalized
least squares error Eλ ( f ) can be rewritten as

Eλ ( f ) = (Y− fff )T(Y− f)+λ fff TK fff

= fff T(I +λK) fff −2YTf+YTY. (3.3.1)

Because I +λK is strictly positive definite, (3.3.1) has a unique minimum over f cor-
responding to

fff = (I +λK)−1Y. (3.3.2)

It is easy to show that this is indeed a minimum simply by noticing that

∂ 2Eλ ( f )
∂ fff T∂ f

= 2(I +λK),
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which is positive definite. More formally, the optimality of the NCS smoother can now
be stated.

Theorem (Optimality of NCSs for smoothing): Suppose n ≥ 3, and consider the
knots x1 < · · ·< xn ∈ [a,b] with corresponding random response values Y1, · · · ,Yn. Let
λ be a strictly positive smoothing parameter, and let f̂ be the natural cubic spline with
knots at the points x1 < · · ·< xn for which

fff = (I +λK)−1Y.

Then, f̂ is the minimizer of Eλ ( f ) over the class C 2[a,b],

∀ f ∈ C 2[a,b], Eλ ( f̂ )≤ Eλ ( f ),

with equality only if f and f̂ are identical.

Proof: Omitted. �
Despite this theorem, the expressions that allowed derivation of the existence, unique-
ness, and optimality of NCS-based smoothers are not easy to deal with computation-
ally. Since a cubic spline is just a piecewise function whose pieces are polynomials of
degree three, one way to find a cubic smoothing spline for regression would start by
expressing s(x) as

s(x) = β0 +β1x+β2x2 +β3x3 +
n−1

∑
i=2

θi(x− xi)3
+,

where

u+ =
{

u, if u > 0;
0, otherwise.

Justification for this representation will become clear from the connection between
smoothing splines and RKHSs. Also, by plugging this expression for s(x) into the ex-
pression for the penalized least squares, it becomes clear that the notation and the com-
putation usually become unwieldy. Indeed, the matrices derived from this representa-
tion are often ill-conditioned, causing the construction of the smoother to be unstable.
As a consequence, using regression splines to construct cubic spline smoothers is usu-
ally avoided in practice. An alternative representation is provided by basis B-splines;
their appeal is their simplicity of interpretation and the fact that the ensuing matrices
are banded, typically leading to more computationally stable estimation procedures.

3.3.0.1 Cubic Spline Smoothers Through Basis B-Splines

Unlike the two representations mentioned earlier, basis B-splines turn out to provide a
great advantage of both simplicity and computational stability. The ith B-spline basis
function of degree j is usually defined by the Cox-de Boor recursion formula
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Bi,0(x) =
{

1, xi ≤ x < xi+1;
0, otherwise,

Bi, j(x) =
(

x− xi

xi+ j−1− xi

)
Bi, j−1(x)+

(
xi+ j− x

xi+ j− xi

)
Bi+1, j−1(x). (3.3.3)

As written, this recursion is for natural splines; i.e., s′′(x0) = s′′(xn) = 0 for the cubic
case. However, it extends to include free values at the boundary; see Zhou et al. (1998).

Clearly, for given j, Bi, j(x) is computed from two B-spline basis functions of degree
j−1, each of which is computed from two B-spline basis functions of degree j−2, and
so on. Therefore, Bi, j(x) is constructed recursively starting from degree 0 and giving
step functions on the subintervals of [a,b]. For j = 1, it can be verified that the splines
are “triangles” on adjacent subintervals and zero elsewhere. The index i ranges from 1
to n− 1 and the index j ranges from 0 to d, but from the second term in (3.3.3) it is
seen that i+ j≤ n. Thus, for fixed j, there are n− j linearly independent elements that
span the space of splines of degree j. The elements Bi,d define the dth order (natural)
B-spline basis because all the splines at iteration j are polynomials of degree j. To
find the dth order B-spline basis, one ends up finding dn functions along the way in
the recursion but it is only the last iteration for d that forms the basis elements. When
the knots are equidistant, B-splines are uniform; otherwise they are nonuniform. With
uniform (natural) B-splines, the whole machinery is considerably simplified.

For convenience, the doubly indexed B-spline basis elements Bi,d can be reindexed to
Bi(x), in which the d is understood, for i = 1, ...,n−d. Since the B-splines of a given
order d form a basis for the collection of splines of that order, smoothing is achieved by
expressing the cubic spline as a linear combination of basis elements. There are n−d
basis elements; however, this was determined by counting knots with multiplicity one
(i.e., assuming they are distinct). More commonly, the left- and right-hand knots are
counted with multiplicity d, adding 2d more spline functions. Note that Bi j is nonzero
on (xi,xi+ j+1), so the effect is to include in the basis all the higher-order polynomial
splines as long as there is a region on which they are strictly positive. Doing this gives
the B-spline basis expansion

f̂ (x) =
n+d

∑
i=1

βiBi(x) (3.3.4)

for some collection β = (β1, ...,βn+d) of coefficients. This can be compactly expressed
by defining the matrix U with elements u ji = Bi(x j), and the vector f̂ff with elements
f̂ff = ( f̂ (x1) f̂ (x2), · · · , f̂ (xn))T, so that

f̂ff = Uβββ . (3.3.5)

Now, the original problem of minimizing (3.3.1) or (3.1.2) can be reformulated as

β̂ββ = arg argmin
βββ

(yyy−UUUβββ )T(yyy−UUUβββ )+λβββTVVVβββ , (3.3.6)
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where the elements vi j of the matrix VVV are

vi j =
∫ b

a
B′′i (x)B

′′
j (x)dx,

in which a = x0 and b = xn.

From simple matrix algebra, it is easy to see that the minimization in (3.3.6) can be
solved from

∂
∂β
{(y−Uβ )T(y−Uβ )+λβTVβ}=−2UT(y−Uβ )+2λVβ = 0,

which leads to

β̂ = (UTU+λV)−1UTy. (3.3.7)

Incidentally, using (3.3.7) in (3.3.5) shows that f̂ff from cubic splines is linear in the
sense of (2.1.1). That is, for fixed λ , there is a weight matrix Wλ such that

f̂ff = Wλy, (3.3.8)

which can be rewritten as

f̂ (xi) =
n

∑
j=1

W (λ )
j (xi)Yj, (3.3.9)

where (W λ
1 (xi),Wλ

2 (xi), · · · ,W λ
n (xi))T is the ith row of a matrix Wλ and

Wλ = U(UTU+λV)−1UT.

3.3.1 Model Selection for Spline Smoothing

As with the bandwidth h in kernel methods, the smoothing parameter λ plays a cen-
tral role and there is a small industry devoted to developing techniques to estimate it.
Here, for completeness, one simple method is described as a parallel to the method for
obtaining ĥ in the last section.

Again, the method is CV. Given λ , the expression is

CV(λ ) =
1
n

n

∑
i=1

(Yi− f̂ (−i)
λ (Xi))2,

where f̂ (−i)
λ (Xi) is the spline smoothing estimator for the given λ without using ob-

servation i. Unfortunately, CV is computationally very intensive and hence sometimes
impractical, even for moderate sample sizes. The GCV criterion mentioned in Chapter
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1 is more computationally feasible. By using the linear form of the spline smoother
from (3.3.8), one can verify that the GCV criterion finds the value of λ that minimizes

GCV(λ ) =

[
n

trace
(
I−W(λ )

)
]2

MASE(λ ),

where the mean average square error is

MASE(λ ) =
1
n

n

∑
i=1

(Yi− f̂λ (Xi))2,

intended to approximate MASE = E(ASE(h)|x1,x2, ...,xn). The ASE(h) is an average,
but still has stochasticity in it; the MASE is the mean value of ASE. See Eubank (1988)
and Wahba (1990) for more sophisticated techniques for choosing λ and the order of
the spline basis.

3.3.2 Spline Smoothing Meets Kernel Smoothing

A local approach to bandwidth selection only mentioned in the Ethanol example at
the end of the last chapter was writing h = h(x) and then estimating the bandwidth
function itself nonparametrically. This would be akin to saying that no fixed bandwidth
was a good choice because the degree of smoothing was a local property. In some
regions, bias might be a bigger problem, while in others variance might be dominant,
corresponding to too much or too little smoothing relative to a single fixed bandwidth.
Essentially, this enlarges the minimization from a search over constants h to functions
h(x), giving a stronger minimum and improving the function estimation. For an in
depth review on kernel smoothing with variable kernels, see Hardle (1990), Fan and
Gijbels (1996), and Green and Silverman (1994), among others.

A surprising insight, due to Silverman (1984) (see also Eubank (1988), Chapter 6 for
discussion) is that, in the enlarged minimization permitting h = h(x), spline smooth-
ing and kernel smoothing are much the same. That is, the linear transformation of
Y1, ...,Yn done by spline smoothing in (3.3.8) corresponds to appropriately weighting
the individual kernel’s contributions in the NW estimator (i.e., choosing the linear
transformation in (2.3.19) the right way).

To state an informal version of Silverman (1984)’s result, let p(x) be the density gen-
erating the design points X1, ...,Xn, and choose the kernel

Ks(u) =
1
2

e−|u|/
√

2 sin

(
|u|√

2
+
π
4

)
. (3.3.10)

Consider {X1,X2, · · · ,Xn} ⊆ [a,b] and a point xi away from the boundary.

Theorem (Silverman, 1984): Suppose λ → 0 for n→ ∞, and choose
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h(x) =
(

λ
np(x)

)1/4

.

Then, with W (λ )
j (xi) defined as in equation (3.3.8),

W (λ )
j (xi)≈

1
p(Xj)

1
h(Xj)

Ks

(
xi−Xj

h(Xj)

)
(3.3.11)

when n→ ∞. �
Silverman’s theorem states that, asymptotically, spline smoothers yield NW estimates
with a variable bandwidth h(x) that depends on both the global smoothing parameter
λ and the local density p(x) around x. The rate of 1/4 used in h for λ/(np(x)) is nec-
essary for the equivalence in (3.3.11); the issue may be that λ should not go to zero
too fast or else there will be too little smoothing. The kernel in (3.3.10) arises from a
Fourier transform of a damping function; see Eubank (1988), Chapter 6.3.1. The kernel
does not have compact support and has a different shape from the optimal Epanech-
nikov kernel. The limitation that xi be away from the boundary can be overcome but is
more technical than needed here.

Since Silverman (1984), other authors have started from spline smoothing, reformu-
lating it as kernel smoothing with variable bandwidth. For instance, Huang (2001),
building on work of Terrell (1990), shows how kernel smoothing can be obtained un-
der the roughness-penalty framework. Indeed, the de facto equivalence of splines and
kernels for large classes of functions invites speculation that there could be a more
general (and richer) theory for statistical curve estimation.

3.4 Asymptotic Bias, Variance, and MISE for Spline Smoothers

In principle, (3.3.8) could be used to adapt the asymptotics for kernel methods to the
present case of splines. However, explicit, direct rates of convergence for the bias-
variance tradeoff and MISE achieved by splines are available from Zhou et al. (1998).
This subsection is largely based on their work; formally only the deterministic design
case will be stated, but the random design case leads to the same asymptotic forms.

Recall the natural B-spline basis described in (3.3.3) for a fixed degree d, indexed to
consist of n + d elements Bi(·), corresponding to n subintervals and degree d splines,
in (3.3.4) leading to the matrix U in (3.3.5). Following Zhou et al. (1998), there is no
need to restrict to natural splines, so the free values at the endpoints mean the spline
basis will have more elements. Set 0 = x0 < ... < xn = 1 for [a,b] = [0,1], so the natural
spline basis of order d has d + n elements because the multiplicity used in (3.3.3) at
zero and one is d.

Next, set δi = xi−xi−1 and let F̂n(·) be the empirical distribution, assumed to get close
to a distribution F in Kolmogorov-Smirnov distance, where F has strictly positive
density f . Now, for a fixed design, the asymptotic bias and variance can be stated.
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Theorem (Zhou et al., 1998): Suppose that

max
1≤i≤n

|δi−δi−1|= o

(
1
n

)
and

δ
min

1≤i≤n
δi
≤M

for some M > 0, where δ = max
1≤i≤n

δi. Also assume the design points {xi}n
i=1 are deter-

ministic but

sup
x∈[0,1]

|F̂n(x)−F(x)|= o

(
1
k

)
.

Let f̂ (x) be the spline regression estimator for f ∈ C d [0,1] based on the fixed design
xi for i = 1, ...,n. Then, for any x ∈ (xi−1,xi],

E[ f̂ (x)]− f (x) = b(x)+o(δ d)

and

Var[ f̂ (x)] =
σ2

n
UT(x)G−1( f )U(x)+o

(
1

nδ

)
,

where

b(x) =− f (d)(x)δ d
i

d!
Cd

(
x− xi

δi

)
and G( f ) =

∫ 1

0
U(x)UT(x) f (x)dx.�

In the above, Cd(·) is the dth Bernoulli polynomial defined recursively by

C0(x) = 1 and Ci(x) =
∫ x

0
iCi−1(z)dz+bi,

where bi = i
∫ 1

0

∫ x
0 Ci−1(z)dzdx is the ith Bernoulli number. �

As noted by Zhou et al. (1998), the assumptions of the theorem and the expressions
for both the asymptotic bias and the asymptotic variance reveal that n controls the
trade-off between the bias and the variance associated with f̂ (x). But observe that the
theorem assumes the knots are chosen to be the design points. In fact, one can choose
the knots to be ti for i = 1, ...,k and let the xis be design points i = 1, ...,n, and then
ensure convergence in the argument x. In this more general version, Zhou et al. (1998)
show that when k = Cn1/(2d+1) for some constant C > 0, the bias and variance have
asymptotic rates

max
x∈[0,1]

|b(x)|= O(n−d/(2d+1))

and
max

x∈[0,1]
Var[ f̂ (x)] = O(n−2d/(2d+1)).

As a result,

f̂ (x)− f (x) = OP(n−d/(2d+1)) uniformly for x ∈ [0,1].

The consequence of this (see Zhou et al. (1998)) is that, for any probability μ ,
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IMSE( f̂ ) = sup
f∈C(d,δ )

∫ 1

0
E
[

f̂ (x)− f (x)
]2

dμ(x) = O(n−2d/(2d+1)),

where C(d,δ ) = { f ∈ C d [0,1] : | f (d)| ≤ δ} for some δ > 0. This agrees with the best
rates one can get from kernels and in fact is optimal. Nonparametric optimality will be
discussed in Chapter 4.

Turning at last to asymptotic normality, also for the fixed-design case, Zhou et al.
(1998) establish the following.

Theorem (Zhou et al., 1998): Suppose that the assumptions of the theorem hold.
Assume in addition that the error terms {εi}n

i=1 are independently and identically
distributed with mean 0 and common variance σ2 and that the number of knots is
k ≥Cn1/(2d+1) for some constant C > 0. Then, for any fixed x ∈ [0,1],

f̂ (x)− ( f (x)+b(x))√
Var[ f̂ (x)]

d−→ N(0,1). �

Since b(x) tends to zero uniformly in x at the same rate as
√

Var[ f̂ (x)], it is possible
that the scaled bias does not go to zero asymptotically. However, Zhou et al. (1998),
Theorem 4.2, shows that the scaled bias only distorts the confidence region by modi-
fying the critical value.

Zhou et al. (1998) also provide results analogous to the above for the case where
the design is stochastic. Basically, for the random design, E[ f̂ (x)] is replaced by
E[ f̂ (x)|x1, · · · ,xn], while Var[ f̂ (x)] is replaced by Var[ f̂ (x)|x1, · · · ,xn]. The key is that
the asymptotic quantities now depend on the distribution F(x) and the distribution of
the knots, unlike the deterministic design case.

3.4.1 Ethanol Data Example – Continued

To illustrate the performance of smoothing splines, consider again the ethanol data
set from Section 2.4.2 and model E as a function of NOx. In fitting a spline model,
the main choices that must be made are (a) the degree of the local polynomial, (b)
the choice of the knots, and (c) the value of the smoothing parameter λ . These are
primarily interesting in how they affect the bias–variance trade-off in estimation and
prediction.

As a pragmatic point, the degree is usually chosen to be 2 or 3, sometimes 4. Choosing
0 or 1 is often too rough, while choosing degrees higher than 4 defeats the purpose
of local fits, which is in part to use few degrees of freedom. If higher degrees seem
necessary, possibly there are not enough xis. The plots in this subsection use cubic
splines; in Section 2.6, local polynomials of degree 2 and 3 were used. (Recall that the
NW estimator can be regarded as zeroth order, and a running line smoother would be
first order.)
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Next, in statistics, the knots are often chosen to be the values of xi. The Zhou et al.
(1998) theorem permits a general selection of knots, both random and fixed. This in-
cludes equispaced knots, which are regarded as optimal in numerical analysis, where
the knots are essentially never regarded as randomly sampled. Note that knots repre-
sent points of local change of the function. In view of this, it is unclear how effective
conventional statistical practice is even though it is motivated by insisting on having
variances that are only available at the sampled xs. Common statistical practice is fol-
lowed here for the ethanol data, but see Sun and Loader (1994).

The selection of the smoothing parameter λ parallels bandwidth selection in kernel
regression. In the spline context, λ can be regarded as a sort of reverse degrees of
freedom. Indeed, recall that if the smoothing parameter λ is zero, the optimal function
interpolates the data. This can be regarded as modeling the data with an infinite degree
polynomial. At the other extreme, when λ equals infinity, the data are modeled as a
straight line that has 2 degrees of freedom. These two extreme cases are shown in
Fig. 3.5. As expected, when λ is too large, the bias is obviously large, and when λ is
too small, the variability gets large and the fit looks ever more like an interpolation.
Heuristically, values of λ between 0 and infinity correspond to intermediate values of
degrees of freedom. One formalization of the relationship between λ and a concept of
degrees of freedom is given in Exercise 2.16.
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Fig. 3.5 Cubic spline fits for the ethanol data for very small and very large degrees of freedom. Note
that, as λ gets larger, it corresponds to fewer degrees of freedom, in which case the optimal curve is
in the nullspace of the penalty term regarded as a functional.

In practice, it is often reasonable to use GCV to find an optimal value for λ . For the
ethanol data set, the GCV curve for λ (regarded as a degrees of freedom) and the fit for
the optimal λ are given in Fig. 3.6. The graph does not show a unique minimum; this
sometimes occurs. In general, it is not clear when to expect a unique minimum or when
either the bias side or the variance side will not rise as expected. In these indeterminate
cases, usually one chooses the value on the horizontal axis that looks like it would be
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the lowest if the other side were to rise. Sometimes this is called the knee or elbow of
the curve. Here, 8 is a reasonable choice.
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Fig. 3.6 GCV plot for cubic spline smoothing for the ethanol data. The value of λ corresponding to
8 degrees of freedom was chosen.

From (3.3.8), it is seen that spline smoothers are linear. As with kernels, the variance of
f̂ can be derived; expression (2.3.20) continues to hold but for Wλ as in (3.3.9). Since
σ2 can again be estimated by the residual sum of squares, Var( f̂ ) can be estimated at
the points xi. Recall that the variance is unspecified for values x outside the sampled xis,
and the curves in Fig. 3.7 consequently only appear continuous because the endpoints
of confidence intervals at the xis have been joined by straight lines. Since the bias at
the sampled xis can be taken as zero asymptotically, the work of Zhou et al. (1998)
implies that normal-based confidence intervals at the xis centered at f̂ (xi) using the
estimate V̂ar( f̂ ) just described can be used with a normal cutoff of, say, 1.96. As seen
in kernel regression for these data, the signal-to-noise ratio is pretty high, so inference
is pretty good.

The package gss by Chong Gu is a general framework for implementing smoothing
splines. The package allows the choice not only of different degrees for the local poly-
nomial but also different bases. The procedure ssanova is called from the package gss;
here it is used to construct a cubic spline fit to the ethanol data. The procedure predict
can then be used to obtain predictions for the training data along with the standard
error estimates. Finally, although Gu calls confidence bands generated from the stan-
dard error estimates Bayesian, they are constructed using normal cutoffs that can be
equally well regarded as frequentist. In the call to ssanova, the arguments permitted
for method allow a choice of the technique for estimating the smoothing parameter.
(One can use “v” for GCV, “u” for Mallows; Cp, or “m” for REML.) The results for
the ethanol data are given in Fig. 3.7.

The actual R code was:
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Fig. 3.7 Fit of the ethanol data with confidence bands, using the gss package.

cubic.fit <- ssanova(y˜x, type = "cubic", method="m")
new <- data.frame(x=seq(min(x),max(x),len=length(x)))
## Obtain estimates and standard errors on a grid
est <- predict(cubic.fit,new,se=TRUE)
## Plot the fit and the Bayesian confidence intervals
plot(x,y,col=1, xlab="E", ylab="NOx");
lines(new$x,est$fit,col=2)
lines(new$x,est$fit+1.96*est$se,col=3)
lines(new$x,est$fit-1.96*est$se,col=3)

Estimates of the MSE and the corresponding raw MSE curves can also be obtained for
the fitted spline model as was done in Section 2.4.2 for the NW estimator, but this is
left as an exercise.

3.5 Splines Redux: Hilbert Space Formulation

The main goal in reformulating smoothing splines in RKHSs is to have a framework
that allows for a more elegant and general way to solve the type of optimization prob-
lem that implicitly defines a smoothing spline. In addition, Wahba (2005) gives rea-
sons why the RKHS framework is appealing in general. The underlying motivations
for spline smoothing include:

• The RKHS framework provides methods for model tuning that readily allow the
optimization of the bias–variance trade-off.

• Models based on RKHSs are the foundation of penalized likelihood estimation,
and regularization methods more generally. They can handle a wide variety of
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distributions – Gaussian, general exponential families – and summarize a variety
of inference criteria for estimation, prediction, and robustness.

• In the RKHS framework, constraints such as positivity, convexity, linear inequality
constraints, and so forth can be easily incorporated into the models.

• Estimates obtained via the RKHS framework have a dual interpretation as Bayes
estimates (up to a point).

It is important to remember that the objective functions dealt with throughout this
section are functionals (that is, operators acting on functions), as opposed to objective
functions with arguments that are real variables as in the parametric paradigm. To
emphasize this, rewrite the penalized least squares equation (3.1.2) as

Eλ ( f ) = L( f )+λJ( f ). (3.5.1)

In typical settings, L( f ) will involve function evaluations; the continuity of evaluation
functionals is central to RKHSs.

Splines were initially defined as local polynomials with constraints to ensure contin-
uous derivatives, apart from (3.1.1) and its generalization (3.1.3), (3.1.4). This second
approach meant that splines also solve a minimization problem in which the knots are
the xis in a regression problem. This last property permits generalization of splines and
reveals the sense in which they are a shrinkage method. Indeed, Fig. 3.5 shows that, as
λ increases, the curve shifts closer to a straight line. In general this is called shrinkage
because the solution “shrinks” closer to the functions in the kernel (or nullspace) of the
penalty term. For the cubic spline case, the kernel of the penalty term in (3.1.1) con-
sists of linear functions. Choosing other penalty terms and shrinking to their kernels
may give functions different from local polynomials with smoothness constraints.

The formulas (3.1.2), (3.1.3), and (3.1.4) are themselves special cases of a regularized
error functional on a Hilbert space. First, the total curvature J( f ) can be replaced by the
integrated square of a higher-order derivative of f ; this yields polynomial splines. Re-
placing derivatives by general differential operators and reformulating the minimiza-
tion so it occurs in a Hilbert space of functions (also called splines) generalizes beyond
polynomial splines. In the regression spline case, it will be seen that the optimization
remains an extra constraint on the collection of functions, so a unique minimizer can
be identified and its coefficients estimated. Here, the Hilbert space formulation, based
on reproducing kernels, will be presented. Note that now the word kernel has a differ-
ent meaning from the last section. Here, a kernel is a function of two variables that acts
something like the inverse of the matrix defining an inner product. Heckman (1997)
provides a concise and deft overview of the material developed here.

To keep focused on problems that can be solved, it is important to have a notion of
ill-posed. Hadamard’s definition is one choice, see Canu et al. (2005).

The problem of interpolating, or more generally of obtaining a linear smoother, comes
down to the following. Let X and Y be two sets, and let F be the collection of
functions from X to Y . Given a sample Sn = {(xi,yi)|xi ∈X ,yi ∈ Y , i = 1, · · · ,n},
let Q be a linear operator from F to Y with domain DQ so that
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∀ f ∈ DQ ⊆F ; Q f � (q1( f ),q2( f ), · · · ,qn( f )). (3.5.2)

In (3.5.2), the qis are evaluations of f at the xis so that qi( f ) = f (xi) and the qis are
continuous linear functionals from DQ ⊆F to Y . Denoting y = (y1,y2, · · · ,yn), the
interpolation f , if it exists, of the n points of Sn is the solution to

Q fff = y. (3.5.3)

Hadamard’s definition of an ill-posed problem can now be stated in terms of (3.5.2) and
(3.5.3). Let (F ,Y n) be a pair of metric spaces equipped respectively with the metrics
dF and dY . The problem Q fff = y is said to be ill-posed on (F ,Y n) in Hadamard’s
sense if it does not satisfy one of the following three conditions:

1. Existence: There exists a solution to the problem; the rank of the image of the
operator Q equals the rank of Y n.

2. Uniqueness: The solution is unique; i.e.,

∀ f1, f2 ∈F , Q f1 = Q f2 =⇒ f1 = f2.

3. Stability: The solution is stable in the sense that the inverse Q−1 of Q exists and is
continuous on Y n.

Intuitively, the third condition on stability means that a small perturbation of the data
leads to only a small change in the solution. Explicitly, this is

∀ε > 0, ∃δε , dY (yε ,y) < δε =⇒ dF ( fε , f ) < ε,

where fε = Q−1yε and f = Q−1y.

The reformulation of the penalized least squares problem in the RKHS framework
will help show that cubic smoothing splines are the solution to least squares objective
functions penalized by the integrated squared derivative as in (3.1.2). The exposition
rests on some foundational definitions and notations that can be skipped if they are
already familiar.

3.5.1 Reproducing Kernels

Henceforth, H is a linear space equipped with an inner product, a positive definite
bilinear form, denoted by 〈·, ·〉. A common choice is, for f ,g ∈H , defined by

〈 f ,g〉=
∫

X
f (x)g(x)dx.

Once H has an inner product 〈·, ·〉, it is an inner product space and hence has a norm
defined by ∀ f ∈H ,

‖ f‖=
√
〈 f , f 〉.
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The norm provides a metric on H that can be used to measure the distance between
two elements f ,g∈H :D( f ,g) = ‖ f −g‖. Now, in an inner product space such as H ,
a sequence { fn} of functions converges uniformly to f ∗ if

∀ε > 0, ∃N, such that ‖ fn− f ∗‖< ε, ∀n≥ N.

The notation used is lim
n→∞

‖ fn− f ∗‖= 0 or lim
n→∞

fn = f ∗ or simply fn → f ∗.

The definitions of Section 2.3.1 for Cauchy sequence, completeness, and Banach and
Hilbert space carry over. As a generality, Banach spaces are interesting in and of them-
selves, for their topology for instance. By contrast, because of the inner product, it
is typically the (linear) operators on a Hilbert space that are interesting not the space
itself.

Recall that an operator is a function on a space; a functional is a real-valued function of
a function-valued argument (on a space). A linear operator, or more typically a linear
functional, L, defined on a linear space H , is a functional that satisfies two properties:
∀ f ,g ∈H and ∀α ∈R,

• L( f +g) = L f +Lg .

• L(α f ) = αL f .

In addition, on a Hilbert space, an operator is continuous if and only if it is bounded,
which means, in the linear case, it has a finite norm. Thus, a linear functional L on H
is continuous if and only if, for a given sequence { fn} of functions in H , we have

lim
n→∞

fn = f ∗ =⇒ lim
n→∞

L fn = L f ∗,

and for linear functionals this happens exactly when ||L||H is finite. In general, a
closed linear subspace of H is itself a Hilbert space. Also, the distance between an
element f ∈H and a closed linear subspace G ⊂H is

D( f ,G ) = inf
g∈G
‖ f −g‖.

An important implication of requiring evaluation functionals to be continuous is the
Riesz representation theorem from, say, Royden (1968). This deep theorem guarantees
that every linear operator can be obtained by regarding one entry in the inner product
as the argument of a function while the other argument defines the operator.

Theorem (Riesz Representation): Let L be a continuous linear functional on a Hilbert
space H . Then, there exists a unique gL ∈H such that

∀ f ∈H L f = 〈gL, f 〉. �

While the Reisz representation theorem holds for any Hilbert space, within the col-
lection of Hilbert spaces, there is a subclass of particular relevance to splines. These
Hilbert spaces have what is called a reproducing kernel. This is a function like gL in
the theorem, but here denoted as K(xxx), that has a reproducing property. The idea is that
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the kernel makes the inner product act like an identify function; i.e., for any f in the
Hilbert space it “reproduces” f . Naturally, these spaces are called reproducing kernel
Hilbert spaces (RKHS).

More formally, let X be an arbitrary function domain (index set), and let S be a
Hilbert space of real-valued functions on X . Denote the functional on S that evalu-
ates a function f at a point x ∈X by [x]. An RKHS is a Hilbert space of functions in
which all the evaluation functionals are continuous. That is, the space H ⊂S is an
RKHS if and only if any linear evaluation functional defined by

[xxx](·) : H −→ R

f �−→ [xxx] f = f (xxx)

is continuous for any xxx ∈X . When this holds, the Riesz representation theorem gives
that, for any x ∈X , there exists an element Kxxx(·) ∈H , which is the representer of
the evaluation functional [xxx](·) such that

〈Kxxx, f 〉= f (xxx), ∀ f ∈H .

The symmetric function K(xxx,yyy) = Kxxx(xxx) = 〈Kxxx,Kxxx〉 is called the reproducing kernel
of the space H . It is easy to check that K(·, ·) has the reproducing property

∀xxx 〈K(xxx, ·), f (·)〉= f (x). (3.5.4)

Thus, in principle, one can start with a Hilbert space and obtain a reproducing kernel.

One can also do the reverse and generate an RKHS from a kernel function K. Let X
be a domain, or index set. An RKHS on X is a Hilbert space of real-valued functions
that is generated by a bivariate symmetric, positive definite function K(·, ·), known as
the kernel, provided K has the reproducing property from (3.5.4),

〈K(xxx, ·), f (·)〉= f (xxx),

again for all xxx. Requiring positive definiteness of K(·, ·) is essential for constructing
RKHSs. In fact, the Aronszajn theorem, stated below, only gives a one-to-one corre-
spondence between positive definite functions and reproducing kernel Hilbert spaces.

Consider the domain X . Recall that a bivariate symmetric function K(·, ·) defined
on X ×X is positive definite (PD) if, for every n and xxx1, · · · ,xxxn ∈ X and every
a1, · · · ,an,

n

∑
i=1

n

∑
j=1

aia jK(xxxi,xxx j)≥ 0.

For a reproducing kernel K, K(xxx,yyy) = Kxxx(yyy), from which

n

∑
i=1

n

∑
j=1

aia jK(xxxi,xxx j) =
∥∥∥ n

∑
i=1

aiKxxxi

∥∥∥2
≥ 0.

As a result, reproducing kernels are PD.
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This definition for PD functions is very general, applying to a large variety of choices
of X . For a discrete set X = {1,2, · · · ,N}, for instance, K reduces to an N×N matrix.
More typically, however, X = [0,1], or X = [a,b] for real a,b. Sometimes, X ⊆
Rp for high-dimensional observations in Euclidean space. Wahba (2005) provides a
variety of choices of X from a simple discrete set to a collection of graphs, a collection
of gene microarray chips, or even a Riemannian manifold.

Wahba (2005) also emphasizes the importance of PD functions in machine learning
techniques by stating the following important fact: Since a PD function, or kernel,
defined on X ×X defines a metric on a class of functions defined on X possessing
in inner product, the PD function provides a way to find solutions to optimization,
clustering, and classification problems.

The key features defining an RKHS are summarized in Aronszajn (1950), stated here
in the following theorem.

Theorem (Aronszajn, 1950): For every PD function K on X ×X , there is a unique
RKHS HK of real-valued functions on X having K(·, ·) as its reproducing kernel. Let
〈·, ·〉 be the inner product associated with HK , and define Kxxx(·) = K(xxx, ·). Then, for
every f ∈HK and every xxx ∈X ,

〈Kxxx, f 〉= f (xxx).

Conversely, for every reproducing kernel Hilbert space S of functions on X , there
corresponds a unique reproducing kernel K(·, ·), which is positive definite. �
A detailed proof of this theorem can be found in Gu (2002). Note that this theorem
means that to construct an RKHS all one requires is the reproducing kernel.

3.5.2 Constructing an RKHS

Choose a positive definite function K(·, ·) as a kernel on X ×X . Fix xxx ∈X , and
define the function Kxxx on X by

Kxxx(·) = K(xxx, ·).

From K, one can construct a unique function space HK :

• First, for ∀xxx ∈X , put Kxxx(·) ∈HK .

• Second, for all finite m and {ai}m
i=1, and fixed {xxxi}m

i=1 ∈X , include the function

f (·) =
m

∑
i=1

aiKxxxi(·) ∈HK . (3.5.5)

• Third, define the inner product in HK by

〈Kxxx,Kxxx〉= K(xxx,yyy)
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so that 〈
f ,g
〉

=

〈
m

∑
i=1

aiKxxxi ,
m

∑
j=1

b jKyyy j

〉
=

m

∑
i=1

m

∑
j=1

aib jK(xxxi,y j).

Clearly, this procedure gives a linear space. The effectiveness of this procedure for
generating a Hilbert space with a reproducing kernel is assured by the following two
results. First, the reproducing property holds.

Proposition: Let HK be the function space constructed from the positive definite ker-
nel K. Then, for f ∈HK ,

〈Kxxx, f 〉= f (xxx),

and K is a reproducing kernel.

Proof: With f ∈HK defined as in the second step,

f (xxx) =
m

∑
i=1

aiKxxxi(xxx)

for each xxx ∈X . Using the inner product in HK from Step 3 gives

〈Kxxx, f 〉 =

〈
Kxxx,

m

∑
i=1

aiKxxxi

〉
=

m

∑
i=1

ai〈Kxxxi ,Kxxx〉=
m

∑
i=1

aiK(xxxi,xxx)

=
m

∑
i=1

aiKxxxi(xxx) = f (xxx).�

Second, given that HK is a linear space with a reproducing kernel, it remains to verify
completeness. That is, it remains to show that every Cauchy sequence of functions in
HK converges to a limit in HK . So, recall the Cauchy-Schwartz inequality linking the
inner product and norm: 〈xxx,yyy〉 ≤ ‖xxx‖‖yyy‖.
Proposition: Let { fn} be a sequence of functions in HK . Then strong convergence
implies pointwise convergence. That is, if { fn} is a Cauchy sequence, so that

‖ fn− fm‖ −→ 0 as n,m→ ∞,

then, for every xxx ∈X ,
| fn(xxx)− fm(xxx)| −→ 0.

Proof: Let fn, fm ∈HK . Then, for every xxx ∈X ,

| fn(xxx)− fm(xxx)|= |〈Kxxx, fn− fm〉| ≤ ‖Kxxx‖‖ fn− fm‖.�

Now it is reasonable to include all the limits of Cauchy sequences of functions in HK

and call the overall space H . Part of what gives RKHSs their structure is that when
K is square integrable it leads to a spectral representation for the kernel in terms of
its eigenfunctions, which are orthonormal and form a basis, and its eigenvalues. This
important structure undergirds almost all kernel methods.
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Theorem (Mercer-Hilbert-Schmidt): Let X be an index set, and let K(·, ·) be a
positive definite function on X ×X satisfying

∫
X

∫
X

K2(xxx,xxx)dxxxdxxx = C < ∞.

Then there exists an orthonormal set of eigenfunctions of K as an integral operator,
{φi}∞i=0 on X ; i.e., ∫

X

∫
X

K(xxx,yyy)φi(x)dxxxdxxx = λiφi(y)

and ∫
X
φi(xxx)φ j(xxx)dxxx =

{
1, i = j;
0, otherwise,

with all λi ≥ 0, such that ∑∞
i=0λ 2

i = C and

K(xxx,xxx) =
∞

∑
i=0

λiφi(xxx)φi(xxx). (3.5.6)

With the kernel K defined by (3.5.6), the inner product 〈·, ·〉 has the representation

〈 f ,g〉=
∞

∑
i=0

( f ,φi)(g,φi)
λi

,

where (h1,h2) =
∫
X h1(x)h2(x)dx for every h1,h2 defined on X . �

In practice, there is little need to find the eigenvalues λi and the eigenfunctions φi of K.
For most RKHS-based solutions, it will suffice to know the positive definite kernel K.
This will be the case with support vector machines in Chapter 5, for instance. Wahba
(2005) observes that the eigenfunction decomposition above is a generalization of the
finite dimensional case in which the the inner product is defined by a PD matrix.

Still, the key question remains: Given an objective functional like (3.5.1), how does
the RKHS help express a solution? The answer is that a recurring strategy for solving
problems in the RKHS framework is to decompose the RKHS of interest into tensor
sums, taking advantage of the relative ease of construction of subspaces of the RKHS.
Gu (2002) provides the following theorem. It is the key result that guides tensor sum
constructions. Note that here the subscript K is retained on some Hilbert spaces since
more than one kernel function will be used.

Theorem: If the reproducing kernel K of a function space HK on domain X can be
decomposed into K = K0 +K1, where K0 and K1 are both positive definite, K0(xxx, ·) and
K1(xxx, ·) in HK , for all xxx in X , and also 〈K0(xxx, ·),K1(yyy, ·)〉 = 0, ∀xxx,yyy ∈X , then the
spaces H0 and H1 corresponding to K0 and K1 form a tensor sum decomposition of
H .

Conversely, if K0 and K1 are both positive definite and their corresponding RKHSs H0

and H1 are such that H0∩H1 = {0}, then the space H = H0⊕H1 has K = K0 +K1

as its reproducing kernel. �
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The general procedure for using this theorem in smoothing splines has three steps; see
Pearce and Wand (2005). Given a positive definite kernel K, the RKHS HK may be
constructed by:

1. Determining the eigenfunction decomposition of K: This means finding a sequence
of eigenvalues {λi}∞i=0 and a sequence of eigenfunctions {φi}∞i=0 so that, for every
xxx,yyy ∈X ,

K(xxx,yyy) =
∞

∑
i=0

λiφi(xxx)φi(yyy). (3.5.7)

For bounded K, the Mercer theorem ensures this.

2. With the eigenfunctions {φi}∞i=0, define the function space HK to be

HK =

{
f : f =

∞

∑
i=0

aiφi

}
. (3.5.8)

3. Equip HK with an inner product 〈·, ·〉HK ,

〈 f ,g〉HK
=

〈
∞

∑
i=0

aiφi,
∞

∑
i=0

biφi

〉
HK

=
∞

∑
i=0

aibi/λi. (3.5.9)

With the decomposition of K (3.5.7), the form of the functions in HK as in (3.5.8),
and the inner product (3.5.9), the reproducing property of K,

〈K(xxx, ·),K(y, ·)〉HK = K(xxx,xxx),

follows and the norm of f in HK is ‖ f‖2
HK

= ∑∞
i=0 a2

i /λi.

The key question in a given application will be: What positive definite kernel should
be used to construct the RKHS? In general, this is a hard question because it is de
facto equivalent to choosing the basis for a function space and hence much like model
selection. However, to hint at a procedure, consider a quick example. Suppose the
(unknown) true function underlying a data set is the “tooth” function

f (x) = x+
9

4
√

2π
exp

[
−42(2x−1)2] x ∈X = [0,1].

Given a data set {(xi,yi), i = 1, · · · ,n}, the task is to find a positive definite kernel K
and construct the corresponding RKHS, say HK , so that the estimate

f̂λ = arg min
f∈HK

{
L( f )+λ‖ f‖2

HK

}
(3.5.10)

can be found. Following the Pearce and Wand (2005) steps, choose prespecified knots
t1 < · · ·< tm so the intervals for the spline are of the form [t j, t j+1). First, try choosing
a kernel that can generate an RKHS solution to (3.5.10). There are many possible
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choices; however, the simpler, the better. Mercer’s theorem suggests looking at a sum
of products of simple functions, and the simplest are linear. Thus, try

K(x,y) = 1+ xy+
m

∑
k=1

(x− tk)+(y− tk)+. (3.5.11)

One can verify that the eigenfunctions associated with K are

φ0(x) = 1, φ1(x) = x, φk+1(x) = (x− tk)+ k = 1, . . .m−1, (3.5.12)

and the associated RKHS is

HK =

{
f : f (x) = β0 +β1x+

m

∑
k=1

αk(x− tk)+

}
(3.5.13)

with corresponding inner product

〈 f ,g〉HK =

〈
β0 +β1x+

m

∑
k=1

α ′k(x− tk)+,β ′0 +β ′1x+
m

∑
k=1

α ′k(x− tk)+

〉
HK

= β0β ′0 +β1β ′1 +
m

∑
k=1

αkα ′k.

From this definition of the inner product, it can be seen that

‖ f‖2
HK

= ‖β‖2 +‖α‖2.

Since the norm for this RKHS is a sum of two finite-dimensional Euclidean norms, the
tensor sum theorem implies that the penalized spline RKHS is isomorphic to Rm+2.
This is a particularly simple Hilbert space, as one would normally expect an RKHS to
be infinite-dimensional.

The decomposition of an RKHS into a direct sum of two subspaces reflects the struc-
ture of the optimality criterion: There is one subspace for each of the two terms. The
smoothing parameter λ controls the trade-off between the two terms; i.e., between
goodness of fit and amount of roughness. Large values of λ put a lot of weight on the
roughness penalty, forcing it to be small; i.e., forcing the minimum to be very smooth,
in particular close to the nullspace of the differential operator in the sense of the dis-
cussion after (3.5.1). For the tooth function, Fig. 3.8(a) shows the fit when J( f ) = 0;
this corresponds to the estimated function of x being a straight line. Small values of λ
put little weight on the smoothness and (relatively) a lot of weight on goodness of fit,
forcing the error term to be small. This forces good fit at the cost of more roughness,
see Fig. 3.8(b); the estimated function is mostly in the orthogonal complement of the
null-space of J.
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Fig. 3.8 Like Fig. 3.5, the two graphs show how large and small values of λ affect spline estimates of
the tooth function. If H = H0⊕H1, where H0 is the null-space of J with orthogonal complement
H1 and f is the true unknown function, then f = f0,λ + f1,λ for fi,λ ∈Hi. If f̂ = f̂0,λ̂ + f̂1,λ̂ , then (a)

is the case where λ̂ makes ‖ f̂1,λ̂‖ very small and (b) is the case where λ̂ makes ‖ f̂2,λ̂‖ very small, so

the part of f̂ in the other subspace dominates, respectively.

3.5.3 Direct Sum Construction for Splines

To develop an intuition for the use of RKHS methods, it is worthwhile to examine the
properties of the construction of the penalized sum of squares optimization and the
structure of the Hilbert space. Recall that the subspace of unpenalized functions in HK

consists of linear functions; they form the null-space of the total curvature J( f ):

H0 = { f : f (x) = β0 +β1x, ∀x ∈X }=
{

f : J( f ) =
∫ 1

0
[ f ′′(x)]2dx = 0

}
.

Its orthogonal complement,

H1 = H ⊥
0 =

{
f : f (x) =

m

∑
k=1

αk(x− tk)+

}
,

is generated by the spline basis. It is easy to see that the kernel K in (3.5.11) is K =
K0 +K1, where

K0(x,y) = 1+ xy and K1(x,y) =
m

∑
k=1

(x− tk)+(y− tk)+.

Consequently, any f ∈H can be written f = f0 + f1 where f0 ∈H0 and f1 ∈H1, so
that H = H0⊕H1.

All the functions given by (3.5.13) as solutions to (3.5.10) are penalized by an amount
governed by λ . For a variety of technical and computational reasons, it is often desired
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in practice that some of the functions in HK be unpenalized. Such functions are the
elements of the null-space H0 and would ideally be minimizers of the unconstrained
L( f ). Therefore, only the projections of f ∈H onto the orthogonal complement of
H0, which in this case is H1 = H ⊥

0 , should be penalized. If P1 denotes the linear
operator corresponding to the projection onto H1, H0 is the null space of P1. With
respect to the null space H0, the solution can be restated as

f̂λ = arg min
f∈HK

{
L( f )+λ‖P1 f‖2

HK

}
.

For the simple example of the last subsection,

P1 f = P1

(
β0 +β1x+

m

∑
k=1

αk(x− tk)+

)
=

m

∑
k=1

αk(x− tk)+.

As a result, ‖P1 f‖2
HK

= ‖α‖2. The solution f̂λ now reduces to

f̂λ (x) = Xxβ̂ +Zxα̂ ,

where Xx and Zx are evaluations of the basis elements of H0 and H1 at x with coeffi-
cients obtained from the data string y by

(β̂ , α̂) = argmin
β ,α

{
‖yyy− [Xβ +Zα]‖2 +λ‖α‖2

}
,

in which X and Z are the design matrices with elements given by evaluations of the
basis functions for H0 and H1, namely {1,x} and the functions (x− tk)+ for k =
1, . . . ,m, at the design points xi for i = 1, . . . ,n.

3.5.3.1 A Generalization

In the particular case of the squared error loss, L( f ) can be written as

L( f ) =
1
n

n

∑
i=1

(yi− f (xxxi))2 =
1
n

n

∑
i=1

(yi−〈ηi, f 〉)2,

where ηi is the representer of the evaluation functional for the point xi ∈X ,

〈ηi, f 〉= f (xxxi).

Using the evaluation functional and an arbitrary loss function L , one can find

f̂λ (x) = arg min
f∈HK

{
1
n

n

∑
i=1

L (yi,〈ηi, f 〉)+λ‖P1 f‖2
HK

}
. (3.5.14)
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Observe that this general formulation allows the use of various projection operators
and various evaluation functionals. Also, because of its direct connection to the null-
space H0, this formulation allows a step-by-step construction of H , starting from
the solution of the differential equation defining the null-space H0 and adding its or-
thogonal complement to form HK as a direct sum of H0 and H ⊥

0 . Finally, (3.5.14)
indicates how general RKHS methods are since many regularizations can be formu-
lated expressed in the same form. (This may be very hard to implement pragmatically,
but the conceptual unity is satisfying.)

3.5.3.2 A More Detailed Example of RKHS Construction

For the sake of intuition, it is worthwhile seeing how the foregoing case for the cur-
vature penalty extends to more general penalties that integrate squares of higher-order
derivatives. To motivate this by local function approximation, let f ∈ C m[0,1] and
write the Taylor series expansion in the neighborhood of zero using the integral form
of the remainder. This gives

f (x) =
m−1

∑
j=0

x j

j!
f ( j)(0)+

∫ x

0

(x−u)m−1

(m−1)!
f (m)(u)du.

Observe that the remainder term finds an integral for 0 ≤ t ≤ x and for x ∈ [0,1],
x− t ≥ 0. So, the remainder term is unchanged if the domain becomes [0,1], provided
the positive part is used in the integral. Thus,

f (x) =
m−1

∑
j=0

x j

j!
f ( j)(0)+

∫ 1

0

(x−u)m−1
+

(m−1)!
f (m)(u)du.

Now, with some hindsight, one can seek a reasonable two-term inner product. It is
seen that this generalizes (3.5.10) – (3.5.13). The form of the Taylor series expansion
suggests

〈 f ,g〉=
m−1

∑
j=0

f ( j)(0)g( j)(0)+
∫ 1

0
f (m)(x)g(m)(x)dx.

Now try defining

Kx(y) =
m−1

∑
j=0

x j

j!
y j

j!
+
∫ 1

0

(x−u)m−1
+

(m−1)!
(y−u)m−1

+

(m−1)!
du.

� It is seen that the first reproducing kernel,

K0(x,y) =
m−1

∑
j=0

x j

j!
y j

j!
,

provides the key ingredient for constructing the subspace
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H0 =
{

f : f (m) = 0
}

with inner product

〈 f ,g〉0 =
m−1

∑
j=0

f ( j)(0)g( j)(0).

� A second reproducing kernel,

K1(x,y) =
∫ 1

0

(x−u)m−1
+

( j−1)!
(y−u)m−1

+

( j−1)!
du,

is seen to generate the orthogonal complement of H0, namely

H1 =
{

f : f ( j)(0) = 0, j = 0,1, · · · ,m−1, and
∫ 1

0
[ f (m)(x)]2dx < ∞

}
,

with the inner product derived from the boundary conditions:

〈 f ,g〉1 =
∫ 1

0
f (m)(x)g(m)(x)dx.

Notice that this example generalizes cubic splines – the case m = 2. In general, this
construction gives polynomial splines, which means that the null-space of the operator
is a collection of polynomials corresponding to Dm f = 0. As seen in Gu (2002) Chapter
4.3, many other differential operators L have been studied, leading to trigonometric
splines, hyperbolic splines, exponential splines, splines on the circle, and so forth. The
case of higher dimensions is of particular importance; see Wahba (1990), Chapter 2.
Indeed, it seems possible to generalize further to the use of kernels that are not in
general PD; see Canu et al. (2005) in this regard.

3.5.4 Explicit Forms

So far, the results presented have been specific examples or general properties. In this
subsection, it is important to state two results that provide explicit descriptions, at least
in principle, for general optimizations like (3.5.14). The first result rests on differential
equations, the second on Hilbert space optimization.

3.5.4.1 Using Differential Equation Tools to Construct RKHSs

To identify reproducing kernels for various contexts, two definitions are needed.

First, we define the Wronskian matrix. Let f1, f2, · · · , fd be d functions that are d− 1
times continuously differentiable. The Wronskian matrix W is constructed by putting



150 3 Spline Smoothing

the functions in the first row, the first derivative of each function directly under it in the
second row, and so on through to the (d− 1)th derivative. So, the Wronskian matrix
W associated with f1, f2, · · · , fd is

W( f1, f2, · · · , fd) =

⎡
⎢⎢⎢⎣

f1 f2 · · · fd

f ′1 f ′2 · · · f ′d
...

...
. . .

...

f (d−1)
1 f (d−1)

2 · · · f (d−1)
d

⎤
⎥⎥⎥⎦ .

For x ∈X , the Wronskian matrix is W(x) = [wi j(x)], where

wi j(x) = f ( j−1)
i (x) i, j = 1,2, · · · ,d.

The determinant of a Wronskian matrix is simply called the Wronskian and plays an
important role in differential equations.

Second are Green’s functions. These arise in solving inhomogeneous ordinary differ-
ential equations (ODEs)with boundary conditions. Consider a differential operator L
such as appears in the integrand of penalty terms. If a function h is given and one tries
to solve L(x) f (x) = h(x), subject to boundary conditions on, say, an interval [0, �], then
there is a unique solution of the form

u(x) = L−1h(x) =
∫ �

0
h(s)G(x,s)ds,

where G is the Green’s function associated with L. Green’s functions satisfy

L(x)G(x,s) = δ (x− s),

where δ is the Dirac’s δ operator at 0. It is easy to see that if G exists, then L(x)u(x) =
h(x).

Green’s functions have several useful properties. First, they exist in great generality.
Second, they express solutions for inhomogeneous equations where the coefficients
of the differential operators may be functions of x. Third, they are particularly well
suited to settings where the difficulty in solving the equation arises from satisfying the
boundary conditions. As suggested by the Dirac operator, certain derivatives of Green’s
functions have discontinuities; it turns out that the jumps can be expressed in terms of
the coefficient functions of the highest-order derivative in L. Thus, in spline problems,
where part of the difficulty is to ensure smoothness constraints, Green’s functions are
a natural way to express solutions. This is not the place to digress on such problems,
so the reader is referred to any of numerous books that treat this class of ODEs.

To return to spline optimization, let X = [a,b], and define the inner product

〈 f ,g〉=
m−1

∑
j=0

f ( j)(a)g( j)(a)+
∫ b

a
(L f )(t)(Lg)(t)dt. (3.5.15)

Now, the decomposition theorem for identifying RKHSs can be stated; see Gu (2002).



3.5 Splines Redux: Hilbert Space Formulation 151

Theorem: Let {u1,u2, · · · ,um} be a basis for the null-space of L (i.e., all f with L f ≡
0), and let W(t) be the associated Wronskian matrix. Then, under the inner product
(3.5.15), H is an RKHS with reproducing kernel

K(s, t) = K0(s, t)+K1(s, t),

where

K0(s, t) =
d

∑
i=1

m

∑
j=1

Ci jui(s)u j(t) with Ci j =
[
{W(a)WT(a)}−1

]
i j

and

K1(s, t) =
∫ u=b

u=a
G(s,u)G(t,u)du,

with G(·, ·) being the Green’s function associated with the differential operator L. Fur-
thermore, H can be partitioned into the direct sum of two subspaces,

H = H0⊕H1,

where
H0 = { f ∈H : (L f )(t) = 0 almost everywhere on X }

and
H1 =

{
f ∈H : f ( j)(t) = 0, j = 0,1, · · · ,m−1

}
,

so that H0 has reproducing kernel K0 and H1 has reproducing kernel K1. �

3.5.4.2 Form of Solutions

Surprisingly, there is a closed-form expression for solving spline optimization prob-
lems in some cases. In particular, consider the special case of (3.5.14) for squared
error loss,

f̂λ (x) = arg min
f∈HK

{
1
n

n

∑
i=1

(yi−〈ηi, f 〉)2 +λ‖P1 f‖2
HK

}
, (3.5.16)

where ηi is the representer of the evaluation functional at xi and P1 is the orthogonal
projection of a given Hilbert space of functions H onto H1 with the orthogonal com-
plement H0 given by the null-space of the operator L defining the penalty term. Wahba
(1990) establishes the following theorem.

Theorem: Let u1, ...,um be a basis for H0, and suppose the n×m matrix

T = Tn×m = (ηi(uν))i=1,...,n;ν=1,...m

has full column rank. Then, for fixed λ , the minimum of (3.5.16) is given by
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fλ =
m

∑
ν=1

δνuν +
n

∑
i=1

ciξi,

where ξi = P1ηi, and the coefficients are defined as follows. Let Σ = Σn×n = (〈ξi,ξ j〉)
and M = Σ +nλ In×n. Then

δ ′ = (δ1, ...,δm)′ = (T ′M−1T )−1T ′M−1y,

c′ = (c1, ...,cn)′ = M−1(In×n−T (T ′M−1T )−1T ′M−1)yyy. �

As a final point, although statisticians typically choose the xis themselves as the
knots, the knots can be, in principle, estimated, chosen, or inferred by other, possi-
bly Bayesian, techniques.

3.5.5 Nonparametrics in Data Mining and Machine Learning

So far, focus has been on the one-dimensional case for kernel smoothing and spline
smoothing. It was seen that the two smoothers essentially coincided in the unidimen-
sional case. In practice, for a variety of choices of tuning parameter and signal-to-noise
ratio in the data, numerical results confirm that kernel smoothing and spline smoothing
have equivalent performance. The estimated curve from one method looks like it was
printed on top of the curve from the other method, on graphs at any reasonable scale.
More generally, this is not surprising because the two techniques are fundamentally
instances of the same smoothing paradigm, local polynomial fitting, see Silverman
(1984), Huang (2001).

However, the unidimensional case is comparatively unimportant in DMML since an
important feature of many DMML problems is their (highly) multivariate settings.

Spline smoothing and kernel smoothing differ in the way they scale up to higher di-
mensions. Essentially, kernel smoothing does not scale up in any meaningful way; it
suffers the Curse. The reasoning for this is intuitive: In multivariate settings, kernel
smoothers use product kernels, one for each coordinate, to build up a smoother that
fills out the input space. As mentioned in Section 2.3.5, this causes the technique to re-
quire enormous amounts of data for good inference, hence the Curse. By contrast, the
spline smoothing formulation leads to RKHS techniques that can be scaled up, as seen
below. For this reason, RKHS techniques provide a flexible framework for solving a
large class of approximation, estimation, and optimization problems.

To see how RKHS techniques evade the Curse, consider a brief description of thin plate
splines. In this case, the kernel function evaluations are based on norms of the entire
input vectors, with no need to address each coordinate separately. It is as if the norm of
a vector is being treated as a summary statistic for the whole vector of measurements.

Let the predictor variable be a p-dimensional vector xxx = (x1,x2, · · · ,xp)T. Suppose that
the objective functional remains
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Eλ ( f ) =
1
n

n

∑
i=1

(yi− f (xxxi)2 +λJm( f ),

where the penalty function is

Jm( f ) =
∫

X
∑
|α|=m

m!
α1! · · ·αp!

(
∂m f

∂xα1
1 · · ·∂x

αp
p

)2

dxxx,

where |α| = ∑iαi, 2m > p, and the smoothing parameter λ > 0 controls the balance
between fit and smoothness.

In this context, one of the most commonly used members of the thin-plate spline
smoother family corresponds to the case p = 2 and m = 2, in which the penalty term is

J( f ) =
∫

X ⊂R2

(
∂ 2 f

∂x2
1

)2

+2

(
∂ 2 f

∂x1∂x2

)2

+
(
∂ 2 f

∂x2
2

)2

dxxx.

This roughness penalty, along with the constraint that the second derivatives at the
end-points be zero, provides an immediate generalization of natural cubic splines. It
turns out that the minimizing function under this penalty is of the form

f (xxx) =
n

∑
i=1

αiK
tps(xxxi,xxx)+βTxxx+ γ, (3.5.17)

in which
Ktps(xxxi,xxx) = ‖xxx− xxxi‖2 log‖xxx− xxxi‖2

is the thin-plate spline kernel. A series of interesting kernels will be discussed in Sec-
tions 5.4.7 and 5.4.8 in the context of support vector machines. The point for now is
to note that although many applications of thin-plate splines are for two-dimensional
design points, (3.5.17) extends naturally to higher dimensions.

Indeed, (3.5.17) is just one instance of a more general solution to an RKHS-based
approach to function approximation. The general solution is called the representer the-
orem. The earliest statement of this important theorem is in Kimeldorf and Wahba
(1971), but see also Scholkopf and Smola (2002), Wahba (1998), Wahba (2005), and
Smola and Scholkopf (1998), among others.

Representer Theorem: Let Ω : [0,∞)→ R be a strictly monotonic increasing func-
tion, X be a set, and c : (X ×R2)n → R∪{∞} be an arbitrary loss function. Then
each minimizer f ∈H of the regularized risk functional

c((xxx1,y1, f (xxx1)), · · · ,(xxxn,yn, f (xxxn)))+Ω(‖ f‖H )

admits a representation of the form

f̂ (xxx) =
n

∑
i=1

αiK(xxxi,xxx).�
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The central point of (3.5.17) and the conclusion of the representer theorem is that the
reproducing kernel K is defined on X ×X , where X is a p-dimensional domain
for arbitrary p ≥ 1. That is, the form of the solution in an RKHS is insensitive to the
dimension of the domain of the underlying function f being approximated. There are
n terms in the minimum where n is independent of p. The Curse has been avoided,
arguably by using of the norm.

An even more general form of the theorem is given in the semiparametric settings by
Scholkopf and Smola (2002) and Wahba (1998).

Semiparametric Representer Theorem: Suppose that in addition to the assumptions
of the representer theorem, the set of real-valued functions {φ j}m

j=1 : X →R has the

property that the n×m matrix (φ j(xxxi))i j has rank m. Let f̃ = f + h, with f ∈H and
h ∈ span{φ j}. Then, minimizing the regularized risk

c((xxx1,y1, f̃ (xxx1)), · · · ,(xxxn,yn, f̃ (xxxn)))+Ω(‖ f‖HHH)

over f̃ results in a representation of the form

f̃ (xxx) =
n

∑
i=1

αiK(xxxi,xxx)+
m

∑
j=1

β jφ j(xxx)

with β j ∈R for all j = 1, ...,m. �
The form of the solution in these representer theorems is ubiquitous in DMML and
highlights the importance of the kernel function. It is not just that the kernel defines the
space of functions but that the kernel defines the span of the solutions within the space
it defines. In essence, the kernel gives the terms in which a linear model is expressed.
It is therefore reasonable to regard a kernel as a continuously parametrized collection
of basis functions Kzzz(·), where the parameter zzz has the same dimension as the design
points. Taken together, this means that the variability due to choice of kernel is akin
to model uncertainty in conventional statistical contexts because perturbations of the
model lead to alternative estimates and predictions just as varying a kernel does. This
is reinforced by the fact that the RKHS formulation of spline smoothers has a Bayesian
interpretation (see Exercises 6.7 and 6.8). Also, the penalty term in (3.5.10) or (3.5.16)
can be regarded as the logarithm of a prior, see Chapter 10.4.4

3.6 Simulated Comparisons

It is actually quite easy to compare the techniques discussed so far, namely LOESS,
NW, and spline smoothing using R, because most of the routines are already built into
it. The function sinc(xxx), defined by

f (xxx) =
sin(xxx)

xxx
xxx ∈ [−10,+10],
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is a good test case because it has been used by various authors in the machine learning
literature and has several reasonable hills and valleys a good technique should match.
The main way techniques are compared is through MSE or bias and variance.

To be specific, the true model is Yi = f (xxxi)+ εi, in which the noise terms εi are IID
normal with constant variance σ2 = 0.22. The function f is, of course, not known to
the technique; only the data are. Here, the xs are assumed to be from a fixed design with
equally spaced design points. The sinc function is graphed in Fig. 3.9 with a scatterplot
of data points generated from it.
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Fig. 3.9 The left-hand panel shows a graph of the sinc function. The right-hand panel shows the data
generated from it using error variance .022.

To analyze the data to estimate f , consider a sequence of three estimators depending
on the order of the polynomials that form them. First is the NW estimate which can
be regarded as a local constant polynomial estimate; i.e., a LOESS estimate with the
local polynomial being a constant. Second is a degree 2 LOESS, or local polynomial,
fit. Third is a spline smoother based on natural cubic splines with all the smoothness
conditions imposed to guarantee the existence of a solution. These three estimators
have smoothing parameter inputs h, α , and λ . The first and third were chosen as before
by GCV. The bandwidth was found to be hopt = 3.5, a largish value but valid for the
whole interval [−10,10]. The fraction of data used in bins for the local polynomial plot
was α = .25. The actual GCV plot to find λ , or the degrees of freedom it represents,
is given in Fig. 3.10 and λopt = 11.

The fitted curves generated by the three estimators are given in Fig. 3.11. By eye, it
appears that the NW estimate is the worst and the spline estimator is the best. That is,
as the degree increases, the fitted curve becomes smoother and matches the function
more closely. In fact, a more detailed examination reveals that the choice among the
three is not so obvious.

Instead of drawing confidence or MSE bands as in Section 3.4 or Section 2.5, observe
that the same techniques as used to find the MSE give its constituent pieces, the bias
and variance. In particular, the biases for the three estimators can be estimated by
bootstrapping as before. The variances can be estimated by either (i) using the linearity
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Fig. 3.10 Plot of the generalized CV error. It decreases to about 11 after which it starts to increase.
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Fig. 3.11 Fit of the data for the three estimators, NW, local polynomial of degree 2, and cubic splines.

of the smoothers (see (2.3.20) and (3.3.8)) and normal approximation since n is large or
(ii) using the lokern and gss packages, the first of which invokes a more sophisticated
procedure to find variances. Since n is large, these will be the same; lokern and gss
were used here for convenience. Figure 3.12 gives the results of estimating both the
squared bias and the variance for the sinc(x) based on m = 1000 samples, each of size
n = 100. As in earlier cases, the values are only valid at the sampled xis but they are
joined by straight lines.

The curves in Fig. 3.12 qualitatively confirm intuition and theory. First, the natural
cubic spline smoother has the highest squared bias. This is plausible because NCSs
explicitly impose many conditions to obtain a unique function estimate. All those con-
ditions lead to strong restrictions on the function space, which translates into a high
bias, bigger than for the other two estimators. The flip side is that strong restrictions
tend to reduce the dimension of the space of estimators and consequently give the
smallest variance. One can argue, a little flippantly, that this means splines may esti-
mate the wrong value really well.
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Fig. 3.12 On the left, the squared biases are plotted. The highest is for the spline smoother, next is
NW, and the smallest is for local polynomials. On the right, variances are plotted. The highest is for
NW, next is local polynomials, and the smallest is for smoothing splines.

Second, the NW estimator’s only restriction on the function space is through the choice
of the kernel function. Otherwise the span of the NW estimators is unrestricted. (Note
that, in the theory of Chapter 2, the Lipschitz-like assumptions are applied only to the
unknown function to get rates of convergence, not to the estimation process itself.)
Unsurprisingly, therefore, the NW estimator has a smaller squared bias than the spline
smoother. However, the cost of the large span of the class of estimators is that the NW
estimator has the highest variance.

Third, the smallest squared bias is from the local polynomial estimator of degree 2.
This is due to the fact that there are few restrictions on the piecewise degree 2 polyno-
mials so they have much higher degrees of freedom than the NCS estimator and can
therefore track the unknown function quite well if there are enough design points. The
cost is that their variance is higher than that of NCS, though less than that for NW.
They would seem to achieve a better variance–bias trade-off overall than NCS once
degrees of freedom are taken into account. Note that there are two variance–bias trade-
offs operating. The first is within a class of estimators – that is how the h or the λ was
chosen; in principle, α could have been chosen by a similar optimization strategy. The
second is across the spaces from which the estimators are drawn. The NCS space is
arguably too small, and the space over which the NW estimator varies is arguably too
large. This might leave the space of local polynomials of degree 2 as preferred.

3.6.1 What Happens with Dependent Noise Models?

In the last subsection, the noise was IID normal. In reality, noise terms are usually
just approximately normal and often have a nontrivial dependence structure that is just



158 3 Spline Smoothing

treated as independent. Just to see what happens, consider the sinc function example
but use an AR(1) noise term so the true model becomes

Y = f (Xi)+ εi and εi = ϕεi−1 +ηi−1,

in which ϕ is a constant, εi is the time-dependent error in the function, and ηi is the
independent increment to the error process, often taken, as here, to be N(0,σ2). For
definiteness, set σ = .2 as before and choose some value between −1 and 1, say ϕ =
.72 as a test case. In generating the data, the xs were taken from left to right, thereby
giving the serial dependence of the AR(1) error.

Once the data were generated, the NW, local polynomial, and NCS estimators from
the last subsection were found and graphed over the scatterplot of the data as in Fig.
3.13, using optimal GCV values hopt = .95 and λopt = .6; α remained .25. The effect
of dependence in the error term is seen in the plots because there tend to be runs of
data points all deviating in the same direction from the function values. The small
values of Y around x = −5 and the large ones that form a cluster at 0 are instances
of this. One can argue that such departures from independence will be detected from
scatterplots, hypothesis tests, or residual analysis and so modeled. While this is true in
the present slightly extreme case ϕ = .72, it is unclear, in general, whether a case like
ϕ = .35 would be similar. The extra variability from the dependence structure could
be swamped by all the other sources of variability and so be undetectable graphically.
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Fig. 3.13 Fits for an AR(1) noise model. Note that the fits weakly track runs in the data but shrink to
the correct curve and are otherwise similar to the IID case.

As before, it is instructive to look at curves for the bias and variance of the three estima-
tors. They are given in Fig. 3.14. They indicate the same variance–bias decomposition
as before; however, the scales on the horizontal axes in both graphs have expanded.
Both the bias and the variance are elevated. This is not a surprise since the extra vari-
ability in the error tends to make quantities harder to estimate (larger variance), and
unmodeled terms like the ηis add to the bias. The curves also appear choppier than
before, with sharper peaks and valleys. These qualitative features would be more pro-
nounced if ϕ were larger or other terms were included in the noise model.
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Fig. 3.14 Squared bias and variance for an AR(1) noise model for splines, NW, and local polynomials.
The ordering is the same as before but the curves are choppier.

3.6.2 Higher Dimensions and the Curse of Dimensionality

How readily do kernel estimators, spline smoothers, and local polynomial fitting ex-
tend to multivariate settings? The short answer for kernel estimators is not well at all;
they fare poorly in three or more dimensions and are mediocre in two dimensions.
Spline smoothers and local polynomials scale up to higher dimensions somewhat bet-
ter than kernel estimators (which does not say much) but at the cost of mathematical
complexity and some loss of tractability. Overall, they are often adequate but not par-
ticularly compelling. This is why more recent techniques, like those in the next chapter,
are essential. To illustrate the limitation of the techniques so far, consider doing kernel
regression with two predictor variables rather than one. Let xxx be a two-dimensional
vector with coordinates x1 and x2, and consider a 2D version of sinc(xxx):

f (xxx) =
sin‖xxx‖
‖xxx‖ .

This is graphed in Fig. 3.15. Clearly f is rotationally symmetric and undulating; not
an easy function to estimate but only moderately difficult.

Assuming a true model Y = f (xxx)+ ε with a normal mean-zero error having variance
the same as before (i.e. σ2 = 0.22) consider using a two-dimensional version of the
NW kernel regression estimator. First, the kernel has to be redefined for the two-
dimensional case. In one dimension, the summands were of the form K((x− xi)/h),
K being one of the kernels identified earlier. The natural extension to two dimensions
is the product K((x− xi)/h)K((y− yi)/h), and this is the most commonly used form.
Already this is a restriction on which functions can be estimated well: They have to
be parsimoniously expressible as sums of rectangular neighborhoods so that neighbor-
hood distances would be compatible with the unknown function. Better would be to
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Fig. 3.15 3D plot of the true function, a two dimensional version of sinc.

use the vectors xxx and xxxi and compute distances more generally using forms like

K(xxx,xxxi) = g(‖xxx− xxxi‖,h).

However, the details are beyond the goals of this chapter.

The basic point is that kernel regression estimators perform poorly and splines, naively
used, only perform a little better in two or more dimensions. Both just need too much
data to learn the function underlying the observations. This is suggested by Fig. 3.16.
The middle and right fit are given by NW and smoothing splines using n = 100 obser-
vations on an evenly spaced grid. For the two-dimensional sinc(xxx) function, both fits
are already poor. Even increasing the sample size from 100 to 1000 does not improve
the fit greatly. This is another demonstration of the Curse of Dimensionality.

For the sake of completeness, it’s worth noting that, for the ethanol data, the two-
dimensional NW estimator does quite well. This is shown is Fig. 3.17. The plot on the
left shows the response NOx modeled with both predictors E and C. The surface looks
like an arch. This is not surprising because, as the scatterplot of the full data set showed,
the response is unaffected by C, effectively making the problem unidimensional.

A plot for splines like that in Fig. 3.17 for kernels would look very similar, possibly
a little smoother. The improvement would be much like the improvement of splines
over NW in Fig. 3.16 but less since the NW fit is already pretty good. This kind of
comparison will often hold because, as seen in Silverman’s theorem, splines and ker-
nels are somewhat equivalent (for a specific kernel – but the exact form of the kernel
is not very important) in the sense that variable-bandwidth kernel regression is equiv-
alent to spline fitting given p(x). Since the choice of kernel makes little difference, if
the optimal constant-bandwidth kernel regression is really good, variable-bandwidth
kernel regression cannot do much better and so neither can spline smoothing. Good
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Fig. 3.16 The top panel shows the two-dimensional sinc function. It is included to help assess the
quality of the fit. The middle panel shows the fit obtained using the locfit package, which implements
a two dimensional NW estimator on the sample of size n = 100. The locfit smoothing parameter is
h = 0.45. The fit obtained using Gu’s smoothing spline ANOVA (ssanova) function within his gss
package is shown in the bottom panel. The ssanova function internally finds the optimal value of the
smoothing parameter. The spline fit is a little better (i.e., smoother) than the NW fit, as can be seen
from the more rounded peak at 0.
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constant-bandwidth kernel estimators correspond to the optimal variable-bandwidth
reducing as h(x)≈ hopt where hopt is the optimal constant bandwidth. Thus, the λ for
optimal spline fitting would be determined by p(x). If the xs were chosen roughly uni-
formly, then p(x)≈C, for some constant C so the best λ would be determined by hopt ,
suggesting the three fits (constant-bandwidth NW, variable-bandwidth NW, and spline)
should be roughly equivalent. Even so, splines will typically be a little better than ker-
nels because they involve an extra optimization in approximating the projection of the
function in an RKHS as well as choosing the λ optimally.

m1

m
2

N
O

x

m1

m
2

N
O

x

Fig. 3.17 Fits obtained with the locfit package. On the left, the bandwidth is h = .45, and on the right
h = .75 is the optimal value. The fit on the right is closer to a plane and is smoother because the weight
of the kernel is spread over a larger neighborhood. When h is small, the weight of the kernel is more
concentrated, giving a rougher appearance.

The difference in performance between smoothing spline techniques and kernel re-
gression more generally arises because, given a reproducing kernel, the regularization
structure of splines is not harmed as much by the dimension of the input space as ker-
nel regression is. The basic idea, heuristically and concisely, is the following. Given a
spline optimization of the form L( f )+λ‖ f‖HK , the reproducing kernel defines a col-
lection of eigenfunctions by Mercer’s theorem. Some of the eigenfunctions span the
null-space of the penalty, while the others form its orthogonal complement. Minima
can therefore be expressed in terms of the eigenfunctions, somewhat independent of
the dimension of xxx. Also, the kernel defining the RKHS is itself a sum of products of
the eigenfunctions.

Even better, the representer theorem gives a representation of the minimum in terms
of evaluations of the kernel function. The representation is equivalent to an expression
in terms of the eigenfunction basis, but the basis elements are chosen by the data, as
if one of the (continuous) indices of the kernel actually indexed a basis for the RKHS.
Thus, the terms in the representer theorem representation can be expressed in terms
of the Mercer Theorem expression for the kernel (i.e., in terms of the eigenfunctions),
giving a solution dependent on the sample size n, not the dimension of the data p.
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Of course, having as many terms as data points poses a problem for most estimation
techniques, but the representer theorem reduction is a great start; further efforts to
achieve parsimony can improve inference.

3.7 Notes

3.7.1 Sobolev Spaces: Definition

Let X = [a,b] ⊂ R be a domain on the real line. Recall that the space L2(a,b) of
square-integrable functions on X is the space

L2(a,b) =
{

f : [a,b]→R s.t. ‖ f‖2
L2 =

∫ b

a
( f (x))2dx < ∞

}
,

where the norm is defined through the inner product

〈 f ,g〉L2 =
∫ b

a
f (x)g(x)dx,

so that ‖ f‖2
L2 = 〈 f , f 〉L2 . Sobolev spaces are Banach spaces where the norm involves

derivatives or at least something other than just function values. The simplest of
Sobolev spaces is H1(a,b), which is the space of functions defined by

H1(a,b) =
{

f | f ∈ L2(a,b), f ′ ∈ L2(a,b).
}

The Sobolev space H1(a,b) is endowed with the inner product

〈 f ,g〉=
∫ b

a
( f (x)g(x)+ f ′(x)g′(x))dx,

from which the norm for H1(a,b) is given by

‖ f‖2
H1 = ‖ f‖2

L2 +‖ f ′‖2
L2 .

Higher-order Sobolev spaces can be defined as

Hk(a,b) =
{

f : [a,b]→R | f , f ′, . . . , f (k) ∈ L2(a,b)
}

with corresponding inner product

〈 f ,g〉=
∫ b

a

k

∑
j=0

f ( j)(x)g( j)(x)dx,

from which the norm is obtained as
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|| f ||2Hk =
k

∑
j=0
‖ f ( j)‖2

L2 = ‖ f ( j)‖2
Hk−1 +‖ f (k)‖2

L2 = || f ′||2Hk−1 + || f ||2L2 .

Note: A more general notation for Sobolev spaces is

W k,p(a,b) =
{

f : [a,b]→R | f , f ′, . . . , f (k) ∈ Lp(a,b)
}

,

where the norm is defined by

|| f ||pk =
k

∑
j=0
‖ f ( j)‖p

Lp = ‖ f ( j)‖p
Hk−1 +‖ f (k)‖p

Lp = || f ′||p
Hk−1 + || f ||pLp .

Some examples of simple Sobolev spaces are:

1. W 1,1(0,1), the space of absolutely continuous functions on [0,1].

2. W 1,∞(a,b), the space of Lipschitz functions on [a,b].

This definition of Sobolev spaces is based on the fact that the functions involved are
one-dimensional. In fact, to guarantee that H1(a,b) is well defined, one may require
that f be absolutely continuous,

f (y) = f (x)+
∫ y

x
f ′(z)dz.

However, for higher-dimensional domains, X ⊂Rp, absolute continuity may be hard
to achieve. So, other approaches are used to define Sobolev spaces.

3.8 Exercises

Exercise 3.1. Use either Matlab or R to explore the difference in magnitude of the in-
terpolation error. The goal is to compare global polynomial interpolation with a piece-
wise polynomial interpolation technique such as splines. The point here is to show
computationally that the interpolation error grows exponentially with n for global poly-
nomials but is a small constant for piecewise polynomial interpolants.

1. Generate n = 16 points as before with the Runge function.

2. Use the modified norm based on the Lagrange basis to compute both ‖Tpoly‖� for
the polynomial interpolant and ‖Tspline‖� for the spline interpolant. Compare and
comment.

3. Repeat Steps 1 and 2 for n = 25,36,64 and tabulate the norms for polynomial and
spline side by side. What pattern emerges?

Exercise 3.2. Consider the smoothing splines objective function
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Eλ ( f ) =
1
n

n

∑
i=1

(Yi− f (xi))2 +λ
∫ b

a
[ f ′′(t)]2dt,

where Yi = f (xi)+εi for i = 1, ...,n, f is an unknown function, the knots x1 < · · ·< xn

are given and the error term is mean-zero with variance σ2.

1. If f has two derivatives, use integration by parts to show that

∫ b

a
[ f ′′(t)]2dt = fff TK fff ,

where fff = ( f (x1), f (x2), · · · , f (xn))� and K = A�B−1A as defined in Section 3.2

2. Now, show that the regularized risk Eλ ( f ) can be written as

Eλ ( f ) = (Y− fff )T(Y− f)+λ fff TK fff .

3. Deduce that the minimizer of Eλ ( f ) is

f̂ff = (I +λK)−1Y.

Exercise 3.3. Consider the function f (xxx) = exxx on the interval [0,1].

1. Find the least squares approximation of f (xxx) on [0,1] among all polynomials of
degree at most 2; i.e., find the numerical values

ĉcc = arg min
ccc∈R

∫ 1

0
[exxx− (c0 + c1xxx+ c2xxx2)]2dxxx.

where ccc = (c0,c1,c2)� and ĉcc = (ĉ0, ĉ1, ĉ2)�.

2. Graph exxx, the first three terms of its power series expansion, and ĉ0 + ĉ1xxx + ĉ2xxx2.
How do they compare?

Exercise 3.4 (Hilbert spaces and norms). Consider the space H = C ([0,1]) of con-
tinuous real-valued functions X = [0,1], and equip it with the inner product

〈 f ,g〉=
∫ 1

0
f (x)g(x)dx. (3.8.1)

Consider the sequence { fn} with

fn(x) =
{

(2x)n/2 0≤ x≤ 1/2
1− (2(1− x))n/2 1/2≤ x≤ 1.

1. Show that { fn} is a Cauchy sequence under (3.8.1).

2. Show that { fn} is convergent pointwise, but not to a continuous limit.

3. Deduce that the inner product space induced by (3.8.1) is not complete.
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Exercise 3.5 (Reproducing kernel Hilbert spaces). Consider the space H of func-
tions on [0,1] with square integrable second derivatives. Equip H with the inner prod-
uct

〈 f ,g〉= f (0)g(0)+
∫ 1

0
f ′(x)g′(x)dx (3.8.2)

and the kernel
K(s, t) = 1+min(s, t).

Write Kt(·) = K(·, t) and Ks(·) = K(s, ·), so that Kt(s) = K(s, t).

1. Show that K(·, ·) is a reproducing kernel; i.e., that

〈 f ,Kt〉= f (t), ∀t ∈ [0,1].

2. Fix 2n constants 0≤ t1 ≤ t2 ≤ ·· · ≤ tn ≤ 1 and c1,c2, · · · ,cn and assume that Kti(s)
is piecewise linear in s for each ti. Define the linear combination

f̄ =
n

∑
i=1

ciKti ,

and verify that f̄ (s) is also piecewise linear in s.

3. Let H̄ be the space spanned by the Ktis and let P be an orthogonal projection of
f ∈H onto it. Now,

H = H̄ ⊕H̄ ⊥.

Write P f = f̄H̄ for the orthogonal projection of an element f ∈H onto H̄ .

a. Show that 〈 f − f̄H̄ ,Kti〉= 0, i = 1,2, · · · ,n.

b. Consider the system of equations

n

∑
j=1
〈Kt j ,Kti〉c∗j = 〈 f ,Kti〉= f (ti), i = 1,2, · · · ,n. (3.8.3)

Show that the coefficients of f̄H̄ denoted by c∗1,c
∗
2, · · · ,c∗n can be found by solv-

ing (3.8.3).

c. Show that

f̄H̄ (ti) =
n

∑
j=1

c∗j〈Kt j ,Kti〉= f (ti).

d. Deduce that f̄H̄ interpolates f at the points 0≤ t1 ≤ t2 ≤ ·· · ≤ tn ≤ 1.

e. Show that f̄H̄ minimizes

‖ f − f̄‖H =
{

( f (0)− f̄ (0))2 +
∫ 1

0
( f ′(x)− f̄ ′(x))2dx

}1/2

.
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Exercise 3.6 (Discrete finite-dimensional RKHSs). Hilbert spaces can be finite di-
mensional and this exercise shows one way to construct them using a kernel. The
idea is to use restrict the entries of the kernel to be elements of a finite index set say
I = {1,2, · · · ,n}. Then, let Σ = (σi j), i, j = 1,2, · · · ,n be an n× n strictly positive
definite matrix and set K(i, j) = σi j. Next consider two vectors of length n, fff and ggg,
and define the inner product

〈 fff ,ggg〉= fff�Σ−1ggg.

Let ccci = (σ1i,σ2i, · · · ,σni)� = K(·, i) denote the ith column of the matrix Σ .

1. Show K satisfies

〈ccci,ccc j〉= σi j = 〈K(·, i),K(·, i)〉= K(i, j).

2. Show that K has the reproducing property

〈ccci, fff 〉= 〈K(·, i), fff 〉= fi.

3. Parallel to the Mercer theorem, let [Φ1,Φ2, · · · ,Φn] be a set of orthogonal vectors
and λ1, · · · ,λn be a collection of positive real numbers such that the values of Σ are
given by

σi j = K(i, j) =
n

∑
k=1

λkΦk(i)Φk( j).

Derive a new expression of the inner product 〈 fff ,ggg〉 = fff�Σ−1ggg in terms of {Φk}
and {λk}.

Exercise 3.7 (Comparing splines to NW and local polynomials).

1. Refer to Exercises 2.13, 2.14, 2.15. Redo them using spline smoothing in place
of the NW estimator to generate plots of how biases and variances for spline
smoothers, for equidistant and non-equidistant design points, as functions of x com-
pare to those for NW and local polynomials.

2. Refer to Exercise 2.19. Redo it for spline smoothing to see how CV, GCV, and AIC
compare for finding an estimate f̂ λn . The R command for this is smooth.spline().

Exercise 3.8 (RKHS for penalized linear regression splines). Consider the function
space

HK =

{
f : f (x) = β0 +β1x+

K

∑
k=1

uk(x−κk),∀x ∈X

}
,

equipped with the inner product

〈 f ,g〉HK =

〈
β0 +β1x+

K

∑
k=1

uk(x−κk), β̃0 + β̃1x+
K

∑
k=1

ũk(x−κk)

〉
= βββ�β̃ββ +uuu�ũuu,

for any two functions f and g in HK , where X = [a,b]. Now define the kernel
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K(s, t) = 1+ st +
K

∑
k=1

(s−κk)+(t−κk)+

for s, t ∈ [a,b] and assume you have an IID sample D = {(xxxi,yi), i = 1, · · · ,n}. The
penalized least squares empirical risk functional is

Rλ ( fff ) =
1
n

n

∑
i=1

(yi− f (xxxi))2 +λ‖ f‖2
HK

.

Do the following:

1. Write down the expression of ‖ f‖HK in terms of the inner product.

2. Let H0 be the subspace of all those functions that are not penalized. Then, HK as
HK = H0 +H1, where H1 = H ⊥

0 is the orthogonal complement of H0. Let P1 be
the orthogonal projection operator onto H1. What is ‖P1 f‖2 for a given function
f ∈HK?

3. Using item 2, rewrite the expression of the empirical risk functional Rλ ( fff ).

4. Using your expression from item 3, derive an expression for the estimators of the
unknown quantities.

5. How would the process change if you used quadratic splines in HK rather than
linear splines?

Exercise 3.9. Suppose you have the artificial data set

D = {(−2,−1),(−1,1),(0,2),(1,4),(2,−2)}

drawn from the model model

y = β0 +β1x+β2(x−1)+ + ε. (3.8.4)

Assume that ε ∼ N(0,1) and that the observations are independent.

1. Do the following:

a. Use a boxcar kernel and a bandwidth of 2.0 to fit a local constant regression
curve to D . (See Exercise 2.8.)

b. Evaluate the estimator at −1,0,1.

2. Now compare this to a least squares approach:

a. Estimate the parameters in the model.

b. Find a 95% confidence interval for β2. Does this analysis suggest the knot at
x = 1 is worth including?

3. Assume x ranges over [−2,2].
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a. Obtain the formulas for the three linear B-splines with a knot at x = 1 and sketch
their graphs.

b. Using the derived B-splines as your basis functions, find the least squares fit
to the artificial data set. How does the estimate of σ2 obtained using linear B-
splines compare with the estimate of σ from item 2?

4. Now, let’s look at quadratic B-splines.

a. Assume that B0,1(x) ≡ 0 and find the formulas for the four quadratic B-splines
with a knot at x = 1 and sketch their graphs.

b. Using the quadratic B-splines as your basis, find the least squares fit to the data
set D . How does the estimate of σ2 obtained via quadratic B-splines compare
with the one obtained with the model of equation (3.8.4)?

5. Use the R functions matplot() and bs() to check the graphs you sketched earlier.

6. Compare the fitted values from the local constant regression with those from the
linear and quadratic B-splines.

Exercise 3.10. Let

H2(0,1) =
{

f : [0,1]→R | f , f ′, f ′′ ∈ L2(0,1)
}

.

be the second-order Sobolev space on [0,1]. Define the inner product

〈 f ,g〉= α f (0)g(0)+β f ′(0)g′(0)+
∫ 1

0
f ′′(t)g′′(t)dt

and let K(·, ·) be the reproducing kernel for H2(0,1). Consider the integral operator as
a linear functional L( f ) =

∫ 1
0 f (t)dt.

1. Verify L( f ) is continuous.

2. Find the representer of L( f ) using the inner product.

3. Find the optimal weights wi and the optimal design points ti ∈ (0,1) such that
∑n

i=1 wi f (ti) is the best approximation of L( f ).

Exercise 3.11 (Dimension of a spline space). Fix an interval (a,b) and let z1,z2, · · · ,zn ∈
(a,b). Denote the space of polynomial splines of order r with simple knots at the zis
by Sr(z1,z2, · · · ,zk) Here you can prove that dim(Sr(z1,z2, · · · ,zk)) = r +n.

1. First consider the r+n functions 1,xxx,xxx2, · · · ,xxxr−1,(xxx−z1)r−1
+ , · · · ,(xxx−zn)r−1

+ . Ver-
ify they are elements of Sr(z1,z2, · · · ,zn).

2. Verify the r +n functions are linearly dependent.

3. Let s ∈ Sr(z1,z2, · · · ,zk) and let pi be the polynomial, of degree at most r− 1, that
coincides with s on the interval (zi,zi+1).

a. Prove that there exist constants ci such that
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pi+1(xxx)− pi(xxx) = ci(xxx− zi)r−1.

b. From this conclude that s is a linear combination of the r +n functions.

Exercise 3.12. Let

Hm(0,1) =

{
f : [0,1]→ IR | f (t) =

√
2

∞

∑
ν=1

aν cos(2πνt)+
√

2
∞

∑
ν=1

bν sin(2πνt)

with
∞

∑
ν=1

(a2
ν +b2

ν)(2πν)2m < ∞

}
.

That is, Hm(0,1) is the space of Fourier expansions with coefficients decreasing at a
rate determined by m.

1. Show that the mth derivatives of functions f ∈ Hm(0,1) satisfy

∫ 1

0

(
f (m)(u)

)2
du =

∞

∑
ν=1

(a2
ν +b2

ν)(2πν)2m.

2. Let K(s, t) denote the reproducing kernel for Hm(0,1). Show that

K(s, t) =
∞

∑
ν=1

2
(2πν)2m cos[2πν(s− t)].

3. Show that ∫ 1

0
f (k)(u)du = 0 for k = 0,1,2, · · · ,m.

4. Define the extension of Hm(0,1), Wm(0,1) = {1}⊕Hm(0,1), with norm

‖ f‖2 =
[∫ 1

0
f (u)du

]2

+
∫ 1

0

(
f (m)(u)

)2
du

on Wm(0,1) and verify that

R(s, t) = 1+K(s, t)

is its reproducing kernel.



Chapter 4

New Wave Nonparametrics

By the late 1980s, Classical nonparametrics was established as “classical”. Concur-
rently, however, the beginnings of a different stream of nonparametric thinking were
already under way. Indeed, its origins go back to the 1970s if not earlier. The focus here
is not on large spaces of functions but on classes of functions intended to be tractable
representations for intermediate tranches. The models retain much of the flexibility of
Classical methods but are much more interpretable; not as interpretable as many sub-
ject matter specialists might want but possessing much more structure than the methods
of Chapters 2 and 3. In practice, computer-intensive procedures pervade these more
recent techniques. This permits iterative fitting algorithms, cross-validation for model
selection, bootstrapping for pointwise confidence bands on the estimated functions as
seen earlier, and much more besides.

New Wave nonparametrics focuses on the intermediate tranche. This is where the di-
mension is increasing without bound and the techniques rely explicitly on approximat-
ing an unknown function to an adequate accuracy. That is, bias is admitted but con-
trolled; one chooses, in effect, how far a sequence of approximations should be taken
even though in principle they could be taken to limits that realize a whole infinite-
dimensional space. In some cases, the search is over directions, as in projection pursuit,
and amounts to a sequential approximation because there is no bound on the number
of parameters introduced.

The Alternative regression methods, to be seen in Chapter 6, differ from these in that
multiple models are usually considered, perhaps implicitly. Also, the usual goal is un-
abashedly predictive rather than model identification, although some of the Alternative
methods do that, too.

This chapter discusses several of the famous New Wave nonparametric regression
techniques, including additive models, generalized additive models, projection pur-
suit, neural nets, recursive partitioning, multivariate adaptive regression splines, sliced
inverse regression, alternating conditional variances, and additivity and variance stabi-
lization.

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 171
in Statistics, DOI 10.1007/978-0-387-98135-2 4, c© Springer Science+Business Media, LLC 2009



172 4 New Wave Nonparametrics

4.1 Additive Models

The main problem with multiple linear regression is that the estimate is always flat.
However, the class of all possible smooth models is too large to fit, and the Curse makes
such fits inadequate in high dimensions. The class of additive models is one useful
compromise. Essentially, the additive assumption reduces the size of the function space
in which the regression is done. Rather than general p-variate functions of the form
f (x1, ...,xp), one uses a sum of p univariate functions, f1(x1)+ ...+ fp(xp). Of course,
when p itself is large, the Curse remains.

At their root, additive models in DMML are a generalization of additive models in
ANOVA. Recall the standard ANOVA model

Yk, j,i = αk +β j + εk, j,i,

in which k = 1, ...,K and j = 1, ...,J are the levels for factors A and B, and i = 1, ...,n
are the samples. In essence, αk is a function α = α(k) = αk, where k is an explanatory
variable taking K values. Likewise, βk is a function β = β ( j) = β j is a function of J,
an explanatory variable taking J values. Thus, Y = Yk, j is a function of two discrete
explanatory variables assumed to decompose into a sum of two univariate functions,
one for each variable. If k and j are taken as continuous variables, α and β are taken
as functions of them, and p such functions are permitted in the representation of Y ,
the result is the class of additive models used in DMML. Another way to see this is
to replace the Xks in a p-dimensional linear repression model with general smooth
functions fk(Xk) for k = 1, ..., p.

More formally, the additive model for a response is

Y = β0 +
p

∑
k=1

fk(xk)+ ε, (4.1.1)

where the fk are unknown smooth functions fit from the data. Thus, additive models
preserve additivity but lose linearity in the parameters. Often, one writes E(Y |XXX) in
place of Y and drops the error term. The basic assumptions are as before, except that
E[ fk(Xk)] = 0 and E(ε|XXX) = 0 are required to prevent nonidentifiability; e.g., con-
founding means with β0. Additive models are biased unless Y really is the sum of the
terms on the right-hand side, which is not common. The greatest benefit from using
additive models occurs when Y is reasonably well approximated by the right-hand side
so that the bias is small and the reduction in variance from the representation in (4.1.1)
is substantial.

Observe that the parameters in the additive model are { fk}, β0, and σ2. First, recall
that in the linear model it is the parameters that enter linearly and estimating a param-
eter costs one degree of freedom. Fitting smooth functions costs more, depending on
what kind of univariate smoother is used, and, for smoothers, linearity is not in the pa-
rameters (they do not exist) but rather in the sense of (2.1.1). Second, given Y1, ...,Yn,
the location β will be estimated by β̂ = (1/n)∑n

i−1 Yi. So, without loss of generality,
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take β0 = 0, if necessary, by replacing the Yis with Yi− Ȳ . Third, since Var(ε|XXX) = σ2

is typically assumed, it will usually be enough to use the residuals to estimate σ .

Clearly, the central issue in fitting a model such as (4.1.1) is estimating the fks. De-
pending on how one does this, one can force the selected fks to lie in a specific family
such as linear, locally polynomial, or monotone. One can also enlarge the collection of
additive models by including functions of the Xks. For instance, X1X2 can be included
as a p+1 explanatory variable. Indeed, one can force the inclusion of certain precho-
sen higher-dimensional smooths such as f (X1,X2), or f (X1X2) if such an interaction is
desired. Thus, any function of the form f (a1(XXX), . . . ,au(XXX)) can be included for fixed
u and known ais. However, the larger u is, the less benefit the additive structure gives.
The key benefit of additive models is that, in (4.1.1), transformation of each explana-
tory variable is done automatically by the marginal smoothing procedure. The main
technique for fitting additive models is called the backfitting algorithm. It permits the
use of an arbitrary smoother (e.g., spline, LOESS, kernel) to estimate the { fk}s.

4.1.1 The Backfitting Algorithm

The backfitting algorithm is a central idea that recurs in a variety of guises. So, it’s
worthwhile to provide an overview before turning to the technicalities.

Overview: Suppose the additive model is exactly correct. Then, for all k = 1, . . . , p,

E

[
Y −∑

k 	= j

fk(Xk) |x j

]
= f j(x j). (4.1.2)

The backfitting algorithm solves these p equations for the fks iteratively. At each stage,
it replaces the conditional expectation of the delete- j residuals on the left-hand side
with a univariate smooth.

To see this, it helps to use vectorized notation for the smooth functions. Let YYY be the
vector of responses and let XXX be the n× p matrix of explanatory values with columns
XXXk,· representing the n outcomes of the kth explanatory variable. Then define fff k =
( fk(Xk,1), ..., fk(Xk,n)) to be the vector of the n values fk takes on the outcomes Xk,i.
To represent the actual estimation of the univariate smooths, define L(ZZZ |CCCk,·) to be
the smooth from the scatterplot of ZZZ against the values of the kth explanatory variable.
Note that in this notation ZZZ ∈ IRn typically is an iterate of YYY −∑k 	= j fk and L(· |CCCk,·)
is the linear smooth as an operator on ZZZ. The conditioning indicated by CCCk,· typically
represents XXXk,·, which is used to form the univariate smooth fk being fit.

The backfitting procedure, the Gauss-Seidel algorithm in the additive model context, is
attributed to Buja et al. (1989). The term backfitting arises because the procedure iter-
atively omits one of the occurrences of one of the summands when it occurs, replacing
it with an improved value. One version of their procedure is as follows:

Given Y1, ...,Yn and n outcomes of the p-dimensional explanatory variable XXX :
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� Initialize: Set β̂0 = Ȳ and set the fk functions to be something reasonable (e.g.,
a linear regression). Set the fff k vectors to match.

� Cycle: For k = 1, . . . , p, set

fk = L

(
YYY − β̂0−∑

j 	=k

fff j(XXX ·, j

)

and update the fff ks to match.

� Iterate: Repeat the cycle step until the change in fk between iterations is suffi-
ciently small.

One may use different smoothers L(·|C·,k) for different variables or bivariate smoothers
for predesignated pairs of explanatory variables.

Technical Description: Following Hastie and Tibshirani (1990), consider the opti-
mization

min
f : f (xxx)=∑p

k=1 fk(xk)
E(Y − f (XXX))2,

meaning one is searching for the best additive predictor for the overall minimum
E(Y |XXX). It can be verified that there is a unique minimum within the additive class
of f s and that this minimum satisfies p equations of the form

E((Y − f (XXX))|Xk) = 0.

These equations are equivalent to (4.1.2).

The convention is to write these k equations in matrix form as
⎛
⎜⎜⎝

E(·|F ) E(·|X1) ... E(·|X1)
E(·|X2) E(·|F ) ... E(·|X2)
· · · ·

E(·|Xp) ... E(·|Xp) E(·|F )

⎞
⎟⎟⎠

⎛
⎜⎜⎝

f1(X1)
f2(X2)
·

fp(Xp)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

E(Y |X1)
E(Y |X2)
·

E(Y |Xp)

⎞
⎟⎟⎠ , (4.1.3)

in which E(·|F ) is the conditional expectation with respect to the overall σ -field and
so acts like the identity operator. For brevity, write (4.1.3) as

PPP fff = QQQYYY , (4.1.4)

in which QQQ is the linear transformation with the p projection operators E(·|Xk) on its
main diagonal and zeros elsewhere.

To use (4.1.4), one needs expressions for the E(·|Xk)s that can be used for regress-
ing Y on Xk. So, let Sk be a collection of linear transformations like Ln(·) in (2.3)
that give a linear smooth for Y as a function of Xk by acting on yyy. That is, let Lk be
an n× n matrix from a linear smoothing technique for the univariate regression of Y
on Xk so that the data-driven quantity Skyyy is an estimate of the theoretical quantity
(E(Y1|Xk,1), ...,E(Yn|Xk,n)). Now,
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Lkyyy≈

⎛
⎝E(Y1|Xk,1)

...
E(Yn|Kk,n)

⎞
⎠ .

Substituting Lk for E(·|Xk) for k = 1, ..., p in (4.1.4) gives the data form

⎛
⎜⎜⎝

In L1 ... L1

L2 I ... L2

· · · ·
Lp ... Lp In

⎞
⎟⎟⎠

⎛
⎜⎜⎝

f̂1(X1)
f̂2(X2)
·

f̂ p(Xp)

⎞
⎟⎟⎠=

⎛
⎜⎜⎝

L1 0 ... 0
0 L2 ... 0
· · · ·
0 ... 0 Lp

⎞
⎟⎟⎠

⎛
⎜⎜⎝

YYY
YYY
·

YYY

⎞
⎟⎟⎠ , (4.1.5)

in which each entry in the p× p matrices indicated is itself an n× n matrix, giving
an overall dimension of np× np. The entries in the two vectors are similarly defined
but are np× p. On the right-hand side of (4.1.5), the application of the Lks is written
explicitly unlike in (4.1.3) where the E(·|Xk)s are not written in a separate matrix from
the YYY s. For brevity, write

P̂PP f̂ff = Q̂QQYYY (4.1.6)

parallel to (4.1.4). Also, note that E(·|Xk) takes the expectation over all directions Xk′

for k 	= k′, but Lk ignores all values of the Xk′s. Ignoring data is not the same as taking
an expectation over its distribution; however, if all the data are random, then ignoring
some of the variables can be much like using the marginal for the rest.

In principle, the linear system (4.1.6) can be solved for the ( f̂k(Xk,1), ..., f̂k(Xk,n))s for
k = 1, ..., p. However, when p and n get large, this becomes difficult. What’s more,
P̂PP is often difficult to work with. So, instead of direct solutions such as Gaussian
elimination, iterative methods are used. Often these are superior for sparse matrices.
One such technique is called the Gauss-Seidel algorithm, see Hastie and Tibshirani
(1990), Chapter 5.2. This structure ensures that the backfitting algorithm converges
for smoothers that correspond to a symmetric smoothing matrix with all eigenvalues
in (0,1). This includes smoothing splines and the Nadaraya-Watson estimator, but not
LOESS or local polynomial regression for degrees larger than 0. Empirically, how-
ever, it is usually observed that the eigenvalues of most kernel smoothers are in (0,1).
(Counterexamples are possible, but hard.)

Implementation of the procedure from the last subsection is as follows. Given starting

values f̂k
0
, the iterates for m = 1,2, ... are

f̂k
m = Lk

(
YYY − ∑

k′ 	=k

f̂k′
m−1

)
,

and one iterates until a Cauchy criterion is satisfied (i.e., the distance between succes-
sive iterates is satisfactorily small). This formalizes the univariate regression of YYY on

XXXkkk using the partial residuals YYY −∑k′ 	=k f̂k′
m−1

instead of YYY for each m.
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Clearly, this depends on the formulation of the Cauchy criterion and the order in which
the univariate regressions are done. However, there are general assumptions guarantee-
ing the convergence of backfitting estimators. One is due to Opsomer (2000).

Rearrange (4.1.6) to give f̂ff = P̂PP
−1

Q̂QQYYY , and set Wk = Ek
ˆPPP−1Q̂QQ, where Ek is a partitioned

n× np matrix with the n× n identity matrix as the kth block on its main diagonal.
Now, each component estimator is of the form f̂k = WkYYY , and the estimator F̂FF for
f (x1, ...,xp) = f1(x1)+ ...+ fp(xp) can be written as

f̂ff =
p

∑
k=1

f̂k = (W1 + ...+Wp)YYY ≡WWW QYYY ,

in which WWW Q is the additive smoother matrix for the additive model. Let WWW−k
Q be the

additive smoother matrix for the additive model with the kth variable deleted; i.e., for
the model Y = f1(x1)+ ...+ fk−1(xk−1)+ fk+1(xk+1)+ ...+ fp(xp). It is important to
realize that WWW−k

Q is not the sum ∑k′ 	=k WWW k′ .

Corollary 4.3 of Buja et al. (1989) showed that ||LLL1LLL2|| < 1 is a sufficient condition
for the convergence of the backfitting algorithm in a bivariate additive model, and this
condition can only be satisfied when the univariate smoother matrices LLLk are centered
in the sense that they are replaced by L̃LLk = (III− 11′/n)LLLk. Opsomer (2000), Lemma
2.1 established a p-dimensional generalization of Buja et al. (1989). Specifically, the
backfitting algorithm with smoothers LLL1,...,LLLp converges to a unique solution if

||LLLkWWW
−k
Q ||< 1 (4.1.7)

for k = 1, ..., p and any matrix norm || · ||, in which case the additive smoother with
respect to the kth covariate is

WWW k = III− (III−LLLkWWW
−k
Q )−1(1−LLLk). (4.1.8)

In the simple bivariate case, p = 2, WWW−1
Q = L2, and WWW−2

Q = LLL1, however, the importance
of additivity is far greater in higher dimensions. Indeed, from (4.1.8) it is seen that a
pth order additive model has smoother matrices WWW k that are expressed in terms of the
smoother matrices from the corresponding (p−1)-order additive model, WWW−k

Q , and the
univariate smoother LLLk. Therefore, the recursion can be built up from p = 2 cases to
p = 3 and so forth.

For the case of local polynomial regression smoothers, Opsomer (2000) also estab-
lishes that the hypotheses of his result hold – (4.1.7) in particular – after centering,
in the absence of concurvity (which will be discussed at the end of this section). In-
deed, asymptotically valid expressions for the conditional bias and variance of the kth
component can be obtained. That is, it can be shown that

E( ˆfk(Xk,i)− fk(Xk,i)|XXX) = C +Op

(
1√
n

)
+op(hr+1

k ), (4.1.9)

where hk is the bandwidth for the kth univariate smoother, r = rk are odd numbers
giving the degrees of the polynomials for each k, the bias is evaluated at an observation
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point Xk,i, and C is a leading term involving derivatives of fk and other quantities in
the estimator. It can be shown that the Op(1/

√
n) term is smaller than the leading

term C = Op(∑p
k=1 hr+1

k ), which dominates op(hr+1
k ). Now, the recursivity implicit in

C motivates a corollary,

E( ˆfk(Xk,i)− fk(Xk,i)|XXX) = Op

(
p

∑
k=1

hr+1
k

)
, (4.1.10)

showing how the bandwidths add to bound the dimension effects. Moreover, the con-
ditional variance is

Var( f̂k(Xk,i)|XXX) = σ2 R(K)
nhk

1
fk(Xk,i)

+op

(
1

nhk

)
, (4.1.11)

in which R(K) is the integral of the square of the kernel K defined by the local poly-
nomials. Convergence requires n→∞, hk → 0, and (nhk/ logn)→∞ for both variance
and bias to go to zero. Expressions (4.1.7) – (4.1.11) can be combined to give an
evaluation of the MSE; however, the dependence among the Xks makes this difficult
outside certain independence assumptions. Nevertheless, an optimal rate can be found
by balancing the variance and squared bias.

A projection-based approach to backfitting is presented in Mammen et al. (1999), and
is known to achieve the oracle efficiency bound. That is, projection-based methods give
an expression for the bias of a single fk separate from the biases of the fk′s with h′ 	= k,
the other additive components, while the backfitting estimator only has this property if
the Xks are independent; see Opsomer (2000), Corollary 3.2. A general discussion of
this approach is found in Mammen et al. (2001). Overall, they find that many smooth-
ing methods (kernels, local polynomials, smoothing splines, constrained smoothing,
monotone smoothing, and additive models) can be viewed as a projection of the data
with respect to appropriate norms. The benefit of this approach is that it unifies several
seemingly disparate methods, giving a template for the convergence of backfitting; see
Mammen et al. (1999) for a version of the convergence of the backfitting algorithm
for a Nadaraya-Watson type estimator. It is important to realize that, in addition to the
varieties of smoother one can use in fitting the components of an additive model, there
are numerous variants of the backfitting procedure. Indeed, one needn’t use the same
smoother in all components, and even if one did, Mammen and Park (2005) give three
ways to do bandwidth selection in additive models. Moreover, there are several backfit-
ting type procedures that can be derived from projection optimizations; see Mammen
et al. (1999).

4.1.2 Concurvity and Inference

As a generality, if the backfitting algorithm converges, the solution is unique un-
less there is concurvity, in which case the solution depends on the initial conditions.
Roughly, concurvity occurs when the {XXXi} values lie on a smooth lower-dimensional
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manifold in IRp. In the present context, a manifold is smooth if the smoother used
in backfitting can interpolate all the {xxxi} perfectly. The picture to keep in mind is
a range of smooth deformations of a very twisted curve snaking through a high-
dimensional space, with the attendant sparsity of data. Qualitatively, this is analogous
to the nonuniqueness of regression solutions when the XXX matrix is not full rank.

The concurvity space of (4.1.4) is defined to be the set of additive functions f (xxx) =
∑p

j=1 f j(x j) such that PPP fff = 000. That is,

f j(x j)+E

[
∑
k 	= j

fk(xk) |x j

]
= 0.

When the explanatory values do not lie exactly on a smooth lower-dimensional sub-
manifold but tend to fall near one, then there are the same instability problems that arise
in multiple linear regression when the data are nearly collinear. In terms of (4.1.6), non-
uniqueness occurs when there is a vector aaa with P̂PPaaa = 0, for then any solution f̂ff has
an associated vector space of solutions f̂ff +λaaa for λ ∈ IR.

It is evident that concurvity in practice occurs when certain relationships among the
smoother matrices Sk hold. So, suppose the eigenvalues of all the Sks are in [0,1], and
let Nk be the vector space of eigenvectors of Sk with eigenvalue 1; these are the vectors
that are unchanged by the smoother matrix Sk. (This is nothing like a nulls-pace; it is
like an identity space.) Then P̂PPaaa = 0 can occur, for instance, when ∑p

k=1 aaak = 0 for
some choices aaak ∈ Nk. There are versions of the backfitting algorithm that reduce
the effect of this linear dependence among vectors; see Hastie and Tibshirani (1990).
However, in the presence of concurvity, backfitting tends to break down.

In principle, one way to reduce concurvity is to eliminate some of the components fk

in the model. That is, once a model has been fit by the backfitting algorithm for a fixed
p, one wants to test whether setting the component to zero would lead to a model with
substantially less explanatory power.

Testing whether a term fk in an additive model is worth keeping has been studied by
Fan and Jiang (2005), where a generalized likelihood ratio test has been developed
along with results similar to Wilks’ theorem. To a large extent, this is a straightforward
extension of the usual goodness-of-fit statistic based on normality. If the likelihood for
the alternative hypothesis (i.e., the full model) is much larger than the likelihood for
the reduced model (i.e., with one of the components set to zero), then one is led to
reject the null. Thus, one needs critical values, techniques for nuisance statistics, and
some applicable asymptotics. Unfortunately, generalized likelihood ratio (GLR) tests
cannot be used directly unless a distribution for ε is specified. So, one wants a test that
is robust to the distribution of ε and valid for a wide range of smoothers that might be
used in backfitting (provided they converge).

Consider the hypothesis test

H0 : fp ≡ 0 vs. H1 : fp 	= 0
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for whether the pth variable has a contribution to the model for Y . Since the distribution
of ε is unknown, the likelihood function cannot be written down. However, if ε were
N(0,σ2), the log likelihood function would be

−n
2

log(2πσ2)− 1
2σ2

n

∑
i=1

(
Yi−β0−

p

∑
k=1

fk(Xk,i)

)
,

in which β̂0 and f̂k based on K and bandwidths hk can be substituted. Doing so, setting

RSS1 =
n

∑
i=1

(
Yi− β̂0−

p

∑
k=1

f̂k(Xk,i)

)2

,

and maximizing the result over σ gives the normal-based likelihood under the alterna-
tive:

−n
2

log
2π
n
− n

2
logRSS1−

n
2
.

Set �(H1) = −(n/2) logRSS1. Similarly, under the null, the same procedure gives a
log likelihood for use under H0. Let

RSS0 =
n

∑
i=1

(
Yi− β̂0−

p−1

∑
k=1

f̂k(Xk,i)

)2

,

in which f̂k remains the estimator of fk under H0, using the same bandwidths and
backfitting algorithm. Now set �(H0) =−(n/2) logRSS0. Fan and Jiang (2005) define
the GLR statistic

λn(H0) = �(H1)− �(H0) =
n
2

log
RSS0

RSS1
≈ n

2
RSS0−RSS1

RSS1
,

rejecting when λn is too large.

Although this uses normality, Fan and Jiang (2005) identify general hypotheses under
which λn has a Wilks’ theorem under the condition that local polynomial smoothing
(of order pk for XXXk) with a kernel function K is used as the univariate smoother in
the backfitting algorithm. Their hypotheses are reasonable, including (i) K is bounded,
with bounded support, and Lipschitz-continuous, (ii) the individual Xks and the pairs
(Xk,Xk′) have Lipschitz continuous densities, bounded support, and are bounded away
from zero, (iii) p + 1 derivatives of the fk exist, the moment Eε4 < ∞, and (iv)
nhk/ logn→ ∞ for all k.

Their main theorem is the following.

Theorem (Fan and Jiang, 2005): Under the four conditions, the asymptotic behavior
of λn(H0) for testing H′ against H1 is given by

P

(
(λn(H0)−μn−d1,n)

σn
< t|X

)
→Φ(t),
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where

d1,n = Op

(
1+

p

∑
k=1

nh2pk+1
k +

p

∑
k=1

√
nhpk+1

k

)
,

in which pk is the dimension of the local polynomial for the kth variable, X repre-
sents the design points assumed to be chosen so the backfitting algorithm converges,
and Φ is the standard normal probability. Also, if nh2pk+1

k → 0 for k = 1, ..., p, then,
conditional on XXX , a Wilks’ theorem holds:

rKλn(H0)∼ χ2
rKμn

. �

The expressions for μn, σn, and rK are complicated and are given in terms of various
evaluations of K. Fan and Jiang (2005), Section 3, give some further simplifications
and extensions. They also characterize the rates at which this testing procedure can
detect alternatives; these rates indicate how fast the minimum norm of fi may decrease
when testing is at a fixed level α and power at least β .

The fact that normal-based tests continue to perform well suggests that many regres-
sion diagnostics also generalize to additive models. In particular, ideas from weighted
regression generalize to handle heteroscedasticity. Also, as a pragmatic point, one can
use the bootstrap to set pointwise confidence bands on the fk.

4.1.3 Nonparametric Optimality

In a pair of papers, Stone (1982), Stone (1985) established results that characterize the
optimal behavior of nonparametric function estimators and their use in additive mod-
els. These results apply not just to estimating a function directly but also to estimating
its derivatives; these have been seen when optimizing the bias–variance terms in the
MSE over bandwidths in kernel estimation in Section 2.3 for instance. Accordingly,
one wants optimal rates of decrease for the norms of the difference between functions
and their estimators, even when the function is a derivative. Stone (1982), Theorem
1 shows that if f (xxx) is r times differentiable in x1,..., xp, with mth derivative denoted

f (m) for m = 0,1, ...,r, and has estimators denoted f̂ (m), then

|| f̂ (m)− f (m)||q = O

(
1

n(r−m)/(2r+p)

)
, (4.1.12)

where || · ||q is the Lebesgue q norm for some q∈ IR+. If q =∞, then the optimal rate is
O((logn)/n)(r−m)/(2r+p). Clearly, m = 0 is the case one wants for estimation of f . IID
data from continuous or discrete distribution families are usually included in Stone’s
conditions, and the optimal rates are achieved by kernel, spline, and nearest-neighbor
methods.

Expression (4.1.12) extends to additive models because each component in an additive
model can be estimated at an optimal rate so that the overall p-variate estimator has
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the same rate as the individual univariate estimators. In particular, Stone (1985) shows,
under relatively mild conditions, that estimators of the individual components are op-
timal. That is, when the fitting is done using local polynomials such as splines on [0,1]
partitioned into Nn ≈ n1/(2r+1) equal intervals, the error is

E(|| f̂ (m)
k − f (m)

k ||22|XXX) = Op

(
1

n2(r−m)/(2r+p)

)
,

for k = 1, ..., p, with the anticipated convergence of the constant,

E((Ȳμ)2|XXX) = Op

(
1
n

)
= Op

(
1

n2r/(2r+p)

)
.

(Stone’s norm actually has an extra weight function in it; here this is set to one.) Fur-
thermore, when m = 0, Stone (1985) obtains

E(|| f̂ − f ||2|XXX) = Op

(
1

n2r/(2r+p)

)
,

indicating that the errors merely add. Of course, if p is large, the constant in the O
term will increase, and if one takes limits as p increases, the asymptotic behavior is
undetermined. Nevertheless, the point remains that the errors in estimating the terms
in additive models are additive.

4.2 Generalized Additive Models

It is clear how the additive model (4.1.1) extends the linear model (2.0.1)). Another
way to extend the linear model is by introducing a “link function” in which a func-
tion of the conditional mean is modeled by the regression function. These are called
generalized linear models (GLMs). The link function generalization can be applied to
additive models as well, giving generalized additive models GAMs.

To see this, first recall the definition of GLMs. Concisely, GLMs are formed by replac-
ing Y in (2.0.1) with g(E(Y |XXX)) to give

g(E(Y |XXX)) = β0 +β1X1 + . . .+βpXp. (4.2.1)

The g is called the link function because if one writes E(Y |XXX) = μ and g(μ) = XXXβ ,
then g is the “link” between the conditional mean of Y given XXX and a representation
in terms of the explanatory variables. As before, (Y |XXX) = μ(XXX)+ ε , in which the IID
error terms have constant variance σ2, independent of x1, . . . ,xp, and usually have nor-
mal distributions. Taking E of both sides and applying g gives the general expression
g(E(Y |XXX)) = μ(XXX), which in GLMs is represented as in (4.2.1). Alternatively, one can
assume g−1 exists, apply it to the right side of (4.2.1), and recover an expression for
E(Y |XXX).



182 4 New Wave Nonparametrics

This procedure is mathematically valid but conceptually a little awkward because the
transformation g applies only to the mean. That is, the variability in (Y |XXX) as a random
variable does not necessarily transform by g the same way its mean does. Indeed,
g((Y |XXX)) = g(E(Y |XXX)+ε) 	= g(E(Y |XXX)). Thus, using a regression model on g((Y |XXX))
is not the same as using a regression model on g(E(Y |XXX)) because the error terms have
different meanings. See McCullagh and Nelder (1989) for more details on residual
analysis, joint modeling of means, and dispersions.

In practice, GLMs have proved most effective when the response variable Y comes
from an exponential family such as the binomial or Poisson. For instance, if Y is
Bernoulli, then E[Y |XXX = xxx] = p(xxx) = IP[Y = 1 |xxx]. Then it is natural to set

g(p(xxx)) = logit(p(xxx)) = ln
p(xxx)

1− p(xxx)
,

which yields logistic regression. McCullagh and Nelder (1989) develop the techniques
for this and several other cases, thereby establishing the usefulness of the common
GLM structure.

Additive models can be generalized in the same spirit by expressing the link function
as an additive, rather than linear, function of xxx. For μ(XXX) = E(Y |XXX), set

g(μμμ) = β0 +
p

∑
j=1

fk(xk), (4.2.2)

so the left-hand side of (4.2.2) is a transformation of the conditional mean response
variable but everything else is the same as for the additive model.

Domain knowledge is usually required to choose the link function g. For example, the
additive version of logistic regression is

logit(p(xxx)) = β0 +
p

∑
k=1

fk(xk),

and this would often be used when the responses are binary and the probability of
a specific response is believed to depend smoothly on the explanatory variables. If
g(μ) = logμ , then one gets the log-additive model often used for Poisson (count) data.
The gamma and negative-binomial sampling models also have natural link functions.
Note that all four of these cases are exponential families that lead to generalized linear
models which can be extended to GAMs.

Entertainingly, one can choose the functions fk to depend on two explanatory variables
or different numbers of them, or to include a linear model term; a simple case is g(μ) =
β0 + x1β1 +∑p

k=2 fk(xk). Factor levels can also be incorporated as indicator functions.

However GAMs arise, the central task is estimating the fks. Often they are estimated
by the Classical, flexible smoothing methods discussed, namely LOESS, splines, and
kernels, even nearest neighbors. To see how this can be done, denote the data by (xxxi,yi)
for i = 1, ...,n, where the yis are response outcomes and the xxxis are explanatory vari-
ables, xxxi = (x1,i, ...,xp,i). Now suppose the link function is just the identity (i.e., the



4.2 Generalized Additive Models 183

goal is to fit Y = f (XXX)+ ε). As seen earlier, finding f̂ that minimized ∑i(yi− f (xxxi))2

would yield an interpolant that was quite rough. However, the roughness of f̂ could
be reduced either by narrowing the class of functions used in the optimization or by
changing the objective function by adding a penalty term.

In the GAM context, write f (xxx) = f1(x1)+ · · ·+ fp(xp) and consider a linear smoother
like cubic splines for each fk. These are piecewise cubic polynomials that arise from
optimizing

n

∑
i=1

(
yi−

p

∑
k=1

fk(xxxk, j)

)2

+
p

∑
k=1

λk

∫
f ′′k (t)2dt

for fixed λ . The knots of the spline occur at the observed values of each Xk. So, a ver-
sion of the backfitting algorithm described in the previous section can be applied to ob-
tain f̂ks. The core idea is to use a cubic spline smoother on residuals yi−∑k 	=k′ fk(xk,i)
for each variable xk′ in turn, continuing the process until the estimated f̂ks stabilize.
As noted, this is a version of the Gauss-Seidel algorithm for solving matrix equations.
When the link function is not the identity, the procedure is applied to g(μμμ) rather than
Y , as will be seen below for an additive logistic model.

More formally, Hastie and Tibshirani (1996) note that this procedure is equivalent to
solving a set of estimating equations. Let Sk be the (linear) smoothing spline operator
for smoothing the kth variable, for instance. Then, the backfitting equations can be
written as

fk(xk) = Sk(y− f1(x1)− ...−ξk− ...− fp(xp)) (4.2.3)

for k = 1, ..., p. The collection (4.2.3) is a set of estimating equations, and when Sk is
linear, the ξk can be found. In other words, the n vectors (yi, f1(x1,i), ..., fp(xp,i)) can be
found by solving (4.2.3). Other choices for Sk are possible, giving different answers.

To see explicitly what happens when the link function is not the identity consider the
case of additive logistic regression, as in Hastie and Tibshirani (1990), Chapter 6. The
heart of the matter is writing

log
p(yi|x1,i, ...,xp,i)

1− p(yi|x1,i, ...,xp,i)
= β0 + f1(x1,i)+ ...+ fp(xp,i)

for i = 1, ...,n. Using some technique such as linear logistic regression, one can get
starting values for β0 and the fks, say β0,init and fk,init , for each i. This gives ηi,init =
β0,init +∑p

k=1 fk,init(xk,i). Now, one cycle of the backfitting algorithm, with Newton-
Raphson, forms adjusted dependent variables, replacing the yis for i = 1, . . . ,n with

z1,i = ηi,init +
(yi− pi,init)

pi,init(1− pi,init)
,

in which the pi,inits come from the initial linear logistic model. The weights wi,1 =
pi,init(1− pi,init) then lead to a new vector ηηη1 = AAAwwwzzz111, where ηηη1 = (η1,1, . . . ,η1,n)T,
zzz = (z1,1, ...,z1,n)T, and AAAwww is the operator that uses the weights. The procedure is
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repeated to get the vector ηηη222, and so forth, until convergence is observed. Analogous
procedures can be developed for other link functions.

4.3 Projection Pursuit Regression

Another extension of the additive model is projection pursuit regression (PPR). The
idea is to use linear transformation of the space of explanatory variables so that the
mean response can be represented in terms of univariate functions of projections of the
explanatory variables. That is, after recoordinatization, one can fit an additive model.
The axes in the recoordinatized space are expressed in terms of vectors βββ kkk. So, the
fk(xxx)s in (4.1.2) are replaced by fk(xxxβββ )s. The PPR model is

Y = f (xxx)+ ε = β0 +
r

∑
k=1

fk(xxx′βββ k)+ ε, (4.3.1)

in which r replaces p because the number of terms need not be equal to the number
of variables. In (4.3.1), one seeks linear combinations of the explanatory variables that
give good additive model fits when r is small; the linear combinations that one pursues
are projections of the data. There are a variety of techniques for finding r, the βββ ks,
and the smooths fk. This was popularized by Friedman and Stuetzle (1981), but the
approach originates with Kruskal (1969).

The original motivation for PPR was to automate the selection of low-dimensional
projections of a high-dimensional data cloud, similar to the local dimension discussed
in Chapter 1. It is seen that picking out a linear combination is equivalent to choosing
a one-dimensional projection of XXX . For example, take r = 1, βββT = (1,1), and xxx ∈ IR2.
Write an arbitrary vector xxx ∈ IR2 as xxx = xxx1 +(xxx1)⊥, where xxx1 is the component of xxx in
the direction of (1,1)T and (xxx1)⊥ is its component in the orthogonal complement of
(1,1)T. Then, xxxβββ = xxx1 because it projects xxx⊥1 to zero. Since xxx1 is in the direction of βββ ,
it is of the form λβββ for some λ 	= 0 giving the space S , as shown in Fig. 4.1. If r = 1,
then the fitted PPR surface is constant along lines orthogonal to S . If f1 were the sine
function, then the surface would look like a sheet of corrugated aluminum, oriented so
that the ridges were perpendicular to S . When r ≥ 2, the surface is hard to visualize,
especially since the βββ 1, . . . ,βββ r need not be mutually orthogonal. Consequently, one
expects PPR to outperform other methods when the primary trend in the data lies in
different directions than the natural axes.

The PPR procedure seeks the { f̂ j} and {β̂ββ j} that minimize

n

∑
i=1

[
Yi−

r

∑
k=1

f̂k(xxxT
i β̂ββ k)

]2

. (4.3.2)

Backfitting can be used to estimate the fks for fixed βks, which are then updated by a
Gauss-Newton search. The steps iterate until convergence is observed. Separate from
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S
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X2

x~

β~
T
x~

Fig. 4.1 This graph shows an arbitrary xxx ∈ IR2 and its projection under βββ = (1,1)T onto the line
x1 = x2. The space S is the axis that a function f (xxxβββ ) uses to track the response.

this iterative procedure, extra terms are added (by a univariate search on r) until a
fitness criterion is satisfied.

The basic PPR procedure, modified from Friedman and Stuetzle (1981), is as follows:

Given Y1, ...,Yn and n outcomes of the p-dimensional explanatory variable XXX :

� Initialize: Start with φ̂r(XXX) = ∑r
k=1 f̂k(XXXTβ̂ββ k) as the fitted model for some r ≥ 0

with f̂ks and β̂ββ ks specified. Form the current residuals ei = yi− φ̂r(xxxi) for i =
1, ...n. (When r = 0, set ei = yi.)

� Check fit: Evaluate a goodness of fit measure on φr+1 to see if it is worth adding
another term. For instance, let Sr+1 give a smooth representation for the residuals
(i.e., univariate nonparametric regression of the residuals on the xxxT

i β̂ s), and set

F(βββ r+1) = 1−
n

∑
i=1

(ei−Sr+1(xxxT
i βββ r+1))

2/
n

∑
i=1

e2
i .

Then, let βββ r+1 = arg maxβF(βββ ). (Solving this optimization problem may neces-
sitate backfitting; i.e., cycling through k = 1, ...,r to solve

f̂k(xxxTβ̂ββ k) = S

(
YYY − ∑

k′ 	=k

f̂k′(xxx
Tβ̂ββ k′) | β̂ββ k

)

iteratively.)

� If maxF(βββ r+1) is small enough, the extra term adds little, so stop and do not
include it. Otherwise, add an extra term fr+1(xxxTβr+1), formed by minimizing
in (4.3.2). That is, iterate over Gauss-Newton to find an optimal βββ r+1 and back-
fitting to identify the new term. Once convergence is achieved, return to the
initialization step.
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Hall (1989) used a kernel-based smoother S in his version of the PPR procedure. This
enabled him to establish formulas for the variance and bias of kernel-based projec-
tion pursuit estimators; see Hall (1989), Section 4. He obtains rates of convergence
identical to unidimensional problems, analogous to the way additive models have uni-
dimensional rates. It seems that the major source of error is in the bias of the estimate
of the βββ ks.

One can also think of (4.3.1) as a sort of expansion of f in terms that summarize
local, lower-dimensional behavior. Then the successive approximation by residuals
amounts to finding the next term in the expansion to minimize the error in (4.3.2).
Following Huber (1985), Section 9, observe that any square-integrable function f can
be approximated in an L2 sense as in (4.3.1): For appropriate choices of βk and fk, one
can ensure ∫ (

f (xxx)−
r

∑
k=1

fk(xxxTβββ k)

)2

dIP→ 0,

for various choices of probability IP governing XXX , by any of a wide variety of series ex-
pansions (e.g., Fourier). If we already have βββ 1, ...,βββ r and f1, ..., fr, then each iteration
of the procedure seeks a minimum of

∫
er+1(xxx)2dIP =

∫ (
f (xxx)−

r+1

∑
k=1

fk(xxxTβββ k)

)2

dIP

over βββ r and fr+1. For fixed βββ ks, the minimum under squared error is achieved by
f opt
r+1(zzz) = E( f (XXX)−∑r+1

k=1 fk(XXXβββ k)|XXXβββ r+1 = zzz), where the IP is the distribution of XXX
used in the conditional expectation. Also, the residual norm

E(er+1(xxx)− f opt
r+1(xxx

Tβββ r+1))
2 = E(e2

r+1(xxx))−E f opt
r+1(XXX)2

is decreased the most by choosing βββ r+1 to maximize the marginal norm E f opt
r+1(XXX)2; if

||βββ r+1|| is a unit vector, then a maximum must exist. This shows that the norm of the
term added at the r+1 stage, f opt

r+1(xxx), goes to zero, although that does not immediately
imply that er+1 goes to zero. However, it would be strange if it didn’t, and sufficient
conditions are given by Jones (1987).

An extra wrinkle with PPR is that representations such as (4.3.1) are not unique. In
fact, Huber (1985) notes that when p = 2, the function f (xxx) = x1x2 = (1/4ab)[(ax1 +
bx2)2− (ax1−bx2)2 for any a, b. Thus, f has infinitely many projection pursuit addi-
tive models. Despite this, there is a uniqueness result that establishes that the difference
between two representations for the same function is a polynomial. In addition, there
are functions that cannot be represented as a sum like (4.3.1), such as f (xxx) = ex1x2 .

As with the backfitting algorithm, there are numerous variants of PPR. One that is
particularly important is due to Chen (1991), who used a polynomial spline smoother
for the S in the generic procedure above. This variant of PPR is more complicated
than others but permits characterization of the rates of convergence of φ̂r(·) to f (·) and
verification that optimal rates are achieved.
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To present the main result, some careful definitions are needed. First, the r projection
vectors βββ k are assumed to lie in a set Ar = {βββ 1, ...,βββ r} ⊂ Sp−1, where Sp−1 is the unit
sphere in p dimensions. Also, the angle between any βββ k and the hyperplane generated
by the βββ k′s for k′ 	= k is assumed bounded below by a constant. Essentially, this ensures
the terms in φ̂r will not proliferate excessively and lead to redundancy in the regression
function. Also, the domain of the XXXs must be restricted to Bp(0,1), the unit ball in
p dimensions. The space of permitted approximands is now all sums of polynomial
splines of degree q on [−1,1], with equispaced knots at a distance of 2/N, denoted

S(Ar) = S(Ar,q,N) =

{
sAr(xxx) = μ+

r

∑
k=1

sk(xxxTβββ k)

}
.

As a vector space, S(Ar) has finite dimension rN + r(q−1)+1.

For a set U ⊃ Bp(0,1) and a fixed Ar, let U(Ar) be the p-dimensional preimage of
Br(0,1) in U under the projections in Ar. That is, set

U(Ar) =

{
xxx | ∑

βββ k∈Ar

(xxxTβββ k)
2 ≤ 1,xxx ∈U

}
.

Now, the estimator for f is φ̂r ∈ S(Ar), given by

φ̂(xxx) = φ̂r,n,Ar(xxx) = μ̂Ar +
r

∑
k=1

ψ̂k,Ar(xxx
Tβββ k), (4.3.3)

which achieves

arg min
φ̂∈S(Ar)

n

∑
i=1

(yi− φ̂(xxxi))21U(Ar)(xxxi),

a special case of (4.3.2). Chen (1991) shows that (4.3.3) has a unique solution; let it be
defined by the (linear) smoother Sn,Ar = Sn,Ar ,q,N .

Finally, Chen (1991) uses the following procedure:

� For given r and Ar, find φ̂r,Ar .

� Given φ̂r, find the residual sum of squares

RSSn(Ar,q,N) =
n

∑
i=1

(yi− φ̂r,n,Ar(xxxi))21Bp(0,1)(xxxi)

and the corrected form of it,

FPEn(Ar,q,N) =
nBp(0,1) + tr(Sn,Ar IBp(0,1))
nBp(0,1)− tr(Sn,Ar IBp(0,1))

× RSSn(Ar,q,N)
nBp(0,1)

,

where nBp(0,1) = #{i|xxxi ∈ Bp(0,1)} and IBp(0,1) is the n×n diagonal matrix with
ith diagonal equal to 1 when xxxi ∈ Bp(0,1) and zero otherwise.
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� The estimate φ̂r is taken as any of the φ̂r,Ar s with r≤ p that achieve the minimum
of FPEn(Ar,q,N) over the Ars satisfying the minimum angle requirement.

For this procedure, Chen (1991) establishes optimal convergence. One of the issues is
that the models in PPR can have large rs and so be very flexible. This means one must
distinguish carefully between finding structure in the data that is true and incorrectly
finding structure that has arisen purely by chance. Two of the four major conditions
for Chen’s theorem help to avoid spurious findings. They are (i) the density of XXX is
bounded away from 0 and infinity on its support and (ii) infxxx Var(Y |XXX = xxx) > 0 and,
for a large enough τ , supxxx E(|Y −φ(xxx)|τ |XXX = xxx) is bounded. Condition (i) ensures the
smoother is nontrivial, and condition (ii) ensures yi−φ(xxxi) is not too small.

Theorem (Chen, 1991): In addition to (i) and (ii), assume (iii) that the true function
φ0 is of the form (4.3.1) and can be written as

φ0(xxx) = μ0 +
r0

∑
k=1

ψk(xxxβββ k),

for a collection of r0 bounded, q times differentiable, Lipshitz-continuous functions ψk

of order �, and (iv) that AK0 in φ satisfies the minimum angle bound.

Let N ≈ n1/(2p+1), where ν = q+ �. Then

lim
n→∞

sup
f satisfying (4.3.1)

with ∑ fk as in (iii)

Pf

(
1
n

n

∑
i=1

(φ̂(xxxi)−φ0(xxxi))21Bp(0,1) ≥
c

n2ν/(2ν+1)

)
= 0. �

Thus, as long as the true function is representable as a sum of functions of univariate
projections, the PPR fit is a consistent estimator of smooth surfaces. Informally, the
PPR estimator converges to a unique solution under essentially the same conditions
as for the additive model; i.e., the values of the explanatory variables do not lie in the
concurvity space of the smoother, and the functions in f are not too small or functions
of nearby projections. Incidentally, Chen’s theorem also establishes consistency and
optimality for purely additive models if the βk’s are chosen to have 1 in the kth place
and zeros elsewhere. Note that Chen’s method uses splines, obviating backfitting.

Zhao and Atkeson (1991) have a theorem that is conceptually foundational: PPR es-
capes the Curse on spaces that do not admit a finite-dimensional parametrization if
the function space is suitably restricted otherwise; see also Zhao and Atkeson (1994).
In their theorem, the restrictions include square differentiability of the target function
(which is mild) as well as two other sorts of properties whose restrictiveness is more
difficult to assess. One is that the true f can be represented as an integral of ridge
functions,

f (xxx) =
∫
Ωd

g(xxxβ )w(β )dβ ,

where Ωd is the unit sphere in d dimensions, equipped with a weight function w on
it, and g is some fixed function. The other assumptions are smoothness requirements.
The Zhao-Atkeson theorem seems to go beyond its predecessor Barron’s theorem (see
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Section 4) in that it may reduce to the case for single hidden-layer neural networks if
the fks are known to be sigmoids. Moreover, PPR regression includes much beyond
single hidden-layer neural networks. (General neural networks do not reduce to the
PPR case in any obvious way, either.) The proof of Barron’s theorem is explained
below and has some features in common with the more complicated proof of the Zhao-
Atkeson theorem which is not presented here.

Overall, PPR works best when some explanatory variables are commensurate; e.g., in
predicting life span, similar biometric measurements might be bundled into one linear
combination, and income-related measurements might form another. Also, heuristi-
cally, PPR avoids the Curse in a limited sense: Because it is intended for settings in
which most of the regions of a high-dimensional space are empty, it focuses on low-
dimensional linear projections. This means that the force of the Curse kicks in when
the structures are highly nonlinear; i.e., typically only at relatively refined levels of
approximation. As can be surmised from the procedure, PPR can be computationally
demanding. However, using principal components as the explanatory functions in a
regression, see Chapter 9, is a special case of PPR that can be easily implemented, as
it is based on the eigenvectors of the estimated covariance matrix.

4.4 Neural Networks

Originally, mathematical neural networks were intended to model the learning and pat-
tern recognition done by physiological neurons. This is described in Hebb (1949), who
modelled a synapse as a link from the output of one node to the input of another node,
with a weighting related to the correlation in their activity. Thus, groups of neurons
could be linked and thinking modeled as the activation of such assemblies. Rosenblatt
(1958) continued the Hebb model, focusing on how the links from neuron to neuron
could be developed; in particular he proposed the basic mathematical model still used
for (artificial) neural networks (NNs). His basic unit was called the perceptron (now
called a “node”), which upon receipt of a signal would either respond or not, depending
on whether a function exceeded a threshold. Although this model has not been con-
sidered applicable by neurophysiologists since the 1970s, the mathematical structure
remains of great importance in classification and regression contexts.

The class of NNs is very large and somewhat complicated because it involves network
architecture as well as estimation of parameters once the network is fixed. The simplest
NN has the form

Y = β0 +
r

∑
k=1

γkψ(xxxTβββ k +νk)+ ε, (4.4.1)

where xxx is a p-dimensional vector of explanatory variables, the βks are projection
vectors as in PPR and νk shifts the argument of the sigmoid function ψ to locate the
projected vectors in the right place. The typical choice for the sigmoid function is
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ψ(xxx) = ψν ,β (xxx) =
1

1+ exp(ν+ xxxTβββ )
, (4.4.2)

which is shown in Fig. 4.2. More generally, any nondecreasing IR-valued function ψ
satisfying ψ(t)→ 1,0 as t →±∞ will do.
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Fig. 4.2 The logistic sigmoid from (4.4.2) is one choice for the node function.

The network associated with (4.4.1) is shown in Fig. 4.3. It has a single “hidden layer”
with r nodes, each corresponding to a term ψk(·). The layer is called hidden because
only the linear combination of their outputs is actually seen as the sum Σ . The network
is feedforward in the sense that the outputs from the hidden layer do not affect the
earlier inputs. The p-dimensional input XXX is written as having been partitioned into
N subvectors X j so XXX = (X1, ...,XN). The X js represent blocks of data that can be
treated differently if desired. Proponents of NNs argue one of the main strengths of
NNs is their ability to accommodate multitype data.

Like GAMs and PPR, single hidden layer NNs are variants on basic additive models.
GAMs, for instance, merely adds a link function. Note that single hidden layer NNs
are a special case of PPR – regard the node functions as in (4.4.2) as fixed versions of
the univariate fks so that only the projection vectors need to be identified. The general
relationship between multi-layer NNs and PPR is less clear: In NNs the functions are
fixed and there are more parameters while in PPR the functions must be estimated but
there are fewer parameters. So, it is difficult to compare the spaces they span.

Overall, however, feedforward NNs, like PPR, are best regarded as a rich class for
nonlinear regression. Indeed, NN structures go far beyond additive models by iterating
the composition of nodes. For instance, a two hidden layer neural network with s nodes
in the second hidden layer extends (4.4.1) by treating the r outputs from the first hidden
layer as inputs to another layer of nodes. That is, set ψk = ψ(xxxβββ 1,k + ν1,k) for k =
1, ...,r = r1 and form

φ j = ψ((ψ1, ...,ψr) ·βββ 2, j +ν2, j) (4.4.3)
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Fig. 4.3 Data of N types is fed into the first (and here only) hidden layer. Each node ψk in the hidden
layer is the composition of the sigmoid ψ with an affine function of XXX defined by βββ k and νk. The
outputs from the hidden layer are combined linearly to give the overall output Σ .

for j = 1, ...,r2, where the βββ 2, js are r1-dimensional and the ν2, js are real. Then the
overall output from the second layer is

Σ = β ′0 +
r2

∑
j=1

γ2, jφ j.

That is, a single hidden layer NN structure is fed into the second hidden layer, which
is combined as before. Evidently, this can be repeated to form many layers, and the
structure becomes even more complicated if the output of one layer need not be fed
forward to the next layer but can skip one or more layers. A class of NNs that includes
more than one hidden layer is a reasonable class of models for nonlinear regression but
does not obviously contain PPR or additive models, nor do they necessarily contain
NNs with more than one hidden layer.

Consequently, when implementing an NN model, one often must choose the network
architecture first before estimating the coefficients within each layer. Architecture se-
lection, r in the case of (4.4.1), can be done by cross-validation or by simulated an-
nealing (both discussed briefly in Chapter 1). Even so, it is often important to limit
the number of nonzero parameters; this can be done by regularization (also sometimes
called shrinkage methods), which amounts to penalizing the squared error, usually by
λ times a squared error penalty on the parameters.

Observe that multilayer neural nets reduce to linear models if ψ is linear. Indeed, if the
input vector to the first layer is X , then the output of a first-layer node is Y = W1X for
weights W1. If this is fed into a linear second-layer node, then the output is Z =W2W1X ,
again a linear function of the inputs. Repeating this under squared error makes the
overall SSE of fitting the NN, Ê, reduce to the usual SSE in linear models, although
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the linearity only holds if the parameters are redefined to absorb the γk’s into the βks.
Another choice for ψ is thresholding, so that the output of a node will be, say, 0 or
1, depending on the value of its argument, say ∑wixi. This is often not very good
because thresholding is relatively inflexible. As but one instance, thresholds are unable
to express an “exclusive or” function using linear functions of its inputs. For instance,
if we want a large value when either x1 = 1 or x2 = 1 but not when x1 = x2 = 0,1, a
simple threshold will often assign 1 when x1 = x2 = 1 or x1 = x2 = 0.

Since the point of NNs is to make use of a rich class of functions, there are many
theorems about their ability to approximate functions; one will be stated in Subsec-
tion 4.4.3 . Some experts take the view that single hidden layer neural networks are
a large enough class because large enough sums of them can approximate essentially
any function. Others argue that neural network performance can be significantly im-
proved in many applications by careful selection within larger classes of NN models.
In other words, the decrease in bias from using a deeper net is predictively better than
combining many nodes in a single layer. It is an open question how the variability
from model selection (either the number of nodes or the configuration of the mul-
tilayer net) affects the prediction, but some authors have examined this question by
using simulated annealing repeatedly to assess the impact of model selection. A good
overview of these issues can be found in Bullinaria (2004). Here, it will be enough
to outline the main computational procedure for estimation, called backpropagation,
discuss some straightforward aspects of inference and approximation, and see that,
surprisingly, NNs evade the Curse, at least in a formal sense.

4.4.1 Backpropagation and Inference

If the number of nodes, r in (4.4.1) or (r,s) in (4.4.3) for instance, is assumed big
enough that the degree of approximation is adequate (i.e., model misspecification can
be neglected), then the only task is to estimate the parameters. If one must estimate
all the parameters, the main technique is called backpropagation; it is an example of
a gradient descent. “Backprop”, sometimes called a general delta rule, is an iterative
fitting technique based on improving an initial estimate by shifting it in a direction in
the parameter space along which the empirical error decreases.

Start with a measure of performance such as the sum of squared errors

Ê(WWW ) =
n

∑
i=1

(yi−Net(xi,WWW ),)2 (4.4.4)

in which Net is the function described by the NN and W generically indicates the
parameters in the NN. In (4.4.1), W is β0, the βββ ks, the νks, and the γks. For (4.4.3), W
includes β ′o, the βββ 2, js, the ν2, js, and the γ2, js as well.

In general, estimators ŵn satisfying (1/n)∑n
i=1 m(Zi, ŵn)→ 0 are consistent for a so-

lution to E m(Zi,w) = 0, where Zi = (Yi,XXXi) and m represents a general optimality
criterion. If m is chosen to represent squared error as in (4.4.4), then it is possible to
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find ŵ = argminWWW Ê(WWW ) that is consistent for the minimizing wopt = argminWWW E(Y −
Net(X ,WWW ))2; see White (1981). Moreover, such ŵs are typically asymptotically nor-
mal. Indeed, √

n(ŵ−w)→ N(0,A−1BA−1)

in distribution, where A = E ∇2Ê(wwwopt), and B = Var(
√

n∇Ê(wwwopt)). Consistent esti-
mators are given in White (1989) as Â = ∇2Ê(ŵww) and

B̂ = (1/n)
n

∑
i=1

∇Net(xi, ŵww)′∇Net(xi, ŵww)(yi−Net(xi, ŵ))2.

Despite the seeming simplicity of this procedure, it can be computationally demanding
because the error surface as a function of WWW is very complicated, with many local
maxima and minima in which a solution can get trapped. Even so, a method based on
Taylor expansions (i.e., gradient descent) or backpropagation is often used. Start with
a guess www0 for the value of wwwopt . Choose a sequence of “learning rates” η = ηk > 0
and consider the recursion

wwwi = wwwi−1 +η(∇Net)Ti−1(yi−Neti−1), (4.4.5)

in which Neti−1 = Net(xi,wwwi−1), and ∇Neti−1 is the Jacobian matrix from Neti−1. The
factor η is a learning rate in the sense that it specifies how much wwwi changes as a
consequence of the Newton updates; in some cases η = ηi. Note that this version of
backprop implicitly does as many iterations as there are data points, and the formal
theorems assume n increases indefinitely.

A more explicit form for this local gradient descent can be derived for the case where
the nodes in the network are fully connected from layer to layer in a grid. Thus, each
node j = 1, ...,r� at layer �, � = 1, . . . ,L receives inputs from all r�−1 nodes at the earlier
layer but from no other nodes. If the β s are suppressed by incorporating them into a
coefficient on a constant variable at each layer, then the generic node function is

ψ�, j = ψ

(
r�−1

∑
u=1

ψ�−1,uw�, j,u

)
(4.4.6)

for j = 1, ...,r� and weights WWW = (w�, j,u|�, j,u). Now, if there are L layers, the error
can be written in terms of the Lth layer as

Ê(WWW ) =
n

∑
i=1

(
yi−

rL

∑
u=1

ψL,uwL,u

)2

(4.4.7)

since rL = 1 means there is only one node function after the Lth layer to match the
response Y . Clearly, (4.4.6) can be substituted into (4.4.7) to effect the composition of
functions. So, for instance, the outputs from the second layer of a two-layer network
that get linearly combined to fit the Yis are
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ψ2, j(·) = ψ

(
r1

∑
u=1

ψ1,uw1, j,u

)
= ψ

(
r1

∑
u=1

ψ

(
N

∑
v=1

Xvw0,u,v

)
w1, j,u

)
(4.4.8)

for j = 1, ...,r2. In this form, it is easy to see how to take the partial derivatives of ψ2, j,
and hence E(WWW ), with respect to any of the weights wr�, j,u.

It is seen that there are two sorts of backprop algorithms. The first, from (4.4.5), as-
sumes an infinite sequence of variables and uses their average properties to see that
they converge to a minimum. If the minimum is unique, then the process is convergent
to a useful estimate. More typically, the roughness of the error surface for a fixed sam-
ple as a function of the parameter w is so high that there are numerous minima. So,
the theoretical backprop cycles through all the minima like a mixture over the limit
points. The usefulness of this construction is the formal obtention of consistency and
asymptotic normality.

The second sort of backprop is pure gradient descent. This rests on Newton-Raphson,
and the iteration is over the location of wi as determined by derivatives of the empirical
error, not cycling over the individual data points (which would formally limit the pro-
cedure to n iterations unless repetitions were allowed). This kind of procedure takes
derivatives explicitly in (4.4.7) for use in (4.4.5) for the Newton step so as to adjust
the weights WWW to reduce Ê(WWW ). It has a tendency to converge to a unique limit (which
is good) but does not deal with the possibility that the limit is purely local, not global
(which is bad). In practice, a variety of starting values w0 can be used to search over
limits in an effort to ensure a global minimum has been found.

The central idea in backprop is to make a change in one or more of the weights so
that Ê(W ) is reduced. A large change in a weight w�, j,u only makes sense if (i) there
is a big discrepancy between the actual output and desired output of a node, (ii) the
discrepancy depends on the weight w�, j,u, and (iii) the change in the weights leads to
a correspondingly large change in Ê. In stating these conditions, model uncertainty
means that the true regression function is arbitrary and need not be any neural network
close to the current estimate. Since w�, j,i is the weight on a connection between a node
in layer � and a node in layer �−1, a change in the input to a node results in a change
in its output that depends on the slope of the function, its sigmoid in particular. The
steeper the sigmoid, the faster the learning but the harder it is to get stable values.

Alternatively, and more typically, a penalty function (usually the sum of squared pa-
rameters) is added to Ê(WWW ) so that the solution is smoothed, as with splines. This
decreases the chance that a solution will get trapped in a local minimum. Because the
landscape (i.e., the error as a function of the architecture and parameter values) of NNs
is so rough, this is a major problem for NNs. Indeed, there may be changes in architec-
ture and parameter values that are well within any reasonable confidence regions that
give a substantially better fit and prediction. The penalty term ensures the objective
function is more bowl shaped, for instance in the squared error case, so that the bottom
of the bowl is likely to represent a better model.

To obtain formal statements for the consistency and asymptotic normality of backprop
estimators from (4.4.5), at least for single hidden layer NNs, a small detour into recur-
sive m-estimators is helpful; results for backprop will be special cases. To state this, let
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Zi = (Yi,XXXi) be a sequence of IID 1 + p-dimensional random vectors with Euclidean
norm ‖Zi‖ ≤ Δ < ∞ and let m : IR1+p × IR� → IR� be smoothly differentiable with
mean M(w) = Em(Z1,w) < ∞ for w ∈ IR�. Given ηi and an initial w0, the recursive
m-estimator at the ith step is

w̃i = w̃i−1 +ηim(Zi, w̃i−1).

The next result is from White (1989), who credits Huber (1967) and Ljung (1977).

Theorem (White, 1989): Suppose < η j > is a divergent sequence so that

∞

∑
i=1

ηi = ∞, sup
i

(
1
ηi
− 1
ηi−1

)
< ∞, and

∞

∑
i=1

ηr
i < ∞,

for some r > 1, and suppose that there is a smooth Q : IR� → IR so that, ∀w ∈ IR�, the
inequality (∇Q(w))M(w)≤ 0 holds.

Then, either w̃i → Ω ≡ {w : (∇Q(w))M(w) = 0} as n→ ∞, in the sense that inf‖w−
w̃i‖→ 0 for w ∈ {w : ∇Q(w)M(w) = 0}, or w̃i → ∞, with probability 1. �
Extensions to this theorem ensure M(w∗) = 0 for limit points w∗ of w̃i and that w̃i

tends to a local minimum of Q(w). Moreover, White (1989) establishes the results for
the case of multidimensional outputs.

Now, the consistency of backprop in single hidden layer NNs is guaranteed by the
following. Recall that the empirical error is Ê(w), and ∇Net(xxx,w) is the 1×� Jacobian
matrix of Net wrt www. Set E(w) = ELi(w), where Li(w) = (yi−Net(xxxi,w))2, so that
∇Li(w) =−2∇Net(yi−Net(xxxi,w)). For notational convenience, set

∇L∗i = ∇Li(w∗), Ñeti = Ñet(xxxi, w̃i−1), and ∇̃Neti = ∇(Ñet(xxxi, w̃i−1)),

so that (4.4.5) becomes

w̃i = w̃i−1 +ηi(∇̃Net
T

i−1)(yi− Ñeti−1). (4.4.9)

Corollary (White, 1989): Assume (i) Zi = (Yi,XXXi) are IID 1+ p dimensional random
vectors, (ii) the output Net(xxx,w) from the single hidden layer NN to fit Y is of the form
(4.4.8) with r2 = 1, or, equivalently, ψ on a linear combination of outputs from (4.4.3),
and (iii) the sequence < ηi > satisfies the conditions of the theorem.

Then, the backprop procedure in (4.4.9) has iterates w̃i that converge to

Ω ∗ = {w : E ∇Ln(w) = 0}

with probability 1 or diverge to ∞ with probability 1. Moreover, if E(w) has isolated
stationary points with J∗ = E((∇L∗i )

T∇L∗i ) positive definite for w∗ ∈Ω ∗, then w̃i con-
verges to a local minimum of E(w) with probability 1 or to ∞ with probability 1. �
Note that White’s result is for a single output formed from the nodes in a single hid-
den layer NN. The reason is that White’s result extends to multidimensional Y . This
suggests the whole framework can be extended to multiple hidden layers. However,
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such an extension would be difficult involving theory from nonlinear least squares es-
timation. White’s formulation also permits the analogous conclusion using different
sigmoids at different nodes or no outer sigmoid. Indeed, the setting of Barron (1993)
discussed in the next subsection does not use such a final sigmoid and demonstrates
how to estimate the NN with risk O(1/n). Of course, it is easy to see that for any
sigmoid of a linear combination of first-layer outputs, there will be a linear combina-
tion of a (possibly larger) collection of first-layer nodes that can approximate it to any
desired accuracy.

Given the consistency for backprop from the proposition, a result for asymptotic nor-
mality can be stated. The proof involves techniques from Gaussian processes that are
not central to the development here, for which reason they are omitted.

Theorem (White, 1989): Strengthen assumption (ii) of the corollary to ensure that the
derivatives of the output function Net and its constituents exist and are bounded. In
place of (iii), assume ηi = δ/n for some δ > 0. Then assume that w̃i → w∗ a.s. for a
stationary point w∗ of E(w) and that J∗ is PD. If δ > 1/2λ ∗, where λ ∗ is the smallest
eigenvalue of ∇2E(w∗), then

√
n(w̃i−w∗)→ N(0,PHP−1)

in distribution, where P is the orthogonal matrix such that PΛP−1 = ∇2E(w∗), in
which Λ is the diagonal matrix containing the eigenvalues λ1, ...,λ� of ∇2E(w∗) in
decreasing order and H is the �×� matrix with elements hi, j = δ 2(δλi +δλ j−1)−1K∗i, j

for i, j = 1, ..., �, where the matrix K∗ = [Ki, j] = P−1J∗P. �
It is seen that this result can be difficult to apply. Indeed, such results are necessar-
ily difficult because although a given true function f has a unique representation in
terms of a limit of single-layer feedforward neural nets, the parameters defining the
approximation at each step may be quite different. In practice, it’s as if several differ-
ent parameter vectors give the same functional form but cannot be distinguished. Even
when this can be avoided, as a generality, PHP−1−A−1BA−1 is positive semidefinite;
see White (1989), Section 5. Thus, in contrast to the nonlinear least squares estima-
tor, backprop is not efficient because A−1BA−1 is the best possible. There are ways to
improve backprop, but they are beyond the present scope. Despite this, backprop as a
technique is often used because it does readily give point estimates and bootstrapping
can be used to indicate precision. In all of these methods, it is unclear in general how
quickly the asymptotics backprop, nonlinear least squares, risk-based methods, and so
forth become dominant.

Germane to the problem of identifying NNs is the asymptotic behavior of least squares
estimators in nonlinear regression settings, namely consistency and asymptotic nor-
mality. Standard results of this sort, for general nonlinear models, can be found in Gal-
lant (1987). One problem is that asymptotic normality in NNs can occur regardless of
whether the model whose parameters are being estimated is true. Consequently, White
(1981), Section 4 develops goodness of fit analogous to the χ2 test but for general
models, based on squared residuals.

There is also a well-developed Bayesian theory of NNs; it rests on putting priors on
the number of node functions and their architecture while also assigning priors to the
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parameters in each NN model. As is typical in this kind of Bayes context, the compu-
tational implementation to find the posterior is a major challenge. See Lee (2004) for
a good treatment.

4.4.2 Barron’s Result and the Curse

In 1991, Andrew Barron startled statistics by showing that neural networks can evade
the Curse of Dimensionality. Because NN can be related to other classes of models,
analogous results are expected for other settings. Indeed, Zhao and Atkeson (1991),
Zhao and Atkeson (1994) give such a result for PPR. Here, an intuitive sketch for
Barron’s theorem is given; the full result is stated at the end of this section and proved
in the Notes at the end of this chapter.

Recall that for function estimates f̂ (xxx) of a true function f (xxx), one typical measure of
distance is the

MISE[ f̂ ] = EF

[∫
[ f̂ (xxx)− f (xxx)]2 dxxx

]
,

where the expectation is taken with respect to the randomness in the data {(Yi,XXXi)}.
Before Barron (1991), it had been thought that the Curse implied that, for any re-
gression procedure, the MISE had to grow faster than linearly in p, the dimension
of the data. Barron showed that neural networks could achieve an MISE of order
O(r−1)+O(rp/n) lnn, where r is the number of hidden nodes.

Barron’s theorem is a tour de force. It applies to the class of functions f ∈ Γc on IRp

whose Fourier transforms g̃(ω) satisfy
∫
|ω|g̃(ω)dω ≤ c,

where the integral is in the complex domain and | · | denotes the complex modulus. The
importance of the class Γc is that it is thick, meaning that it cannot be parametrized by a
finite-dimensional parameter. However, as it is defined in terms of Fourier transforma-
tions, Barron’s set is not the full nonparametric function space. It may be best regarded
as an unusually flexible version of a parametric model. Indeed, it excludes important
functions such as hyperflats. However, it contains open sets in the topology.

With much oversimplification, the strategy in Barron’s proof is:

• Show that, for all f ∈ Γc, there exists a neural net approximation f̂ ∗ such that ‖ f −
f̂ ∗‖2 ≤ c∗/n.

• Show that the MISE in estimating any of the approximations is bounded.

• Combine these results to obtain a bound on the MISE of a neural net estimate f̂ for
an arbitrary f ∈ Γc.
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Barron’s theorem ensures that these NNs can approximate any element in a large space
with n terms to order O(1/n) independently of the dimension p of xxx.

Since PPR is a generalization of single-layer feedforward NNs, observe that if a func-
tion f on IRp admits a representation in both function spaces, we have that

f (x) =
r

∑
k=1

fk(xxx′θk) =
r

∑
k=1

γkψ(βkx+νk).

PPR permits r distinct functions, absorbing the coefficients γk and the locations νk

into them, while NNs restrict the generality of the representation. The function space
one would associate with PPR is clearly larger. Since the Zhao and Atkeson (1991)
approach relies on smoothness classes, it is unclear how much larger their function
space is than the collection of all NNs. The import of their result is that, like NNs, one
can obtain rates of convergence of an L2 error that goes to zero independently of p
when the number of terms in the PPR sum is n and the rate is O(1/n).

Indeed, one can use Barron’s theorem on each term in the PPR sum of f to get rm
terms (m nodes for each NN that approximates an fk) that are needed to approximate
f to order O(1/r), provided the functions fk are in Γc, the space of functions used in
Barron’s Theorem. This will give a generalization to a class of PPRs, but is a weaker
statement with a narrower domain of application.

4.4.3 Approximation Properties

Neural nets are an exceedingly rich class of models that can be very unstable because
very different NNs may fit the same set of data equally well. In other words, small
differences in the data, or estimation procedure can lead to very different networks with
large differences in performance. This arises because they are so flexible: The number
of nodes, the architecture, the large number of parameters, and the sigmoid function
can all be chosen from very broad classes. This instability is one reason NNs are so
hard to interpret and why regularization is so important. In Chapter 7, the computed
examples will show that even with regularization NNs give fairly irregular curves.

NNs can also be used in a classification context. Binary classification can formally be
regarded as a special case of function estimation in which the function to be estimated
takes only values ±1 so the task is to identify the set on which one of the values is
assumed. Thus, NNs can be used to find the decision boundary. For simplicity, assume
the Yi’s are binary, taking values −1, +1, and the model is of the usual form Y =
f (xxx)+ ε . (Technically, this model is incorrect. However, it is useful.) A NN classifier
should provide an estimate f̂ , from a class of NNs, that tries to express Y as a step
function of the features with regions for −1 and +1.

To see that NNs can do classification as well as regression, it is enough to show an
approximation theorem: Essentially any continuous function can be approximated by
an NN of sufficiently large and complicated structure in any “reasonable” measure of
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distance in any function space. One way to state this more formally, for single hidden
layer NNs, is the following.

Theorem: For any sigmoid function ψ , any continuous function f (xxx) for xxx ∈ [0,1]p,
and any ε > 0, there is an integer r and real constants γk, βk, j, and νk for j = 1, ..., p
and k = 1, ...,r such that

∣∣∣∣∣ f (x1, ...,xp)−
r

∑
k=1

γkψ

(
p

∑
j=1

βk, jxxx j−νk

)∣∣∣∣∣< ε. �

Note that this theorem only requires single hidden layer networks, a relatively small
subclass of all NNs.

It is obvious that when the true function f assumes values ±1 and { f (xxx) = 1} has a
smooth boundary that NNs can give a continuous approximation ψ to f that is within
any preassigned ε of f away from the boundary. Then, one can replace the continuous
approximation ψ with

ψclass(xxx) =
{

1 if ψ(xxx)≥ 0,
−1 if ψ(xxx) < 0.

Alternatively, one can choose a sequence of continuous functions ψ� converging to the
discontinuous function f as �→ ∞. Thus, step functions with nice boundaries can be
approximated in a limiting sense.

Even when cross-validation or simulated annealing can be used to fix a network archi-
tecture and gradient descent minimizing E(W ) =∑n

i=1(yi−Net(xi,W ))2 can be used to
give the weights in an NN, the results may not be satisfactory. One way to investigate
this is to examine the old nemeses of bias and variance. Recall that from standard de-
cision theory the optimal theoretical minimizer under squared error is the conditional
mean. So, if possible, g(x) = E(Y |x) is a natural choice to be estimated by finding
the weights (and architecture) achieving the minimum of (E(Y |x)−Net(x,W ))2 on
average over random data D. That is, write

E(E(Y |x)−Net(x,W,D))2 = (E(Y |x)−ENet(x,W,D))2

+E(ENet(x,W,D)−Net(x,W,D))2.

The first term is a bias, or approximation error, and the second is the variance of the
approximation Net(x,W,D) over possible data sets D. Thus, the optimal net, as ever,
is a trade-off between variance and bias. The two extreme cases would be a constant
network that has zero variance but terrible bias and a network so large that for D
with sample size n it could fit every data point perfectly giving zero bias but terrible
variance. In practice, one deals with these by using networks that are neither too big
nor too small and tries to ensure that the error is small over the range of NNs that can be
estimated adequately. As will be seen in the computations of Chapter 7, regularization,
or penalty terms, must be used on NN models to help stabilize variability.

A standard criticism of NNs, apart from instability, is that they are hard to interpret
physically. However, there are partial answers to this. For instance, once an NN has
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been obtained, one may want to eliminate irrelevant explanatory variables and re-
estimate the NN – with weights alone or weights and architecture together. Then,
reversing the procedure, one can use the NN to partition the data by looking at the
outputs from the last hidden layer. If these clusters made sense, then the model would
be partially validated. This procedure can be repeated on any layer in the NN as a
check on how the data are grouped.

Another strategy for developing interpretations for NNs is given in Feraud and Clerot
(2002). Their definitions help formalize stability and plausibility arguments and can be
used in both classification and regression settings even though they are more natural
for classification. First, one can investigate the optimality of the NN by looking at the
second derivative of the error. For brevity, write the NN function as f (xxx). Then, for the
kth value of input i,

fk,i(a) = f (xk
1, ...,x

k
i +a, ...,xk

p)

represents the stability of the class or value assigned as a varies. An extension of this
called the causal importance is

CI(a|xxxi, f ) =
∫

xi

fi(xi +a)pi(xi)dxi,

where pi is the marginal distribution of the ith explanatory variable and fi is fk,i for an
arbitrary location (not necessarily a data point). Once irrelevant or correlated variables
have been removed, the “saliency” of each input is

S(xxxi| f ) =
∫

a

∣∣∣∣
∫

xi

pi(xi)[ fi(xi +a)− fi(xi)]dxi

∣∣∣∣da,

or, to take into account the input values,

S(xi| f ) =
∫

a

∣∣∣∣
∫

xi

pi(xi)p(a|xi)[ fi(xi +a)− fi(xi)]dxi

∣∣∣∣da.

While these definitions do not themselves give a general interpretation for parameters
or architectures, they do assess key properties, akin to specificity and sensitivity, that
help characterize the robustness of an NN under local perturbations.

4.4.4 Barron’s Theorem: Formal Statement

Recall that Barron’s theorem is a formal demonstration that NNs escape the Curse
of Dimensionality at least for some function classes that have an interior and are not
parametrizable by any finite number of parameters. To present Barron’s result, let fr(xxx)
be the right-hand side of (4.4.1), the generic expression for a single hidden layer feed-
forward NN, suppressing the weights W for concision. The Curse will be evaded if
the approximation error, as a function of the number of terms r, is of order O(1/r),
for, if so, the number of parameters to be estimated is (p + 2)r + 1, linear in r, which
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can be estimated with error O(r). Other regression techniques have an approximation
error rate of (1/r)(2/p) (i.e., slower and dependent on p) or need exponentially many
parameters, see Barron (1993).

The generic result is that, for a large class of functions f on IRp, for each r an fr can
be found so that

|| f − fr|| ≤Cf /r,

where
Cf =

∫
IRp
|w|| f̃ (ω)|dω,

in which f̃ (ω) is the Fourier transform of f ,

f (xxx) =
∫
IRp

eiω·xxx f̃ (ω)dω.

The large class is defined via Fourier transforms as follows. For a function f on IRp,
write its magnitude distribution as F(dω) and its phase at frequency ω as θ(ω).
Then, the Fourier distribution of f is a unique complex-valued measure F̃(dω) =
eiθ(ω)F(dω). Now,

f (xxx) =
∫

eiω·xxxF̃(dω) = f (0)+
∫

(eiω·xxx−1)F̃(dω).

The second expression holds more generally than the first, a distinction ignored here.
Now, let B⊂ IRp be a bounded set containing xxx = 0 and let

ΓB =
{

f : B→ R | ∀xxx ∈ B, f (xxx) = f (0)+
∫

(eiω·xxx−1)F̃(dω)
}

.

It is implicit, as part of the definition of ΓB, that F̃ has a magnitude distribution F for
which

∫
|ω|F(dω) is finite. The set to be actually used in the theorem is a restriction

of ΓB denoted ΓB,C: Letting C > 0 be a bound on B for use with |ω|B = supx∈B |ω · x|,
set

ΓB,C =
{

f ∈ ΓB : ∃ F̃ , representing f on B, so that
∫
|ω|BF(dω)≤C

}
.

The unexpected result in this context is that the error of approximating f ∈ ΓB,C by
sums of r sigmoids is Cf /r, independent of p.

Theorem (Barron, 1993): For any f ∈ΓB,C, any sigmoidal function φ , any probability
measure μ , and any r ≥ 1, there exists a linear combination of r sigmoidal functions
fr(xxx) so that ∫

B
( f (xxx)− fr(xxx))2μ(dxxx)≤ (2C)2

r
.

The coefficients in fr can be assumed to satisfy ∑r
j=1 |c j| ≤ 2C and c0 = f (0).
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Barron’s proof has five major steps, some necessitating extra definitions. These steps
are outlined in the Notes, some in detail where it’s needed and some cursorily where
the statements are more intuitive.

4.5 Recursive Partitioning Regression

The partitioning meant here is of the domain of the regression function. That is, the
space of xxxs is partitioned into subsets on each of which a local regression function
can be specified. The initial partition is coarse, often just two subsets, but gets refined
with each iteration because sets in the partition are split, usually into two subsets but
sometimes more. Often the local regression function on a partition element is just a
constant – the mean of the Y s arising from xxxs in a set from a given partition. In these
cases, the regression function is like a bin smoother that defines bins by the splits. The
benefit of the recursive selection of elements in a final partition is that it is adaptive
and so can capture functions whose surfaces represent interaction structure.

Formally, recursive partitioning fits a model of the form

Y =
r

∑
j=1

β jI(xxx ∈ R j)+ ε, (4.5.1)

where the regions R j form a partition of the space of explanatory variables and the
coefficients β j are estimated from the data. Model (4.5.1) is another extension of the
generalized additive model; the smooths are just average values on regions that must be
estimated from the data. As written, (4.5.1) uses a constant function on each R j; below,
a generalization of this is used in which the β js are replaced by arbitrary regression
functions, one for each R j. This permits different models to be used for different re-
gions of the explanatory variables. Recursive partitioning models are usually called
trees because the sequence of partitions can be represented as a tree under contain-
ment.

The most famous recursive partitioning method is CART, an acronym for classifica-
tion and regression trees, see Breiman et al. (1984). As the name implies, the tree
structure of the recursive partitioning method applies to both regression and classifi-
cation. However, the techniques used with trees for regression and for classification
are quite different owing to the nature of the problem. By contrast, NNs can be used
for both regression and classification as well, but the estimation techniques are more
similar. This section focuses on regression primarily; in Chapter 5, the classification
perspective is primary.

Tree structure helps makes regression results interpretable. For instance, suppose p = 2
and a recursive partitioning procedure has fit a model of the form (4.5.1), generating
an r = 3 element partition: {x2 > 1}, {x2 ≤ 1,x1 > 2}, and {x2 ≤ 1,x1 ≤ 2}, with
(β̂1, β̂2, β̂3) = (7,5,3). Then, the partition itself can be visualized as three regions in
the plane or as a decision tree structure; see Fig. 4.4. Clearly, the tree indicates how
the partition was found; the top node is called the root and the termini are called the
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leaves. Coupled with a rule for estimating the function in each partition element, this
is equivalent to the model of the form (4.5.1), or to the diagram on the right (with the
values on each partition), when the rule is to estimate the function by its average on
the partition element. (More complicated function estimation procedures can be used
on the partition elements. Often this is not feasible because there are not enough data
to choose a good partition and estimate a complicated regression function on it.)

X1

X2

5

7

3

0
2

1

X2 > 1 ?

X1 > 2 ?

Ŷ= 3 Ŷ= 5

Ŷ= 7

Yes

No Yes

No

Fig. 4.4 On the left is the partition in the plane, with boundaries parallel to the axes. The decision tree
on the right indicates the equivalent sequence of splits a recursive partitioning procedure would find.

One of the benefits of regression trees is that the influence of some variables can be
localized to some regions of the domain space and not matter on others. That is, the val-
ues of the regression function on different regions can be so different that it is efficient
to allow function values on one region to be unaffected by values on other regions. This
may be useful when a response really does require different explanations on different
regions. NNs can also localize the influence of variables to a particular region, at least
somewhat, by using nodes in the last hidden layer. However, the localization in NNs
uses a sigmoid of a linear combination, whereas the localization in trees is on regions
that roughly reflect an interaction between variables.

Regression trees are a very different generalization from linear regression than additive
models are in at least four ways. First, they encapsulate region-dependent interactions,
usually by using a decision threshold. This is qualitatively different from the usual
product term popular in multiple regression, which is not localized. Second, the pro-
cedure fits regression functions that are discontinuous at the boundaries of the regions;
this is a drawback if Y is believed to be smooth. However, from a predictive stand-
point, this is rarely a problem. Third, like any method, there are some functions that
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are difficult for models such as (4.5.1) to approximate and estimate. In the case of re-
cursive partitioning, functions that cut across the decision boundaries of the R js are a
problem. For instance, with boundaries parallel to the axes (as in Fig. 4.4) it is difficult
to approximate functions that are linear, or additive in a small number of variables. As
an example, if p = 1 and the true f is a straight line, the best approximation will look
like a staircase. It is hard to decide when a complex recursive partitioning model is
close to a model that would be simple if another set of regressors was chosen. How-
ever, the reverse holds as well: Some functions that are easily described by regions
(e.g., have localized interactions) will be more accessible to recursive partitioning than
to other additive models. Finally, from an empirical standpoint, recursive partitioning
methods are better adapted to high dimensions than many additive methods are because
the sparsity of the data, naturally leads to rougher models. Indeed, recursive partition
methods are often not competitive in low dimensions.

In practice, trees are generally less wiggly than NNs (even with regularization), prob-
ably because of the pruning. However, trees and NNs have similar expressive power,
seeing as how they can both approximate any reasonable function in a limiting sense.
Consequently, in many cases one expects that the stabilities of estimators from trees
and NNs will be roughly comparable.

Because of its flexibility, recursive partitioning is virtually a template method, admit-
ting numerous variations at each stage of fitting. Arguably, there are three typical core
stages. First, the data are used to generate a maximal tree. Second, a collection of
subtrees of the maximal tree must be chosen. Finally, a particular member of that col-
lection must be chosen. Ideally, because these three stages are disjoint, they should
be done with disjoint, equal, randomly chosen subsets of the data. Of course, in prac-
tice this is not always reasonable. Nevertheless, the presentation here will assume this
for ease of exposition, and the sample sizes will be denoted n1, n2, and n3 as needed,
where n = n1 + n2 + n3. Fitting procedures that combine two of the three stages are
often used.

4.5.1 Growing Trees

Suppose n1 of the n data points are to be used to grow a tree, Tmax. Any tree-growing
procedure must have a way to:

1. Select splits at intermediate nodes.

2. Declare a node to be terminal.

3. Estimate Y for the set at a terminal node.

The first two parts are often related: If one has a criterion by which to select splits, it can
also be used to stop selecting splits. The third part is usually the most straightforward:
Use the sample average of the data at each terminal node. In more complicated settings,
linear regression is often used. In principle, any function estimation procedure can be
applied to any of the terminal nodes, subject to having enough data. In addition to
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linear regression, the other methods in this chapter are obvious candidates. So, the
focus in this subsection will be on selecting splits and stopping criteria.

The goal of splitting is to partition the training sample into increasingly homogeneous
groups, thereby inducing a partition on the space of explanatory variables. Homogene-
ity refers to the adequacy of the model at the terminal node for describing the cases at
the terminus, essentially in terms of an error criterion. Splitting usually stops when a
satisfactorily high degree of homogeneity is achieved at the terminal nodes and hence
in the corresponding regions of the xxx-space.

The usual approach is to select splits of the predictor variables used to predict values
of the response variable. One can search for splits in many ways; often the methods
come down to some kind of cluster analysis to find a good split (choose a variable
and cluster its values by some technique such as those described in chapter 8) or to
a predictive criterion (propose a split on the basis of some of the data and evaluate
how well it fits the other data). In general, the split at a node is intended to find the
greatest improvement in predictive accuracy; these algorithms are greedy. However,
this is evaluated within a sample, initially by some kind of node impurity measure –
an assessment of the relative homogeneity or fit of the data to the model at the node.
If one ends in a node for which all the values are well described by the same model,
the impurity is effectively zero, the homogeneity is maximal, the terminal model fits,
and the within-sample “prediction” or fit is perfect. The problem is that out-of-sample
prediction can be terrible.

To minimize bad out-of-sample prediction, three standard techniques are used. First is
a splitting rule that stops before overfitting is too serious. A simple rule is minimum
n: Disallow any further splits when the number of data points at a node is at or below
a threshold. This ensures a minimum number of data points are available for estimat-
ing the coefficients in the regression at the node. A variant on this is to stop when a
specified fraction of ill-fitting points at a node has been achieved. Second is to impose
a condition that one stops splitting when the data at a node are just similar enough, but
not over-similar. This is clearer in the classification context: One can have numerous
small sets of outcomes xxxi giving the same class, as permitted by the Gini coefficient,
to be discussed in Chapter 5. In regression, the corresponding condition would be in-
sisting a variance such as ∑i∈ν(yi− ȳ(ν))2, in which ȳ is the average of the yi-values
at node ν , be small but not too small. Third, and probably best, is to grow a large tree
and then prune it back in some way. This is discussed in detail in the next subsection.

Different partitioning algorithms use different methods for assessing improvement in
homogeneity and for stopping splitting. Because they represent different design crite-
ria, they grow different sorts of trees. Four popular techniques are: (i) defined bound-
aries, (ii) squared error, (iii) Gini, and (iv) twoing. Twoing, like Gini, is more appro-
priate for classification and so is deferred to Chapter 5; the first two are discussed here.
Hybrid methods can switch homogeneity criteria as they move down the decision tree;
some methods maximize the combined improvement in homogeneity on both sides of
a split, while other methods choose the split that achieves maximum homogeneity on
one side or the other (see Buja and Lee (2001)). It should be noted that in small data
sets these four techniques may not lead to particularly different tree structures after
pruning. In larger data sets, however, the resulting trees can be substantially different
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because they have more splits, and later splits depend more and more on the class of
trees each technique favors.

Boundaries can be defined in many ways, the simplest being parallel to the axes of the
xxx-space. The simplest splitting rule is to choose a variable, order its values, and split at
or near the median. Alternatively, one can cluster the values of that variable and split
between clusters. Generically, there are three obvious kinds of splits based on xxx:

1. Is xi ≤ t? (univariate split).

2. Is ∑p
i=1 wixi ≤ t? (linear combination split).

3. Is xi ∈U? (categorical split, used if xi is a categorical variable).

One can do a univariate search over values of t, more complicated searches over {wi},
or search over subsets U of the category values. In all cases, the search seeks the split
that separates the cases in the training sample into two groups with maximum increase
in overall homogeneity.

More statistically, one can use the within-region variance (i.e., a squared error crite-
rion). This is quite popular, and is standard in many implementations. The idea is to
let g ∈ L2, possibly of the form (4.5.1), have the associated error

Ê(g) =
1
n1

n1

∑
i=1

(Yi−g(XXXi))2.

Minima are found by solving

ĝ = arg min
g∗∈T

Ê(g∗),

where g∗ varies over the set of piecewise constant (say) estimators of g defined on the
leaves of a tree T assumed to be in the class T of trees. When E is used in place of Ê,
it gives the population value of the error; i.e., the expectation over the error and XXX .

To see how this works, let S be a collection of sets; the simplest choice is to set S to
be the collection of halfspaces with boundaries parallel to the axes of xxx. This defines
the possible splits and the class T = TS . One strategy is to grow a binary tree out to
a defined maximal size, for instance one data point per terminal node, starting with the
whole XXX-space as the root. Following Gey and Nedelec (2005), let split vary over S .
Since S consists of halfspaces with boundaries parallel to the axes, the optimal first
split from the root is

ŝplit = arg min
split∈S

[
E(gsplit)+E(gsplitc)

]
, (4.5.2)

in which gsplit is an estimator of g using constant functions on the sets defined by split.
In (4.5.2), it is assumed that the xxxs (as data or as instances of the random variable XXX)
are also partitioned according to split. This gives ĝsplit = gŝplit = a1ŝplit +b1

ŝplit
c as the

minimum least squares estimator of g using constant functions at the daughter nodes;
it is easy to see that under the squared error criterion the constants are the means over
split and splitc.
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Once the root has been split once, each of the resulting nodes, nL and nR, can be split
analogously: New sets SL and SR can be defined to replace S . From them one obtains
ŝplitL and ŝplitR with resulting ĝsplit,L, ĝsplit,R. Splitting continues in this fashion until
a tree is produced with the desired homogeneity at each terminal node. Often, one
grows a maximal tree; i.e., one that has a single data point at each leaf.

There is some debate as to how much these splitting criteria matter because in some
contexts, large differences haven’t been noticed very often. This is partially explained
by noting that when data sets are small and highly accurate, trees can be generated
easily and the particular splitting rule does not matter much. However, in many data
mining problems with large inchoate data sets, obtaining a good answer is genuinely
difficult and there is evidence that splitting rules matter a lot because of the kind of
trees they favor finding. In this view, choosing a splitting rule is like choosing a prior –
it favors some trees and disfavors others, though this can be overwhelmed by the data.
Related to this is the fact that with small sample sizes (relative to p or other measures
of complexity) trees exhibit great variability: Two trees may be predictively similar but
mathematically quite different.

4.5.2 Pruning and Selection

When generating trees, it is usually optimal to grow a larger tree than is justifiable and
then prune it back. The main reason this works well is that stop splitting rules do not
look far enough forward. That is, stop splitting rules tend to underfit, meaning that even
if a rule stops at a split for which the next candidate splits give little improvement, it
may be that splitting them one layer further will give a large improvement in accuracy.
Here, it is supposed that n2 data points are used to develop a set of subtrees of a large,
possibly maximal tree and the last n3 points are used to choose among the subtrees.
Clearly, one could use all n2 +n3 data points to prune down to a single tree rather than
dividing the generation of candidate subtrees from selecting among them.

One way to generate a sequence of trees is to apply minimum cost-complexity pruning.
In this process, one creates a nested sequence of subtrees (indexed by α in the cost-
complexity function below) of an initial large tree by weakest link cutting. That is,
given a large tree T generated from a technique in the last subsection, one prunes off
all the nodes that arise from a fixed nonterminal node. The cost-complexity criterion
chooses the nonterminal node to be ever closer to the root as the trade-off between
error and complexity shifts more and more weight to the complexity penalty. If two
nodes are approximately equal in terms of the cost-complexity values, one prefers to
prune off the larger number of nodes. The result is a sequence of ever smaller subtrees.

Formally, the cost-complexity measure for a tree is

C(T ;α) = E(ĝ)+α|T |, (4.5.3)

where the number of terminal nodes in the tree T defined by ĝ, denoted |T |, summa-
rizes the complexity of the tree. The weight α determines the relative importance of fit
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E(ĝ) and the complexity. The goal is to find trees that achieve small values of C(T,α).
Large αs penalize large trees heavily, making small trees optimal. Small values of α
permit large trees susceptible to overfitting. Thus, in the limit of large α , the one node
tree consisting of just the root is optimal; in the limit of small α , the large tree T itself
is optimal. Note that pruning means that regions R j are being joined so they have a
common node function.

By starting with α = 0 and letting α increase, one generates a sequence of subtrees by
weakest link cutting. That is, consider the sequence of trees generated by

Tα = arg min
T ′⊂T

C(T ′,α)

as α ranges from 0 to infinity. It can be shown that Tα1 ⊂ Tα2 when α1 ≥ α2 and that
the sequence itself is nested; see Breiman et al. (1984). In this way, one generates a
nested sequence of subtrees Tα j corresponding to functions ĝ j for j = 1, ...,J.

Given such a sequence from the middle n2 data points, the last n3 data points can
be used to select an element ĝα j∗ of the sequence, for instance by cross-validation.
Hopefully, by choosing a subtree, one effectively chooses α to be a compromise value
indexing a tree with the right complexity and good fit. Here, right means minimal
predictive error in future cases. Most commonly, squared error loss is used in this
procedure, but any measure of goodness of fit can be used in principle.

It is worth noting that the criterion (4.5.3) has a common form. Recall that the opti-
mality criterion defining spline smoothing in Chapter 3 has the same form: a sum of
two terms, one being an assessment of fit and the other an assessment of wiggliness.
Indeed, it was commented that some of the instability of NNs could be smoothed out
if the squared error fit was moderated by a complexity penalty on the parameters. All
three of these cases are instances of complexity regularization because the penalty term
regularizes the overall estimation by penalizing some aspect of solutions that can be
broadly interpreted as a complexity.

4.5.3 Regression

The tree-based regression function resulting from the method presented so far is effec-
tively of the form

ĝ = ĝα j∗ = arg min
j=1,...,J

E(ĝα j). (4.5.4)

In this expression, n1 data points were used to find the maximal tree Tmax by a splitting
rule. Then, n2 data points were used with (4.5.3) to generate the sequence of trees Tα j

that represent ĝα j . The trees Tα j are subtrees of Tmax, and the α js are the values of
α that order the subtrees of Tmax under (4.5.3). The sum of squared errors, or other
criterion for fit, in (4.5.4) is formed using the last n3 data points.
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If the error term in (4.5.1) is IID N(0,σ2) and the XXXs are drawn from a distribution μ ,
Gey and Nedelec (2005) have established an important property of ĝ: Its conditional
expected L2 distance from gtrue is less than the smallest conditional expected distance
from gtrue for any of the trees in the sequence Tα j plus a O(1/n) term. This is a sort
of Oracle inequality because it ensures that even if the optimal subtree of Tmax were
known, the estimate ĝ would not perform much worse than for approximating gtrue.

To derive a weak, informal version of the Gey and Nedelec (2005) result, suppose
gtrue ∈ L2(μ) and let μn3 be the empirical distribution formed from XXX1, ...,XXXn3 . Let
|| · ||n3 be the norm from L2(μn3) (i.e., the norm with respect to the empirical distribu-
tion), and recall that for any g ∈ L2(μ), the sum of squared errors is Ê3 = Ên3(g) =
(1/n3)∑n3

i=1(Yi−g(XXX))2. Two easy identities are

E(Ê3(gtrue)|XXXn3 = xxxn3) = σ2,

where XXXn = (XXX1, ...,XXXn) and xxxn = (xxx,...,xxxn), and, for any g ∈ L2(μ),

||gtrue−g||2n3
= E(En3(g)−En3(gtrue)|XXX1, ...,XXXn3).

Now, adding and subtracting an arbitrary ĝα j gives

||gtrue− ĝ||2n3
= ||gtrue− ĝα j ||2n3

+E
([

Ê3(ĝ)− Ê3(ĝα j)
]
|XXXn = xxxn)± Ê3(ĝ)± Ê3(ĝα j)

= ||gtrue− ĝα j ||2n3
+(Ê3(ĝ)− Ê3(ĝα j))

+ (Ê3(ĝα j)−E(Ê3(ĝα j)|xxxn))

− (Ê3(ĝ)−E(Ê3(ĝ)|xxxn)). (4.5.5)

The Gey and Nedelec (2005) approach is to recognize that the second term on the right
is negative and can be dropped, giving an upper bound of the form

||gtrue− ĝα j ||2n3
+ ||ĝα j − ĝ||2n3

(
Ē3(ĝα j − Ē3(ĝ)
||ĝα j − ĝ||2n3

)
,

in which Ē3 represents the centered forms of Ê3 given in the last two terms of (4.5.5).
For this last expression, one can give bounds on the second term as in Gey and Nedelec
(2005) so that after taking an expectation conditional on the first n1 + n2 data points
an infimum over j gives a uniform bound on the second term of order O(1/n). So,
||gtrue− ĝ||2n3

is bounded by an infimum over j of ||gtrue− ĝα j ||2n3
plus O(1/n). The

actual proof relies on a substantial collection of other reasoning from empirical process
theory that can be found in the references in Gey and Nedelec (2005).
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4.5.4 Bayesian Additive Regression Trees: BART

Bayesian versions of recursive partitioning have also been developed. Often they use
a Bayes testing approach to decide whether a split at a node is worthwhile. That is,
a parametric prior is put on the number of nodes and on any of the parameters in the
regression function, while a nonparametric prior (typically a Dirichlet process prior
determined by the empirical distribution) is used on the splits themselves. The worth of
including a split is then decided by a Bayes factor from the appropriate tests. Bayesian
nonparametrics is discussed more fully in Chapter 6.

Here, it is worth describing a variant on CART from a Bayesian standpoint that is due
to Chipman et al. (1996) and Chipman et al. (2005). It uses a sum of small trees, often
called stumps, say g j(xxx), to model a response:

Y = f (xxx)+ ε ≈ g1(xxx)+ ...+gk(xxx)+ ε̂.

The stumps, gk, can be regarded as small, biased models in their own right, so that an
estimate f̂ is an ensemble method; such methods will be discussed in more detail in
Chapter 6 as well. The BART procedure treats the g js as terms in the larger model f̂
rather than models in their own right. Thus, conceptually, BART is a single model with
tree terms, not a model average in which each term explains part of f . Thus, predictions
from several BART models could be averaged to give better overall predictions.

BART is a trade-off between using individual trees as in this section and combining
full tree models as developed in Chapter 5 in random forests. In this middle ground, it
is important that the individual trees be weak learners. If one of them becomes bigger,
and hence more able to explain f , it can thereby dominate, paradoxically degrading
performance. The paradox is resolved by realizing that if one of the trees is good
enough that it explains too much, the stumps lose their descriptive power because they
were weak learners from the outset. Computations suggest that there is improvement
in performance as the (fixed) k is permitted to increase; see Breiman’s theorem in
Chapter 5. Of course, ensuring good behavior in BART depends delicately on prior
specification, both within individual trees and across the collection of trees.

Overall, BART is a Bayesian intermediate tranche technique fitting a parameter-rich
model, using extensive prior information, to ensure balance among complexity, bias,
and variability. Computationally BART is implemented by a backfitting MCMC algo-
rithm rather than by a gradient descent approach.

4.6 MARS

Multivariate adaptive regression splines (MARS) is a hybrid template method with a
conceptually singular position in statistics. It was invented by Friedman (1991) – with
much discussion, still ongoing. As a hybrid, MARS combines recursive partitioning
regression and additive models, although taxonomists would mention splines too. The
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core idea is to express the regression function as a sum of functions (a la additive
models), each of which has its support on a region (a la CART). Within a region, the
regression function reduces to a product of simple functions that are initially constant
but can be chosen as splines. The points defining the boundary of a region, like knots
in splines, are obtained from the data.

The basic building block of the MARS regression function is a univariate function,
identically zero up to a knot, after which it rises linearly. That is, the root element is
(x− t)+, where the + indicates the positive part, the knot defining the support is t, and
the shape is as in Fig. 4.5. Each term in the regression function is formed from these

45

Fig. 4.5 The basic function (x− t)+ from which MARS is built, t is at on the horizontal axis at its
intersection with the 45◦. The indicator for IR+ can be applied to this to give positive values only on
certain regions.

root elements by summing products of them. If the products are composed with indi-
cator functions for disjoint regions R j before summing, the result is a recursive parti-
tioning model with spline-type node functions (having disjoint support) and a splitting
rule based on the lack of fit of the whole model rather than just the individual nodes. If
the indicator functions are not included, the model is arguably a more general MARS.
Thus, there are (at least) two flavors of MARS – recursive and general.

Formally, MARS models, recursive or general, can be described as follows. Let I0(x)
be the indicator for x ∈ IR+, and consider I0(sk(xk− tk)), which is 1 when sk(xk− tk)≥
0. A product of such functions over j = 1, ...p has the form ∏p

k=1 I0(sk(xk− tk)) and is
positive in the region [t1,∞)× ...× [tp,∞) when all the sks are one. Thus, it is a constant
on a set with edges parallel to the axes of xxx. To be more general, note that the product
need not be over all k = 1, ..., p. Let U be a subset of js. The product over k ∈ U is
only nontrivial for some k; for k 	∈ U , the indicator function of the kth element does
not appear.

Now, the MARS model is to write

Y =
r

∑
j=1

β jI(xxx ∈ R j)B j(xxx)+ ε, (4.6.1)
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where typically

B j(xxx) = ∏
k∈U j

I0(sk j(xk− tk j)) or B j(xxx) = ∏
k∈U j

[sk j(xk− tk j)]+ (4.6.2)

for sk j = ±1 and U j is the subset of the explanatory variables appearing in the jth
term. The first case in (4.6.2) is sometimes called the recursive partitioning version,
and the second is sometimes called the forward stepwise version. The indicators for
the regions R j may be included or not. Thus, B j is a product of functions on regions
determined by the knots {tk j} for k ∈U j and the R js. Clearly, the regression function
is not continuous because of the indicators. However, omitting the indicator functions
or the positive parts in (4.6.2) (i.e., just adding products of the hockey stick shaped
functions as in Fig. 4.5) does give a continuous regression function. More generally,
one can use spline basis functions of the form [sk j(xk− tk j)+]q as factors in the second
form in (4.6.2).

Fitting a MARS model is where the conceptual singularity begins. First, the core
method is to start with a maximal number of terms, say r = Mmax, for the model
(4.6.1), an initial model comprised of one term B1(xxx) = 1, and a lack-of-fit criterion
set to a large value, say ∞. GCV is one choice, but many may be considered. Friedman
(1991), Section 3 suggests several; Barron and Xiao (1991) suggest minimum descrip-
tion length or the Bayes information criterion. The value Mmax is often chosen to be 2
or 3 times larger than the anticipated correct number of terms; this is important because
the MARS procedure merely searches a class of functions for one that has a good fit.
The larger the class, the better the fit – but generalization error remains to be properly
examined. In (4.6.2), r gives the number of regions for the spline-type basis functions.
Within the large class, the MARS procedure is to construct new terms until there are
too many as measured by the lack-of-fit criterion, here GCV. Here is one version of the
MARS template procedure for the recursive partitioning case.

Let B1 = 1. Search over k for k = 2,3...Mmax terms with GCV (initial) = ∞.

� For each of the terms in the model, look at the n outcomes for variable j =
1, ..., p, where x j,v is assumed not to be in the term already.

� For each j and each m = 1, ...,k−1, examine the function

k−1

∑
u=1

βuBu(xxx)+βkBm(xxx)I0((x j− t))+βk+1Bm(xxx)I0(−(x j− t)) (4.6.3)

to find the value t among the n outcomes of the jth variable that gives the smallest
lack of fit.

� Now, the optimal values of t, j, and m, say t∗, j∗, and m∗, can be used to elaborate
one of the terms in the model into two new terms as in the last step. The term to
be elaborated is chosen to minimize the lack-of-fit criterion.

� The new model is of the same form as the old model (4.6.1), with the opti-
mally chosen term indexed by m∗ replaced by two terms: Bm∗(xxx)I0((x j∗ − t∗))
and Bm∗(xxx)I0(−(x j∗ − t∗)).
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� This procedure continues until the whole collection of models is searched or
some other error criterion is met.

It is easy to see how to use this procedure for the forward stepwise version; just replace
I0((x j− t)) and I0(−(x j− t)) with (x j− t)+ and −(x j− t)+ in step two. There is also
a backwards elimination version of the procedure above that may be used to prune a
model. Note that a term with U factors in it can only emerge from this procedure at
the #(U )th iteration or later.

Several aspects bear comment. First, like recursive partitioning, MARS is order de-
pendent. That is, changing the order in which new splits (different js for instance) are
included may change the final function found. Second, MARS is not really an estima-
tion procedure but an approximation procedure. That is, it is the scope of the search
and the goodness-of-fit criterion that determine the adequacy of the fit. Changing the
class can, in principle, change the fit a lot; there is little objective validity in this sense.
Third, whether or not the indicator function is included greatly changes the character
of the approximation. If the indicator is included, then MARS is a particular case of
recursive partitioning. MARS can also be framed as an approximation using a “tensor
product” basis, so no explanatory variable appears twice in any term Bk, though this
could be relaxed. In fact, MARS is a template for a collection of methods that includes
recursive partitioning and much more besides.

It is seen that additive effects are captured by splitting the Bks on several variables,
and nonlinear effects are captured by allowing splits of Bks on the same variable more
than once with knots at different values of the x js (or more general locations). If the
indicator functions are included, then the products of indicators in the two terms of
(4.6.3) combine to give a single indicator function. However, if the indicator functions
are omitted, the procedure permits the terms to have overlapping regions. What hap-
pens is that, when a region is split on a variable, one can retain the function on the
combined region while adding the two functions generated, one for each side of the
split. As with trees, the strategy is to overfit and then prune back, typically by back-
wards elimination under the same lack-of-fit criterion as used to generate the MARS
model in the first place. The pruning is not included in the algorithm above, but again a
variety of methods parallel to trees or to conventional linear regression can be applied,
e.g., backwards elimination or cost-complexity.

Comments on MARS have suggested problems and improvements. For instance, Bar-
ron and Xiao (1991) observe that in spline methods there can be nonrobustness when
knots are too close together because small changes in xxx can lead to large changes in
Y . They propose a roughness penalty on (4.6.3) to help smooth out such oversensitiv-
ity. By contrast, Gu and Wahba (1991) suggest that the class of splines used will not
perform well with rotationally invariant problems and that stepwise procedures like
MARS will often be confused by concurvity or nonparsimony. Thus, confidence in-
tervals may have to be weakened to coverage bands or predictive intervals based on
bootstrapping. Note that in this class of models, as with trees, the basic strategy is to
keep reducing the bias by improving the approximation until the class is searched and
then making sure that the variance is not too large by pruning. That is, there is always
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likely to be nonzero bias, but it should not contribute too much to an MSE relative to
the overall variance.

MARS is not really interpretable, but Friedman (1991) observes an ANOVA-esque de-
composition in which the terms dependent on a fixed number of variables are gathered
into cumulative expressions,

f̂ (xxx) = β0 + ∑
j∈J

f j(x j)+ ∑
( j,k)∈K

f jk(x j,xk)+ . . . ,

where β0 is the coefficient of the B1 ≡ 1 basis function, the first sum is over those basis
functions that involve a single explanatory variable, the second sum is over those basis
functions that involve exactly two explanatory variables, and so forth. These terms can
be thought of as the grand mean, the main effects, the two-way interactions, and so
forth. Thus, in MARS, there are several sorts of variability: the number of terms, the
regions, and the estimates of parameters βk on regions.

The intertwining of model variability with parameter variability highlights a key fea-
ture of MARS: It is purely a procedure for generating approximations, not really a
statistical model. The model (4.6.1) has an error term in it, but this is a backforma-
tion from Friedman’s original class of approximations. There is no genuine statistical
model and hence no associated distribution for inference of any sort. One cannot really
argue that overfit or underfit exists without further criteria, or that model identification
has been successful, much less parameter estimation or prediction. Realistically, the
best one can do to quantify reliability for predictive purposes is to use the bootstrap
to get something that could be called a predictive distribution once a minimum GCV
model of some reasonable size had been found.

This is the conceptual singularity evinced from MARS: Is it acceptable, statistically,
to obtain estimates by using a method solely defined by a procedure when so little for-
mal inference can be done? One can argue that this is acceptable under some circum-
stances. For instance, one set of reasonable conditions might be: (i) there is an algo-
rithmic approximation method which is not close to any feasible, genuinely statistical
procedure, (ii) empirical evaluations such as GCV and bootstrapping provide enough
predictive guidance for meaningful implications to account for model and parameter
uncertainty, and (iii) the procedure itself has been systematically examined, via simu-
lations for instance, to find settings where it performs well or poorly (i.e., individual
data sets, however numerous, are inadequate because they do not generalize). On the
other hand, one could argue that any numerical approximation procedure amenable to
GCV, bootstrapping, predictive analyses, and related computational techniques is valid
even though not hitherto seen as part of the traditional statistical framework. Overall,
this is part of the charm of DMML.
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4.7 Sliced Inverse Regression

Sliced inverse regression (SIR) invented by Li (1991), is a way to combine inverse
regressions on disjoint subsets of the range of Y to identify optimal directions of the
explanatory variables. The basic model is to write

Y = f (XXXβ1, ...,XXXβr,ε), (4.7.1)

in which r < p, f : IRk+1 → IR is an unknown function, and the error term ε has condi-
tional mean zero, E(ε|XXX) = 0. Regarding ε as an argument of f contrasts sharply with
the earlier models because there is no longer a disjoint signal, and the sum of squares
due to error, Ê, is no longer the relevant quantity. Moreover, the loss of additivity, in
contrast to PPR, means that the span of the β js only defines a subspace of dimension
r. That is, expression (4.7.1) models Y as a function of r linear functions of the XXXs so
that the span of the XXXβis is an effective-dimension reduction space (see Chapter 9) of
dimension r on which f is supported or at least well approximated. It is the subspace
that expresses the dimension reduction, not the specific directions β j.

Recall that inverse regression is literally an effort to invert a regression line. Instead
of seeking an estimate for the unidimensional function E(Y |XXX) as a function of p
variables in the context of Y = XXXβ + ε , one seeks the p dimensional function E(XXX |Y )
as a function of Y . Locally inverting this on S intervals of Y , called slices, and tying
them together gives an approximation to E(Y |XXX), whence SIR. To do this, it is assumed
for the rest of this section that XXX is drawn from a nondegenerate, elliptically symmetric
distribution. This includes the often assumed normal family but much more besides.
While this is a restriction, it is often not severe. Moreover, it is clearly specified and,
in principle, can be checked by scatterplots of the Xi js.

Even though the goal is to estimate E(Y |X = x), it may be helpful to examine E(X |Y =
y) because finding p functions of a single real variable is less complicated than finding
a single real-valued function of p real variables. Then, given p univariate regressions
of the components of XXX on Y , implementing (4.7.1) requires knowing r, the βis, and s.
In this section, estimation of f is ignored; techniques such as those presented earlier
must be used to estimate it.

Following Duan and Li (1991), set ξ1(y) = E(XXX |y) in the context of the model

Y = g(α+ xxxTβ ,ε), (4.7.2)

where ε|XXX ∼ F(ε) is independent of XXX ; g is sometimes called a link function. The
function ξ1 is the step that helps minimize the Curse of Dimensionality. Note that this
is essentially (4.7.1) for r = 1; models like (4.7.2) will be combined on the slices of
Y . To use the elliptical symmetry, Li (1991) introduces a condition on the conditional
expectations of linear combinations of coordinates of XXX in terms of the β js. This is

∀b ∈ IRp
E(XXXTb|XXXTβ1 = xxxTβ1, ...,XXX

Tβp = xxxTβp) = c0 +
p

∑
j=1

c jxxx
Tβ j (4.7.3)
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for some sequence c0, ...,cp. Cook and Weisberg (1991) observe that elliptical symme-
try is equivalent to (4.7.3). That is, under a model of the form (4.7.1), XXX is elliptically
symmetric if and only if (4.7.3) holds.

The main result that makes SIR feasible is the following. Its importance is that it shows
that the centered regression line in the univariate case varies over the space spanned by
the vectors Cov(XXX)β j, for j = 1, . . . , p.

Theorem (Duan and Li, 1991): In model (4.7.2), the inverse regression function ξ1(y)
satisfies

ξ1(y)−EXXX = Cov(XXX)β
E((XXX−E(XXX))Tβ |y)

βTCov(XXX)β
. (4.7.4)

Proof: Following Li (1991), suppose E(XXX) = 0, and let bbb be an element of the orthog-
onal complement of the span of Cov(XXX)β j for j = 1, . . . , p. In the context of model
(4.7.1),

bbbT
E(XXX |Y = y) = E[E(bbbTXXX |XXXTβ j, j = 1, ..., p,Y = y)|y]

= E[E(bbbTXXX |XXXTβ j, j = 1, ..., p)|y]. (4.7.5)

So, to show that the centered regression line varies over the space spanned by the
Cov(XXX)β js, it is enough to show that the inner conditional expectation E(bbbTXXX |XXXTβk,k =
1, ..., p) is zero, or equivalently its square is; i.e., E(E(bbbTXXX |XXXTβk,k = 1, ..., p)2) = 0.
This follows from using conditioning and the elliptical symmetry. Indeed, it is seen
that the square is

E[E(bbbTXXX |β jxxx, j = 1, . . . , p)xxxTbbb] = E

[(
c0 +

p

∑
j=1

c jβ jXXX

)
xxxTbT

]

=
p

∑
j=1

c jβ jCov(XXX)bbbT = 0.

As noted in Duan and Li (1991), the elliptical symmetry can also be used to obtain

E(XXX |XXXTβ )−EXXX =
Cov(XXX)ββT(XXX−EXXX)

βTCov(XXX)β
.

So, taking the conditional expectation gives ξ1(y) = E(E(XXX |XXX ′β )|y). �
From the standpoint of parameter estimation rather than ξ1, this theorem also gives
that β ∝ Cov(XXX)−1(ξ1(y)−EXXX) and identifies the constant of proportionality as the
fraction in (4.7.4), which is seen to be a real number dependent on β but not y.

Now consider the standardized variable ZZZ = Cov(XXX)−1/2(XXX −E(XXX)), and form the
p-dimensional inverse regression function ξ (y) = ξp(y) = E(ZZZ|Y = y). The theorem
continues to hold since ZZZ is a linear transformation of XXX−E(XXX). Thus, for each y, ξ (y)
is a point in the span S of {Cov(XXX)1/2β1, ...,Cov(XXX)1/2βr}. If b is orthogonal to S ,
then ξ (y)′b = 0; using (4.7.1) to express ξ in terms of S gives
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Cov(ξ (Y ))b = E(ξ (y)ξ (y)T)b = 0.

This means that Cov(E(ZZZ|y)), is degenerate in every direction orthogonal to S .

Given these results, the overall SIR strategy for data (Yi,XXXi) for i = 1, ...,n, is to rewrite
(4.7.1) as

Y = f (ZZZη1, ...,ZZZηr,ε) (4.7.6)

since the exact representation of the r-dimensional effective dimension-reduction
space is not important. Then, partitioning the range of Y into H slices, one can form
an estimate of the inverse regression curve on each slice. The pooled estimator of the
p× p Cov(ξ (y)) matrix, based on the H slices of the range of Y , has a principal com-
ponents decomposition. So, finding the r largest eigenvalues (out of p) of an estimate

̂Cov(ξ (y)) and transforming the corresponding r eigenvectors of the standardized vari-
able in terms of the η js gives estimates of the β̂ js. More formally, the SIR procedure
is the following.

Estimate Σ = Cov(XXX) by the sample covariance matrix Σ̂ , define the standardized
data zzzi = Σ̂−1/2(xxxi− x̄xx), and partition the range of Y into S slices, Hs for s = 1, ...,S.
Let ns be the number of observations yi in slice Hs, so that ns = ∑n

i=1 IHs(yi).

� Find the mean of the zzzi on each slice:

z̄zzs =
1
ns

n

∑
i=1

zzziIHs(yi).

This mean will serve as a crude (constant) estimate for the inverse regression
curve E(Z|Y ).

� Estimate Cov(ξ (y)):

̂Cov(ξ (y)) =
1
n

S

∑
u=1

nuz̄zzuz̄zz′u.

� Obtain the eigenvalues λ̂i and the eigenvectors η̂i of ̂Cov(ξ (y)). (This is the
principal components analysis for the z̄zzis.)

� Transform the eigenvectors η̂i corresponding to the r largest eigenvalues λ̂i by
applying Σ̂−1/2. Thus, obtain β̂ j = Σ̂−1/2η̂(p− j+1) for use in (4.7.1).

Once the estimates β̂ j are obtained, it is desirable to do inference on them. The usual
consistency, asymptotic normality and identification variance theorems have been es-
tablished; see Li (1991) and Duan and Li (1991). The extra bit that’s interesting here
is that under the admittedly strong assumption of a normal distribution for XXX one can
identify asymptotic sampling distributions for the eigenvalues; parallel results for the
eigenvectors exist but are more complicated. Although the eigenvectors and eigenval-
ues are well defined and identifiable, they are only important because of their span.
Any other set of β js with the same span would do as well.
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Asymptotic rates for the convergence of the β js are easy to identify. Indeed, Li
(1991) uses the following reasoning. The central limit theorem gives that the z̄zzss

converge to the E(z̄zzs)s at rate O(1/
√

n). Consequently, the estimate ̂Cov(ξ (y)) of
Cov(ξ (y)) = ∑S

s=1πsE(z̄zzs)E(z̄zz′s), where πs = lim(ns/n) converges at a O(1/
√

n) rate.

Thus, the eigenvectors of ̂Cov(ξ (y)), the η̂is, converge to the corresponding eigen-
vectors of Cov(ξ (y)) at a O(1/

√
n) rate. By using the theorem, one obtains that the

standardized xxxis (i.e., the zzzis) give an inverse regression curve E(ZZZ|y) that is contained
in the span of η1,...,ηr. So, since E(ZZZ) = E(E(ZZZ|y)|y ∈ Ss), the largest r eigenvectors
of Cov(ξ (y)) are in the space generated by the standardized vectors η1,...,ηr. Since Σ̂
converges to Σ , Σ̂−1/2 converges to Σ−1/2, so the corresponding β̂ j = Σ̂−1/2η̂ j also
converge at rate O(1/

√
n).

Although the rate determination is seen to be straightforward, identifying the constant
in the O(1/

√
n) rate is not easy. It is done by Duan and Li (1991), Section 4, who

establish
√

n(β̂ −β )→ N(0,VVV ), as n→ ∞, where β = (β1, ...,βr) and VVV is a matrix
that depends delicately on the choice of slices.

Like f , r remains to be estimated. One approach is to construct models using several
different rs, searching for the model with the smallest cross-validation error. Alterna-
tively, the usual criteria for a principal components analysis can be invoked; e.g., the
knee in the error curve. Further topics related to SIR and sufficient dimension reduction
more generally are taken up in Chapter 9.

4.8 ACE and AVAS

So far, the methods presented have focused exclusively on representing Y using a class
of functions of XXX . However, this is only one side of the story. The other side is that one
can transform Y as well – or instead of – XXX . In an additive model context gives

g(Y ) =
p

∑
j=1

f j(Xj)+ ε (4.8.1)

as a more general model class. Mathematically, it is as reasonable to transform Y as
XXX ; however, many resist it on the grounds that it is Y that one measures, not g(Y ), and
that introducing g, especially in addition to the f js, leads to such a large increase in
instability that little can be said reliably. Nevertheless, (4.8.1) is a generalization of
GAMs that avoids having to choose a link function.

Study of this model class, summarized in Hastie and Tibshirani (1990), is incomplete,
and the two methods briefly discussed here alternating conditional expectations (ACE)
and additivity and variance stabilization (AVAS) are variants of each other. Thus, both
can be regarded as instances of a single template method. They are interesting here
not so much for their current usefulness as for their potential. Both involve techniques
based on alternating the way one takes conditional expectations, which may be an
important idea for dealing with transformations on Y . It is easy to imagine further
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variants that may yield better results than those obtained so far. If this interesting class
became tractable, the benefits would be large and pervasive.

The ACE algorithm is symmetric in its treatment of the conditional expectations of g
and the f js. It originates in Breiman and Friedman (1985) and seeks f1, . . . , fp and g
to maximize the correlation between

g(Y ) and
p

∑
j=1

f j(Xj),

a generalization of canonical correlation. This is equivalent to minimizing

E

⎡
⎣
(

g(Y )−
p

∑
j=1

f j(Xj)

)2
⎤
⎦/E[g2(Y )],

where the expectation is taken over (Yi,XXXi). Thus, ACE minimizes a variant on the
mean squared error; one can readily imagine other variants.

One version of the ACE algorithm (see Hastie and Tibshirani (1990) ) can be summa-
rized as follows.

Start with g(yi) = (yi− ȳ)/sy and f j(x j) as the linear regression of Y on Xj.

� Find f (XXX) = ∑p
j−1 f j(Xj) = E(g(Y )|XXX) as an additive model, possibly by the

backfitting algorithm. This gives a new g(y) in terms of new functions f1(x1), . . . ,
fp(xp).

� Use smoothing to estimate

g̃(y) = E

[
p

∑
j=1

f j(x j) |Yi = yi

]
,

and standardize a new g(y) as

g(y) = g̃(y)/
√

Var[g̃(y)].

(This standardization ensures that the trivial solution g≡ 0 does not arise.)

� Alternate: Repeat the last two steps until E[(g(Y )−∑p
j=1 f j(Xj))2] is satisfacto-

rily small.

As shown in Breiman and Friedman (1985), Section 5 and Appendix 3, there are
unique optimal transformations g and f j, and the ACE algorithm converges weakly
to them. The proof rests on the recognition of conditional expectation as a projection
operator on suitably defined Hilbert spaces of functions and using its eigenfunctions.
There are settings, however, where this is not enough.

Unfortunately, from the standpoint of nonparametric regression, ACE has several un-
desirable features: (i) For the one-dimensional case, g(Y ) = f (X)+ ε , ACE generally
will not find g and f but rather u ◦ g and u ◦ f for some function u. This is a sort of
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nonidentifiability. (ii) The solution is sensitive to the marginal distributions of the ex-
planatory variables and therefore is often nonrobust against outliers in the data. (iii)
ACE treats the explanatory and response variables in the same way, reflecting cor-
relation, whereas, arguably, regression should be asymmetric. (iv) ACE (and AVAS
below) only minimize correlation, so when correlation is not very high the model only
captures part of the relationship between the dependent and explanatory variables.

AVAS is a modification of ACE that addresses item (iii) by purposefully breaking
the symmetry between g and ∑ f j, thereby removing some of the undesirable fea-
tures of ACE; see Tibshirani (1988). The central difference between ACE and AVAS is
that instead of using the standardization indicated in Step (2) immediately, a variance-
stabilizing transformation is applied first: If a family of distributions for Z has mean μ
and variance V (μ), then the asymptotic variance-stabilizing transformation for Z is

h(t) =
∫ t

0
V (s)−1/2 ds,

as can be verified by a delta method argument. In AVAS, one finds g(y) given
E(g(Y )|XXX = xxx) as before but then standardizes h◦g(Y ) (if necessary) rather than g(Y )
for the next iteration.

As a generality, model selection in an ACE or AVAS context is difficult when cross-
validation cannot be readily applied. Wong and Murphy (2004) develop some tech-
niques and are able to give spline estimates of g in (4.8.1). However, model uncertainty
with ACE and AVAS can be high because they often do not perform well (i) when the
explanatory variables are correlated, (ii) because they can give different models de-
pending on the order of inclusion of variables (permitting functions f j of univariate
functions of the components of XXX makes this problem very difficult), and (iii) because
they can be sensitive to omitted variables or spuriously included variables.

Similar to MARS, ACE and AVAS are, at their root, procedures for finding good ap-
proximations in contexts where inference in any conventional sense may be intractable.
Work going beyond the short description here includes de Leeuw (1988), who has a
more general approach for which both ACE and AVAS are special cases. Despite all
their limitations, it is clear that the template of which ACE and AVAS are instances has
enormous potential.

4.9 Notes

4.9.1 Proof of Barron’s Theorem

First, for a given sigmoidal function ψ , let

Gψ = { γψ(a · xxx+b) : |γ| ≤ 2C, a ∈ IRp, b ∈ IR }



4.9 Notes 221

be the collection of bounded multiples of the sigmoid composed with an affine func-
tion. Apart from the constant term, Barron’s theorem bounds the error of approximat-
ing f (x)− f (0) by convex combinations of functions in Gψ for functions f ∈ ΓB,C. To
begin the function approximation step of the proof, let G be a bounded set in a Hilbert
space (i.e., ∀g ∈ G, ||g|| ≤ b) and let ¯chull(G) be the closed convex hull of G.

Step 1: For any f̄ ∈ ¯chull(G), any n ≥ 1, and every c′ > b2− || f̄ ||2, ∃ fn, a convex
combination of n points in chull(G), such that

|| f̄ − fn||2 ≤
c′
n

.

Proof: Let n≥ 1 and δ > 0, and f ∗ ∈ chull(G) such that || f̄ − f ∗|| ≤ δ/n. Now,

f ∗(x) =
m

∑
k=1

γk g∗k(x)

for some m, with γk ≥ 0 and ∑k γk = 1 for a set of g∗ks in G.

Let G now be a random object taking values in the finite set {g∗1, ...,g∗m} with proba-
bilities given by P(G = g∗k) = γk. Let g1, ...,gr be r independent outcomes of G with
sample average ḡr. Clearly, as functions, EḠr(xxx) = f ∗(xxx). By the usual rules for vari-
ance,

E||Ḡr− f ∗||2 =
1
r

E||G− f ∗||2 =
1
r

E||G||2−|| f ∗||2 ≤ 1
r
(b2−|| f ∗||2).

That is, as a random variable, ḡr approximates f ∗ within 1/r in expectation. This is
possible only if there is an outcome of the random variable that achieves the bound.
So, there must be a fixed g1, ...,gr for which ||ḡr− f ∗||2 ≤ (1/r)(b2−|| f ∗||2). Using
this, choosing δ small enough, and applying the triangle inequality to || f̄ − ḡr||2 gives
the result. �
To proceed, three sets of functions must be defined; Steps 2, 3, and 4 will give some of
their containment relationships. The first set is

Gcos =
{

γ
|ω|B

[cos(ω · x+b)− cos(b)] : ω 	= 0, |γ| ≤C,b ∈ IR

}
;

it is seen that Gcos depends on B and C. It will be seen that, heuristically, Gcos is the
smallest of the sets used in the proof. For convenience, set f̂ = f (x)− f (0) to make
use of the Fourier representation. The next step shows that ΓB,C is almost in Gcos.

Step 2: For f ∈ ΓB,C, f̂ ∈ ¯chull(Gcos), the closure of the convex hull of Gcos.

Proof: Let xxx ∈ B. For real-valued functions,
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f (xxx)− f (0) = IRe

[∫
(eiω·xxx−1)F̃(dω)

]

=
∫

cos(ω · xxx+θ(ω))− cos(θ(ω))F(dω)

=
∫
Ω

Cf ,B

|ω|B
cos(ω · xxx+θ(ω))− cos(θ(ω))Λ(dω)

=
∫
Ω

g(xxx,ω)Λ(dω),

in which Cf ,B =
∫
|ω|BF(dω)≤C is a variant on Cf and is assumed bounded. The new

probability measure is Λ(dω) = |ω|BF(dω)/Cf ,B. (The restriction to Ω = IRp− 0 is
needed to make |ω|B well defined.)

It is seen that |g(xxx,ω)| ≤C|ω · xxx|/|ω|B ≤C for xxx ∈ B and nonzero ω . Thus, the func-
tions g(xxx,ω), as functions of xxx, are in Gcos. So, any function f̂ , as an integral of gs, is
an infinite convex combination of functions in Gcos and hence is in ¯chull(Gcos).

Formally, to see this last statement, if F has a continuous density on IRp, one can verify
that Riemann sums in terms of the gs converge to f̂ . More generally, the claim follows
from an L2 law of large numbers omitted here. �
The two remaining sets needed for the proof are special cases of Gψ when ψ is a step
function. Setting step(z) = 1{z≥0}, let

Gstep = { γstep(α · xxx− t) : |γ| ≤ 2C, |α|B = 1, |t| ≤ 1 } .

(The role of the 2C will be apparent shortly.) Also, consider restricting t to the conti-
nuity points of the distribution of z = α · xxx induced by the measure μ on IRp. This is a
dense set in IR. Let Tα be its intersection with the closed interval [−1,1] and set

Gμ
step = {γ step(α · x− t) : |γ| ≤ 2C, |α|B = 1, t ∈ Tα} ⊂ Gstep.

Next, the goal is to show that functions in Gcos are in ¯chull(Gψ) for any ψ . Consider
first the special case that ψ = step.

Step 3: (i) Gcos ⊂ ¯chull(Gstep).

(ii) Gcos ⊂ ¯chull(Gμ
step).

(iii) Gμ
step ⊂ Ḡψ , the closure of Gψ in L2(μ ,B).

Proof: Begin with (i). Each function in Gcos is a composition of a sinusoidal function
g(z) with a linear function z = α · xxx, where α = ω/|ω|B for some ω 	= 0. When xxx ∈
B, z = α · xxx is in [−1,1], so it’s enough to restrict attention to that interval. Since g
is uniformly continuous on [−1,1], it is uniformly well approximated by piecewise
constant functions on any sequence of partitions of [−1,1] with maximum interval
length tending to zero. Each piecewise constant function is a linear combination of
step functions.

As a representative case, consider the restriction of a function g(z) to [0,1] and fix a
partition 0 = t0 < t1 < ... < tk = 1. The function
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gk,+(z) =
k−1

∑
i=1

(g(ti)−g(ti−1))1{z≥ti}

is a piecewise constant interpolation of g at the tis (for i ≤ k− 1). It is also a linear
combination of step functions. Since g′ ≤C on [0,1],

k−1

∑
i=1
|g(ti)−g(ti−1)| ≤C.

Similarly, define

gk,−(z) =
k−1

∑
i=1

(g(ti)−g(ti−1))1{z≤−ti}.

Now, gk(z) = gk,+(z)+ gk,−(z) is a piecewise constant function on [−1,1] uniformly
close to g for a fine enough partition and the sum of the absolute values of the coeffi-
cients is bounded by 2C. Hence, (i) follows.

For (ii), the Tα is dense in [−1,1] so an extra limit over choices of t is enough to get
the result.

For (iii), observe that the limit of any sequence of sigmoidal functions ψ(|a|(α ·xxx− t))
as |a| → ∞ is step(α · xxx− t) unless α · xxx− t = 0, which has μ measure zero. By the
DCT, the limit holds in L2(μ ,B) so (iii) follows. �
Now, without proof, the main statements to be used with Step 1 to prove the theorem
are given in the following. Full details can be found in Barron (1993).

Step 4: With closures taken in L2(μ ,B),

Γ 0
B,C ⊂ ¯chull(Gcos)⊂ ¯chull(Gμ

step)⊂ ¯chull(Gψ),

where Γ 0
B,C is the set of functions in ΓB,C with f (0) = 0.

Proof: These containments follow from Steps 2, 3(ii), and 3(iii). �
Step 5: The conclusion of Barron’s theorem holds.

Proof: To see that the constant in the theorem can be taken to be (2C)2, for functions
f ∈ ΓB,C note that the approximation bound is trivially true if f̄ = 0, for then f (xxx) is
just a constant a.e. on B.

So, suppose || f ||> 0, and consider two cases: (i) The sigmoid is bounded by 1 or (ii)
it is not.

In case (i), the functions in Gψ are bounded by b = 2C, as seen for the step functions.
Thus, for any c′ > (2C)2−|| f̄ ||2, Step 1 holds. The conclusion is the theorem: There
is a convex combination of functions in Gψ for which the squared norm (in L2(μ ,B))
is bounded by c′/r.

For case (ii), Step 1 and Γ 0
B,C ⊂ ¯chull(Gμ

step) from Step 4 give that there is a con-

vex combination of functions in Gμ
step for which the squared L2(μ ,B) norm of the

error of approximation is bounded by (1/r)[(2C)2−|| f̂ ||2/2]/n. Then, by Step 3(iii),
with a suitable choice of scale of the sigmoidal function, one can replace the step
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functions by sufficiently accurate approximations in terms of ψ that the resulting con-
vex combination of r functions in Gψ yields a square L2(μ ,B) norm bounded by
(2C)2/r, completing the proof. �

4.10 Exercises

Exercise 4.1. Consider independent outcomes (x1,y1), · · · ,(xn,yn) drawn from the
model Y = f (x,θ)+ ε , where ε is N(0,σ2) and θ is a vector of real parameters with
true value θT . Write y = (y1, ...,yn)′ and f (θ) = ( f (x1,θ), ..., f (xn,θ))′ and consider
the function Sn(θ) = (1/n)‖y− f (θ)‖2

1. Derive an expression for Sn(θ ,θT ) = ESn(θ). (Remember E is taken under θT .)

2. Let
S∗(θ ,θT ) = σ2 +

∫
( f (x,θT )− f (x,θ))2dx.

Argue that Sn(θ) and Sn(θ ,θT ) converge pointwise to S∗(θ ,θT ).

Exercise 4.2. In the context of the last exercise, let θ̂ = argminSn(θ) It is known that
under appropriate regularity conditions θ̂ → θT in distribution. Let S2 = SSE(θ̂)/(n−
p), where p = dim(θ) and SSE(θ) = ‖y− f (θ̂)‖2.

1. Let ∂ f /∂θ |θT be the matrix with typical row (∂/∂θ) f (xi,θT ) and assume

θ̂ = θT +
(
∂
∂θ

f T ∂
∂θ

f

)−1( ∂
∂θ

f

)T

ε+0P

(
1√
n

)
.

Show that

θ̂ ∼ Np

(
θT ,σ2

(
∂
∂θ

f T ∂
∂θ

f

)−1
)

approximately.

2. Parallel to the usual theory, argue that

(n− p)S2

σ2 ∼ χ2
n−p

asymptotically.

3. Consider testing H0 : h(θ) = 0 vs. H1 : h(θ) 	= 0 for some well behaved function
h representing a constraint on the p-dimensional parameter space where q is the
number of restrictions imposed on θ by h.

Let θ̂ estimate θ under the full model so that SSE(full) = SSE(θ̂) as before, and let

θ̃ = argminSSE(θ) subject to h(θ) = 0
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with SSE(reduced) denoting the minimum. Argue that

(SSE(reduced)−SSE(full))/q
SSE(full)/(n− p)

is asymptotically an F statistic.

Exercise 4.3. [Sequential regression.] Let η be a learning rate parameter, βi ∈ IRp be a
sequence of n vectors, and suppose a sequence of data (xxx1,y1), · · · ,(xxxn,yn)) is revealed
one at a time. Consider the following procedure:

� Initialize: Set β1 = 0.

� Get an outcome of the explanatory variable: xxx1.

� Predict the dependent variable: ŷ1 = β1 · xxx1.

� Receive the correct answer: y1.

� Update: Set β2 = β1−η(ŷ1− y1)xxx1.

� Repeat with xxx2, xxx3 and so on.

Now suppose that the linear model is correct; i.e., there is some β ∈ R
p and M > 0

such that, for all i, yi = β · xxxi and ‖xxxi‖2 ≤M for all i on the domain of the explanatory
variables. Show that the cumulative squared error from the above procedure can be
bounded by

n

∑
i=1

(yi− ŷi)2 ≤ ‖β‖2
2.

Hint: First show the identity

1
2
‖β −βi‖2

2−
1
2
‖β −βi+1‖2

2 =
(
η− η

2
M2
)

(yi− ŷi)2.

Then, optimize over η and sum over i.

Exercise 4.4. Think of Net as the function from a neural network, and consider the
sigmoidal function

f (Net) = a tanh(bNet) = a

[
1− e−bNet

1+ e−bNet

]
=

2a
1+ e−bNet −a,

where a,b≥ 0.

1. Verify that f ′(Net) can be written in terms of f (Net) itself.

2. Find f (Net), f ′(Net), and f ′′(Net) when Net tends to −∞, 0, and ∞.

3. What are the extrema of f ′′(Net)?

Exercise 4.5. Consider a neural net with a single output neuron, defined as y =
Net(xxx,www), where xxx and www are in IRp. Suppose a data set of the form (xxx1,y1), · · · ,(xxxn,yn))
is available and the average squared error on the data set is
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Ê =
1

2n

n

∑
i=1

(yi− ŷi)2,

where yi is the outcome for xxxi and ŷi is the “fitted” value produced by Net for xxxk using
the eight vector www. Show that the Hessian matrix H evaluated at a local minimum of
the error surface defined by Ê may be approximated by

H" 1
n

n

∑
k=1

gkg�k ,

where

gk =
∂Net(www,xxxk)

∂www
.

Exercise 4.6. Suppose a data set of the form (xxx1,y1), · · · ,(xxxn,yn)) is available and that
the jth components of the xxxis are written simply as x1, · · · ,xn. Let c∈ IR be a candidate
split point for the xis. Then, the best left prediction, pL, is the average of the observa-
tions with xi < c and the best right prediction, pR, is the average of the observations
with xi > c. The issue is how to define “best”.

1. Suppose first that best is in the sense of squared error loss. So find the value of c
which minimizes

L(pL, pR,c) =
n

∑
i=1

1xxx:x j<c(yi− pL)2 +1xxx:x j>c(yi− pR)2.

How can you use this to generate splits at a node in a tree model?

2. Redo item 1, but with absolute error loss. How can you use this to generate splits at
a node in a tree model?

Exercise 4.7 (Variance–bias trade-off and regularization). The point of this exer-
cise is to see the effect of the number of nodes in the hidden layer of a single hidden
layer NN on the overall performance of the NN. Under squared error loss, you should
see the variance–bias trade-off. This should lead you to suggest seeking a trade-off
through regularization.

So, suppose the true function f defined on [−10,10] is

f (x) =
sinx

x
.

Using this f , generate a sample of n = 200 data points (xxxi,yi) for i = 1, · · · ,200 from

Y = f (x)+ ε,

where the εs are IID N(0,σ2). with σ = 0.2, and the xis equally spaced in [−10,10].
The error to be used in this exercise is

E(www) =
n

∑
i=1

(yi−Net(xxxi,www))2,
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where Net(xxxi,www) is the output produced by the NN for xxxi.

1. Construct the scatterplot of the data, and superimpose the true function on it in a
different color.

2. Randomly split the data set into two portions, one with ntrain = 120 data points to
be used as the training set and the rest with ntest = 80 points to be used as the test
set. (Other choices for ntrain and ntest are possible.)

3. Download and install the R Neural Network Package nnet or the MATLAB Neu-
ral Network package NETLAB. Let r1 denote the number of nodes in the hidden
layer. Use r1 = 1,2,4,6,8,16,20 and, for the sigmoid, use the function tanh. Do the
following for each value of r1:

a. Estimate the weights of the NN, storing them and the fitted values.

b. Compute the SSE; i.e., the training error.

c. Using the optimal weights from item 1, compute the predicted values and find
the SSE for the test set (i.e., the test error).

4. Plot both the training error and the test error as a function of r1 and interpret what
you see.

Exercise 4.8 (Extension of Exercise 4.7). In this exercise, use the regularized squared
error loss

Ereg(www) =
n

∑
i=1

(yi−Net(xxxi,www))2 +λ
n1

∑
j=1
‖www j‖2,

where Net(xxxi,www) is the NN output for xxxi. The point is to explore the effect of the
regularization parameter λ and the number of nodes in the hidden layer on both the
training error and the test error. Use the same data generation procedure as in Exercise
4.7 and either the R package nnet or the MATLAB package NETLAB.

1. For r1 ∈ {4,8,16}, repeat the following for λ = 2
10 i, i = 1, · · · ,10:

a. Estimate the weights of the NN, storing them and the fitted values.

b. Compute the SSE; i.e., the training error.

c. Using the optimal weights from item 1, compute the predicted values and find
the SSE for the test set (i.e., the test error).

2. Plot the training error and the test error as a function of λ .

3. For each r1, compute the mean and variance of the test error as a function of λ . For
each λ , plot them as a function of r1.

4. Are the results what you expected? Explain.

5. What effect does increasing or decreasing σ2 have on the mean and variance of the
test error?
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This process can be repeated for a multilayer neural network; i.e., one for which �≥ 2.
If the network is rectangular (the same number of nodes in each hidden layer), the
results should be similar. For irregular networks, the results should be more diffuse,
but the curious reader is invited to seek a similar trade-off.

Exercise 4.9 (Ridge function representations). Functions whose argument is a one
dimensional projection, f (xβ ), are called ridge functions because the projection di-
vides the p-dimensional space into positive and negative parts. Ridge functions are the
terms in PPR.

1. For an arbitrary function g write out the three term decomposition for estimating
it by a technique such as PPR or GAMs. Note that, given the class of functions
to be used to approximate g, there is a best approximand g∗ that gives the optimal
approximation error. After this, the usual bias–variance decomposition can be used
on g∗.

2. To see that the decomposition in item 1 is too simple, let p = 2 and consider
g(x1,x2) = x1x2. Find two different representations of g∗ as a sum of two ridge
functions. Find a third. How many are there?

3. Find a function that is not a sum of finitely many ridge functions.

4. GAMs suffers the same problem as PPR. So, fix a link function and find a function
that cannot be represented as a link function on an additive model.

5. To explore the effect of bias as n increases, use a normal error in Y = f (x)+ ε and
generate data from

Y = f (x) =
cos

[
1
p ∑

p
j=1 cosri(xi)

]

1+ cos
[

1
p ∑

p
j=1 cossi(xi)

] ,

using various choices of ri, si, and p; start with p = 3, ri(x) = si(x) = x. Use equally
spaced design points for convenience. Do trees or neural nets – which can give zero
bias in the limit of large data – perform better, worse, or about the same as the biased
techniques like GAMs or PPR in small sample sizes? Does the same problem occur
for SIR and MARS? Explain. (Don’t forget about variable selection.)

Exercise 4.10 (Projection pursuit regression). This is a generic comparison of sev-
eral methods. Choose a complicated function f and generate responses of the form
Y = f (X1, ...,Xp)+ ε for some p≥ 3, and generate data from it. (The Friedman func-
tion in Chapter 7 is one instance.) You can generate an error term from a N(0,σ2

0 ) for
various choices of σ or use other unimodal distributions. A few ways to choose the
design points are the following: Choose each Xi ∼ N(0,B2/16) for some fixed B > 0,
choose Xi ∼Uni f [0,B] and choose Xi ∼Uni f [−B/2,B/2].

To do two-dimensional PPR, an excellent package is called XGobi and available from
the StatLib archive. A version of Xgobi for the freeware R statistical software package
is at CRAN. The software associated with Friedman (1987) is also available from the
StatLib archive.
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1. Fit a linear model to the data. Does residual analysis suggest any linear model cap-
tures the key feature of your function well?

2. Fit an additive nonparametric model, and compare it with the linear one. Any indi-
vidual smoother will do.

3. Perform PPR using various smoothing methods and different numbers of terms
(one, two, or three). Choose the most reasonable PPR. What are the resulting ex-
planatory variables? Compare the results with those obtained in (a) and (b).

4. Now redo the problem using neural nets (with regularization). What are the differ-
ences?

5. Hardy spirits may try the ACE, AVAS, or MARS procedures. Do the transforma-
tions from ACE or AVAS hint at any parametric model?

Exercise 4.11 (Another comparison).

Parallel to the previous exercise, consider the (one-dimensional) Doppler function

g(x) =
√

(x∗ (1− x))∗ sin((2∗π ∗ (1− e))/(x+ e)),

where e = 0.05. Generate a data set by adding N(0,σ2) noise to g(x) at uniformly
chosen design points xi = i/500 for i = 1, ...,500.

1. Plot the original Doppler signal and the generated noisy one.

2. Use the techniques of Chapters 2 and 3 to estimate g, namely the Nadaraya-Watson
estimator, nearest neighbors, and a cubic or other spline estimator. Find the MSE
for these two techniques and generate residual plots.

3. Use a single hidden layer neural network (with and without a penalty term) to gen-
erate an approximation to g. What happens if you allow extra hidden layers?

4. Now, use a recursive partitioning (tree) based approach. The Gini index is stan-
dard (see Chapter 5) but other selection techniques are possible; use standard cost-
complexity pruning. Again, plot g and the tree-based approximation and give an
MSE. Compare the residual analyses of these techniques.

Exercise 4.12. In this problem the goal is to establish conditions under which backfit-
ting converges and to identify the limit. So, refer back to (4.1.5).

1. Verify that (4.1.5) with p = 2 is equivalent to

fff 1 = LLL1(yyy− fff 2) and fff 2 = LLL2(yyy− fff 1),

where L1 and L2 are the smoother matrices for two linear procedures as in the
definition (2.1.1).

2. Use the expressions in item 1 to follow the backfitting procedure. That is, start with
f2,init and use the first equation to get f 1

1 . Use f 1
1 in the second equation to get f 1

2

for use in the first equation again. Write the iterates as fff j
1 and fff j

2. Verify that
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fff j
1 = LLL1(yyy− fff j−1

2 ) and fff j
2 = LLL2(yyy− fff j

1).

3. The goal is to show that if ‖LLL1LLL2‖ < 1, then fff j
1 → fff 1 and fff j

2 → fff 2. So, start by
using induction on j to derive

fff J
1 = yyy−

J−1

∑
j=0

(LLL1LLL2) j(Ip−LLL1)yyy− (LLL1LLL2)J−1LLL1 fff 2,init ,

fff J
2 = LLL2

J−1

∑
j=0

(L1L2) j(Ip−L1)yyy+L2(L1L2)J−1 fff 2,init ,

for given J.

4. Choose the usual norm on matrices; i.e., for a p× p matrix M, let ‖M‖= sup‖v‖=1
‖Mv}, where the norm on v is Euclidean. Argue that the expressions in item 3
converge when ‖LLL1LLL2‖< 1.

5. Now, given ‖LLL1LLL2‖ < 1, solve the system of equations in item 4 to obtain the lim-
iting expressions

fff 1,∞ = (Ip− (Ip−LLL1LLL2)−1(Ip−LLL1))yyy

fff 2,∞ = LLL2(Ip−LLL1LLL2)−1(Ip−LLL1)yyy

= (Ip− (Ip−LLL2LLL1)−1(Ip−LLL2))yyy.

6. Argue that the fitted values are ŷ = fff 1,∞+ fff 2,∞.



Chapter 5

Supervised Learning: Partition Methods

Basically, supervised learning is what statisticians do almost all the time. The “super-
vision” refers to the fact that the Yis are available, in contrast to unsupervised learning,
the topic of Chapter 8, where Yis are assumed unavailable. The term “learning” is used
in a heuristic sense to mean any inferential procedure that can, in principle, be tested
for validity. Having measurements on Y available means that model identification, de-
cision making, prediction, and many other goals of analysis can all be validated.

In practice, supervised learning more typically refers to a topic that is less familiar
to statisticians but is the focus of this chapter: classification. This is like a regression
in which the dependent variable assumes one of finitely many values, representing
classes. The task remains to identify a regression function but now it is called a clas-
sifier because the goal is mostly to treat a new feature vector as an input and take its
value as the class label. Implicit in this is the primacy of prediction because classifiers
are evaluated almost exclusively on future data (or holdout sets). Roughly every re-
gression technique gives a classifier if it is applied for discrete responses, and every
classification procedure corresponds to a regression problem, although the Y may only
take two values.

The point of classification in general is to slot objects in a population – patients, cars,
images, etc. – into one of two or more categories based on a set of features measured on
each object. For patients, this might include sex, age, income, weight, blood pressure,
and so forth. The categories are known and, in general, not ordered. However, it is easy
to imagine classifying patients into low-, medium-, and high-risk groups, for instance.

Like regression, the typically data consist of n outcomes Yi with corresponding co-
variates or explanatory variables XXXi of length p. In the supervised (and unsupervised)
learning context, explanatory variables are often called features and the data are often
called a training set. The Machine Learning Repository at the University of California-
Irvine has well-documented training sets often used in DMML for testing new meth-
ods. The first goal is to use the data to choose which components of XXX , or possibly
functions of them, are most important for determining which category Yi came from;
this topic will be addressed in Chapter 10. The second goal is to use this information
to use the data to find a function of the explanatory variables that will identify the class
for a given xxx. This analog to the regression function is often called the classification

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 231
in Statistics, DOI 10.1007/978-0-387-98135-2 5, c© Springer Science+Business Media, LLC 2009
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rule, f̂ (·). It is equivalent to specifying the decision boundary in feature space that best
separates the classes. Strictly speaking, only the second of these two goals is classifi-
cation, but variable selection, is often a necessary step for constructing a classifier.

In a training set, each data point is a vector of length p + 1 consisting of Y and the
p covariates that gave rise to it. It is assumed that there is an ideal classifier f that f̂
estimates, just as in regression there is a true function that the fitted curve estimates.
Thus, for a new observation Ynew, one looks at the covariate values XXXnew and predicts
that Ynew will be in the class f̂ (XXXnew). The basic way a classifier such as f̂ is assessed
is through its probability of misclassification, P( f̂ (XXXnew) 	= Ynew). The probability P
may be conditional on the training set, i.e., neglect the randomness in estimating f
or P may be as written and include the variability in f̂ . Note that the existence of an
ideal classifier does not in general figure in the evaluation of an estimated classification
rule; this is unlike regression, where rates are on the norm between an estimate and a
true function. Another consequence of the discreteness of Y is that the loss function in
classification is usually discrete as well; for instance, 0-1 loss is typical, as opposed to
a continuous loss like squared or absolute error.

Classification procedures themselves can be classified into several classes. One is
called partitioning methods. These methods partition the feature space into disjoint,
usually exhaustive, regions. The hope is that the responses for feature vectors from the
same region should be similar to each other. Often these regions are found recursively,
and in the simplest cases they are rectangles. For instance, one can start with a variable
x1 and partition first by x1 < c versus x1 ≥ c. Then, within each rectangle, the partition
can be repeated on another variable.

Classification can also be done nonrecursively. In some cases, a discriminant function,
say dk(xxxnew), is used to assess how representative xxxnew is of each class k = 1, . . . ,K,
assigning class kopt = argmaxk dk(xnew) to xxxnew. Discriminant functions can be linear
or not, in which case they are called flexible. Even when they are not linear, discrimi-
nant functions are sometimes only a monotone transformation away from being linear.
For instance, it will be seen that logistic regression can be used to obtain a classifier.
In the two-class setting, let

IP(Y = 1|X = x) =
eβ0+β ′x

1+ eβ0+β ′x

and

IP(Y = 2|X = x) =
1

1+ eβ0+β ′x

be discriminant functions for the two classes. Then, the monotone transformation
given by the logit, p→ log(1/(1− p)), gives

log
IP(Y = 1|X = x)
IP(Y = 2|X = x)

= β0 +β ′x,

and it is seen that the line β0 +β ′x = 0 is the boundary between class 1 and class 2.

Other partitioning methods include trees, neural networks, and SVMs. Indeed, SVMs
are one of the most important: They have linear and nonlinear forms, can be used with
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separable or nonseparable data, and, to a great extent, evade the Curse because they
make use of kernel methods. Separable data means that the classes, or more exactly the
data, really are disjoint; nonseparable, which is more typical, means that the regions for
each class have boundaries that are much more general and the data appear to overlap.

Nonpartitioning classification procedures include nearest neighbor methods, discussed
in Chapter 2, and the relevance vector machine, to be discussed in Chapter 6. There are
not as many nonpartitioning methods; they tend to identify representative points and
predict based on proximity to them. In fact, nonpartitioning methods can be expressed
so they give a partition. However, the partition is so variable that it is not really helpful
to think of the method in those terms.

All of the methods treated here are crisp. That is, the complication that Y may only be
probabilistically determined by XXX is not considered. In other word, the setting that, for
a given feature vector xxx, it may be that both P(Y (xxx) = 0) > 0 and P(Y (xxx) = 1) > 0 is
ruled out. For instance, one can have high blood pressure but not be at risk for a heart
attack. Blood pressure increases when someone is in pain. So, a heart-attack classifier
assuming Y is essentially determined by xxx may improperly identify some one with back
pain as actually having a heart attack on the basis of elevated blood pressure when a
more sophisticated technique would only report a probability (less than one) of heart
attack. Non-crisp methods are a level of complexity beyond the present scope.

This section presents three basic partitioning methods in order of increasing complex-
ity. The first and third, discriminant analysis and SVMs, are non-recursive. The second,
based on trees, is recursive. At the end, a short discussion of neural nets (also nonre-
cursive) in a classification context is given.

5.1 Multiclass Learning

The simplest classification problems separate a population into two classes labeled
1 and 2. These binary classification problems almost always generalize to multiclass
classification problems. Although binary classification is the paradigm case and con-
venient to examine first, it is no harder to state some of the formalities for the general
K class setting.

The task is to find a decision function to discriminate among data from K different
classes, where K ≥ 2. The training set consists of samples (xxxi,yi) for i = 1, . . . ,n,
where xxxi ∈ IRp are the feature vectors and yi ∈ {1, . . . ,K} is the class label for the ith
sample. The main task is to learn a decision rule,

f (xxx) : IRp →{1, . . . ,K},

used to separate the K classes and predict the class label for a new input xxx = xxxnew.

A trained multiclassifier is generally associated with a K-function vector

ddd(xxx) = (d1(xxx), . . . ,dK(xxx)),
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where fk(xxx) represents the strength of evidence that xxx belongs to class k. The induced
classifier φ from fff is defined as

f (xxx) = arg max
k=1,...,K

dk(xxx). (5.1.1)

The decision boundary between classes k and l is the set

{xxx ∈ IRp : dk(xxx) = dl(xxx)}, ∀k 	= l.

If the decision boundaries are linear in xxx, the problem is linearly separable. Figure 5.1,
cf. Liu and Shen (2006), shows a simple three-class classification problem, where the
training set can be perfectly separated by linear functions. Relatively few classification

 x1

x2

Class 1

Class 2 Class 3

f1>max(f2,f3)

f2>max(f1,f3)

f3>max(f1,f2)

Fig. 5.1 An example of a three-class problem with linear boundaries.

problems are linearly separable. However, the concept is useful, and often it is possible
to transform the feature space so that the boundaries in the transformed space are linear.

If K is not too large, one way to simplify multiclass problems is to transform them into
a series of binary problems. Two popular choices are the one-versus-rest approach (also
known as one-versus-all or OVA) and the pairwise comparison approach (also known
as all-pairs, all-versus-all, or AVA). The OVA method trains K binary classifiers. Each
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d̂k(xxx) is trained to separate class k from the rest. These K binary classifiers are then
combined to give a final classification

f̂ (xxx) = arg max
k=1,...,K

d̂k(xxx). (5.1.2)

The OVA method is easy to implement and hence is a popular choice in practice. How-
ever, it may give poor classification performance in the absence of a dominating class
when none of the pk(xxx)s is greater than 1/2; see Lee et al. (2004). Another disadvan-
tage of the OVA method is that the resulting binary problems are often very unbal-
anced; see Fung and Mangasarian (2004). By contrast, the pairwise classifications in
AVA train K(K− 1)/2 binary classifiers, each separating a pair of classes. The final
class predicted for an xxx is decided by a voting scheme among all the classifiers. One
criticism of these methods is that a large number of training tasks may be involved,
especially for AVA, when K is not small.

In the rest of this chapter, the goal will be to develop the general K case. However,
discriminant methods and SVMs are most naturally presented in the binary K = 2,
case and this will be done below. Details on extensions to general K will be discussed
where possible. It is only for tree-based classifiers, and NNs that the general K case is
no harder to present than the binary case.

5.2 Discriminant Analysis

As noted earlier, the idea behind discriminant analysis is that K functions dk(·) are
derived so that dk(xxxnew) can be used to assess how representative xxxnew is of each class
k = 1, . . . ,K, as in (5.1.1) or (5.4.23). The natural classifier then assigns class

kopt = argmax
k

dk(xnew)

to xxxnew. In practice, one does not go too far wrong to think of dk as representing some-
thing like a distance between the sample mean of the kth class and a new value of XXX ,
remembering that projections are closely related to distances.

The paradigm case for discriminant analysis is that K = 2 and the two classes corre-
spond to values of two explanatory variables that concentrate on two parallel, ellip-
tically shaped regions in the plane, one for each class. In this case, the two classes
are linearly separable because there is a linear decision boundary, a line in the plane
such that essentially all the class 1 cases are on one side and all class 2 cases are on
the other. This corresponds to having linear discriminant functions. More generally,
linear separability means that the classes can be separated by a linear combination of
features. For instance, when p = 3, a linear decision boundary would be a plane and
when p = 4 a linear decision boundary would be a hyperplane. Squares of the ex-
planatory variables can be included in the dks to give quadratic discriminant functions
with quadratic boundaries, although the term quadratic separability is not in common
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parlance. In general, decision boundaries obtained from discriminant functions dk can
be any partition of the feature space.

Discriminant functions fall roughly into three conceptual classes – distance-based,
Bayes, and probability-based even though the techniques in the classes have some
overlap. (For instance, the Bayes classifier turns out to be distance-based in many
cases.) Distance-based classifiers were the earliest and led to the linear discrimi-
nant functions pioneered by Fisher in the 1930s, now often just called collectively
Fisher’s linear discriminant analysis (LDA). Bayesian classification came later and has
a decision-theoretic foundation; it also leads to linear discriminants but of a slightly
different form. In the third class, probability based, the Bayes rule is estimated. First,
conditional probabilities p(xxx) = IP(Y = k|XXX = xxx) are estimated, often using a model,
and then sample points xxx are classified according to the highest probability p̂k(xxx). It
can be argued that most standard statistical approaches for multiclass discrimination
are probability-based because the Bayes rule is optimal (even if hard to implement)
and any good classifier should approximate it satisfactorily.

5.2.1 Distance-Based Discriminant Analysis

To start thinking about distance-based classification, start with K = 2, so Y = 1,2, and
consider looking for a linear function that predicts the class for a new value XXX = xxx. The
simplest case is that IP(XXX |Y = 0) and IP(XXX |Y = 1) are normally distributed with means
μ0 and μ1 and the same covariance matrix Σ , assumed to be of full rank. Given data,
it makes intuitive sense to find x̄xx1 and x̄xx2, the means of the observations with values
y = 1 and y = 2, and assign xxx to the class i with a smaller value of ‖x̄xxi− xxx‖, where the
norm uses the inner product on IRp defined from Σ . It will be seen that this is equiv-
alent (apart from estimating parameters) to using the optimal classifier that assigns
whichever of class 1 or 2 has a higher value of IP(Y = y|XXX = xxx) = Σ−1(μ1− μ2) · xxx.
That is, distance-based classification often converts to a projection, and projections
used for classification often have a distance-based interpretation. Even better, both
perspectives can lead to linear discriminants. Such procedures typically extend from
the binary case to the multiclass setting and have a Bayesian interpretation if the pro-
portions of the classes are regarded as a prior.

Noting that variances are average squared distances, Fisher ignored conditional prob-
abilities and derived a linear discriminant using a criterion based on the difference
between two projections of xxx scaled by the variances of the classes. This did not re-
quire normality or equal variance matrices. To see this, suppose there are two classes
with means μ0 and μ1 and variance matrices Σ1 and Σ2, and consider a linear combina-
tion L = www ·xxx. Then, E(L|Y = y) = wwwμy and Var(L|Y = y) = wwwΣywww. Let the separation
between the two classes be defined by

S =
(www ·μ2−www ·μ1)2

wwwΣ1www+wwwΣ2www
,
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a sort of signal-to-noise ratio. It can be verified that S is maximized when www = (Σ1 +
Σ2)−1(μ2− μ1), giving a projection form of Fisher’s LDA, and directly generalizing
beyond the normal case which required Σ1 = Σ2.

Again visualize two long, thin, parallel, elliptically shaped regions in a plane, each
ellipse representing the values of an explanatory variable for a class. If the class in-
formation is ignored, the scatterplot of the full data set may look like a single thicker
ellipse of the same length or, better, like two thin ellipses of the same length without
much overlap. That is, the full data set can be treated as a single ellipse in which the
major axis parallel to the two thin ellipses represents the larger of two variances and
the minor axis, crossing the two small ellipses, is the smaller of two variances.

Imagine separating the two classes by a decision boundary. If the data points were
projected onto the major axis and then a one-dimensional classification were done, the
result would be terrible because the points from the two classes would be intermin-
gled. The decision boundary would be transverse to the ellipses. However, if the data
points were projected onto the minor axis, the result would be quite good; the decision
boundary would be a line between the two ellipses, and the separation between the two
classes would be relatively clean. As noted above, the basic task of linear discriminants
is to find good decision boundaries, and this can be done by finding useful projections.
There are many ways this can be done. Two are as follows. First, a relevant objective
function can be maximized to give a useful projection for classification in general;
this is another form of Fisher’s LDA. Second, one can seek an optimal linear transfor-
mation corresponding to the optimal directions for classification generalizing Σ−1 in
Fisher’s LDA. Both of these will be developed below.

5.2.1.1 Direct Maximization

Instead of maximizing the separation S between two classes, one can use ANOVA rea-
soning. Recall that the main way the different cells in an ANOVA are contrasted is by
comparing the between-cell variation to the within-cell variation. The analogous treat-
ment for classification can be developed defining between-scatter and within-scatter
matrices. In terms of the data, these are SB and SW , defined by

SB =
K

∑
k=1

nk(x̄xxk− x̄xx)(x̄xxk− x̄xx)T and SW =
K

∑
k=1

nk

∑
i=1

(xxxi− x̄xxk)(xxxi− x̄xxk)T, (5.2.1)

in which nk is the number of samples from class k, ∑k nk = n, x̄xxk is the average of the
samples in class k, and x̄xx is the average over all the samples. It can be checked that

SB +SW = ST =
n

∑
i=1

(xxxi− x̄xx)(xxxi− x̄xx)T,

where ST is the total scatter.

Now, the analog of the ratio of variances in ANOVA is
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J(www) =
wwwTSBwww
wwwTSW www

.

Maximizing J(www) is equivalent to maximizing the total scatter wwwTST www while minimiz-
ing the within-scatter wwwTSW www, parallel to the ANOVA sum of squares decomposition.

Since J(www) = J(αwww) is homogeneous for any α and the denominator is a squared
norm, it makes sense to maximize over the unit sphere in p dimensions in the norm
defined by using SW as an inner product. Thus, it is enough to solve

Find min
www
−1

2
wwwTSBwww

subject to wwwTSW www = 1.

This is a familiar quadratic optimization problem solvable by Lagrange multipliers; see
Johnson and Wichern (1998) and Welling (2005). The Lagrange multiplier λ can be
found to satisfy S−1

W SBwww = λwww. If S−1
W SB were symmetric, this would be an eigenvalue

problem. However, S−1
W SB is not always symmetric. To get around this, one can use

a transformation based on the fact that SB is positive symmetric and therefore has a

square root that can be represented as S1/2
B = UΛ 1/2U , where U diagonalizes SB to Λ ,

i.e., SB = UΛU . Writing vvv = S1/2
B www converts the Lagrange multiplier condition to

S−1/2
B S−1

W S−1/2
B vvv = λvvv.

So, the possible solutions for λ are seen to be the eigenvalues of S−1/2
B S−1

W S−1/2
B with

eigenvectors vvvk given corresponding wwws as wwwk = S−1/2
B vvvk. Putting this back into the

numerator of J(www) gives that

J(www) =
wwwTSBwww
wwwTSW www

≤ λp
www′pSW wwwp

wwwT
p SW wwwp

= λp

when λp is the largest eigenvalue.

This means that the projection defined by wwwp, the eigenvector corresponding to the
largest eigenvalue, is the optimal projection for maximizing the between-class scatter
relative to the within-class scatter, i.e., the discriminant function is

d̂k(xxx) = ŵwwp(xxx− x̄xxk) (5.2.2)

because of the centering in the scatter matrices. Note that this remains a projection
onto a unidimensional space and so may not be particularly good if the classes are
not properly aligned so their minor axes are roughly parallel. This deficiency can be
partially fixed by a projection onto a space of dimension higher than one; see below.
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5.2.1.2 Noise in LDA

It is important at this point to look briefly at the effect of noise on distance-based
classification. The effect of noise is most easily analyzed using a form of Fisher’s
LDA that will be derived in the next subsection. It is Bayesian and obtains expressions
for conditional probabilities of the form IP(Y = k|XXX = xxx). The discriminant function it
gives reduces to assigning xxx to the class k achieving the maximum of

dk(xxx) = dM(xxx, x̄k) = [(x− x̄k)TΣ−1(x− x̄k)]1/2 (5.2.3)

when the variance matrices of the K classes are the same. That is, xxx is assigned to the
class whose sample mean is closest to the observation in Mahalanobis distance, a norm
derived from an inner product defined by the inverse variance matrix. It can be seen
that this is equivalent, apart from estimating parameters, to the normal LDA rule for
two classes given at the start of this section and is of a form similar to the other linear
discriminants. If Σ is unknown, then the usual estimate can be used and, in practice, it
is helpful to use robust estimators for both μk and Σ .

To analyze the effect of noise in linear discriminant analysis, assume a fixed sample
size of n and that the common variance matrix is diagonal, Σ = σ2I. Write the esti-
mates of the means as

μ̂1 = μ1 +
σ√

n
VVV 1 and μ̂2 = μ2 +

σ√
n

VVV 2

for unknown vectors VVV 1 and VVV 2. Suppose that the new observation to classify is XXX =
μ0 +σVVV . Here, VVV 1, VVV 2, and VVV can be treated as Np(0, I) random errors.

Now, the Mahalanobis form of Fisher’s LDA assigns class 1 if dM(XXX , μ̂1) < dM(XXX , μ̂2),
and this is equivalent to (XXX− μ̂1)T(XXX− μ̂1) < (XXX− μ̂2)T(XXX− μ̂2). Writing XXX , μ̂1, and
μ̂2 in terms of VVV , VVV 1, and VVV 2 shows this is equivalent to

(
(μ1−μ2)+σVVV − σ√

n
VVV 2

)T(
(μ1−μ2)+σVVV − σ√

n
VVV 2

)

>

(
σVVV − σ√

n
VVV 2

)T(
σVVV − σ√

n
VVV 1

)
. (5.2.4)

As n→ ∞, this criterion converges to the rule that assigns class 1 when 2σVVV · (μ1−
μ2)+‖μ1−μ2‖2 > 0. So, when p = 1, the asymptotic probability of misclassification
is seen to be P[VVV > |μ1− μ2|/2σ ] and the error rate depends on the signal-to-noise
ratio |μ1− μ2|/σ . Analogous expressions for larger p can also be derived but are left
as an exercise.

Without using asymptotics, one can use (5.2.4) to show that Fisher’s LDA specifies a
plane in p dimensions that partitions the feature space. Raudys and Young (2004), Sec.
3 give formulas for the probability of misclassification.

Note that fully three forms of Fisher’s LDA have now been seen. The original version
based on separation led to the projection form using www = (Σ0 +Σ1)−1(μ1− μ0); the
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ratio of scatter matrices led to another projection form

d̂k(xxx) = ŵwwp(xxx− x̄xxk).

Third, the Mahalanobis form just seen uses a distance explicitly and is derived from
a Bayesian approach. In fact, the Bayes approach more generally leads to yet a fourth
form for Fisher’s LDA. All of these are called Fisher’s LDA, although, in practice, it
is the Bayes version that is most commonly meant.

5.2.1.3 Optimal Linear Transformations

Maximizing the between-scatter matrix relative to the within-scatter matrix can be
done in many ways; there are many functions that are reasonable besides taking the
matrices as inner products. In fact, taking inner products may not reflect the spread of
a matrix at all: The largest single eigenvalue says little about the (p−1)-dimensional
subspace corresponding to the eigenvectors of the other eigenvalues. The dispersion of
a matrix may therefore be better represented by some function of its entries that treats
the eigenvalues symmetrically, for instance the trace. Moreover, it may be desirable to
be able to choose the dimension of the projection.

To set this up, follow Ye (2007) and consider an �× p real matrix G and for any
xxxi write Gxxxi = xxxL

i . It would be nice to maximize trace(SB)/trace(SW ) or perhaps
det(SB)/det(SW ), but this seems hard. So, recall the matrix form of the conservation
of variation equation, ST = SB +SW , and transform it by G. Set

SL
W = GSW GT, SL

B = GSBGT, and SL
T = GST GT.

Writing G as column vectors G = (ggg1, ...,ggg�), it is seen that, for xxx ∈ IRp, Gxxx = (ggg1 ·
xxx, ...,ggg� · xxx) ∈ IR�.

Now, it would be nice to find G that maximizes trace(SL
B) and minimizes trace(SL

W ) at
the same time. So, it is reasonable to look at

max
G

trace(SL
W )−1SL

B and min
G

trace(SL
B)−1SL

W .

As noted in Ye et al. (2004), these optimizations, like the last direct maximization,
are equivalent to a generalized eigenvalue problem. Indeed, for the maximization,
set SBxxx = λSW xxx for λ 	= 0 assuming SW is nonsingular and use an eigendecompo-
sition of S−1

W SB. (If SB is nonsingular, use an eigendecomposition of S−1
B SW .) Since

rank(SB) ≤ K− 1, there are at most K− 1 nonzero eigenvalues. The minimization is
similar. Hopefully, G will preserve the class structure of the data in IRp while project-
ing it to IR�.

These two optimizations are also equivalent to finding G that maximizes trace(SL
B)

and minimizes trace(SL
T ). A standard argument (see Fukunaga (1990)) gives that the

optimal GLDA satisfies
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GLDA = argmax
G

trace(SL
B(SL

T )−1)

and consists of the �th largest eigenvectors of SB(ST )−1 (with nonzero eigenvalues), as-
suming ST is nonsingular. Clearly, these three optimizations generalize the optimiza-
tion in the last subsection in which G was just the eigenvector corresponding to the
largest eigenvalue in (5.2.2).

It is straightforward to verify (see Ye (2007)) that when there are K = 2 classes Fisher’s
LDA and linear regression of the xxxs on the class labels are equivalent. Indeed, suppose
the labels are ±1 and the data points are centered; i.e., xxxi is replaced by xxxi− x̄xx and
yi is replaced by yi − ȳ, and the linear model f (xxx)− xxxTβββ is fit for βββ ∈ IRp. Then,
under squared error loss, β̂ββ = (XTX)−1XTyn, where X is the design matrix and yn =
(y1, . . . ,yn)T is the vector of classes. Using XTX = nST and Xyn = (2n1n2/n)(x̄xx1− x̄xx2),
it can be verified that

β̂ββ =
2n1n2

n2 S−1
T (x̄xx1− x̄xx2)

when ST is nonsingular, so that the optimal G is GF = S−1
T (x̄xx1− x̄xx2) for Fisher’s LDA,

which is the solution to GLDA in this case. If ST is singular, a generalized inverse may be
used in place of S−1

T . Ye (2007) verifies that this equivalence between linear regression
and LDA holds quite generally.

5.2.2 Bayes Rules

Abstractly, the Bayes classifier rests on a conditional density p(Y |X1, ...,Xp) for a de-
pendent class variable Y = 1, ...,K, given explanatory variables X1 through Xp. Bayes’
theorem gives

p(Y |X1, ...,Xp) =
p(Y )p(X1, . . . ,Xp|Y )

p(X1, . . . ,Xp)
, (5.2.5)

but interest only focuses on the numerator because the denominator is a constant be-
cause the Xj = x j must be given, independent of the value of Y = y. Although p(y) is
not known, it represents the actual proportion of class y in the population and so plays
the role of the prior. Given an outcome (x1, . . . ,xp), the Bayes classifier is the mode of
(5.2.5),

argmax
y

p(y)p(x1, . . . ,xp|Y = y).

The mode of a posterior is the Bayes optimal under certain loss functions, as will be
seen shortly.

An interesting special case of this is called the Idiot’s Bayes procedure. The idea is to
ignore any dependence structure among the Xjs so the Xjs are like independent data.
Thus, the numerator in (5.2.5) is written as
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p(Y )p(X1|Y )p(X2|Y,X1)p(X3|Y,X1,X2) . . . p(Xp|Y,X1, . . . ,Xp−1) =
p

∏
j=1

p(Xj|Y ).

So, the conditional distribution for Y becomes

p(Y |X1, . . . ,Xp) =
1

K(X1, . . . ,Xp)
p(Y )

p

∏
i=1

p(Xi|Y ),

where K is a normalizing constant depending on X p
1 . Again, the natural classifier is the

mode, which is now
argmax

y
p(y)Π p

j=1 p(x j| y)

if the p(·|c)s are known; otherwise they are usually parametrized by, say, α as in
pα(x|y), which must be estimated as in the next subsection.

The rest of this subsection examines the Bayes classifier for normally distributed
classes, deriving the Bayes version of Fisher’s LDA. Then, a more general decision-
theoretic framework is given to motivate the use of the mode of the posterior. Finally,
Fisher’s LDA is examined once more to identify the decision boundaries.

5.2.2.1 Bayes Classification in the Normal Case

The basic idea of the Bayes approach is to assign a prior to the classes, say W (·), so
that the posterior probability for Y assuming the value of the kth class upon receipt of
XXX = xxx is

W (Y = k|XXX = xxx) =
W (k) fk(xxx)

W (1) f1(xxx)+ . . .+W (K) fK(xxx)
, (5.2.6)

where the fks are the class densities. The modal class is therefore

argmax
k

W (Y = k|XXX = xxx) = argmax
k

fk(xxx)W (k).

If the fk(·)s are normal with common variance ( i.e., N(μk,Σ) densities) then the Bayes
classification rule is

f (xxx) = argmax
k

W (Y = k|XXX = xxx)

= argmaxW (k) fk(xxx)

= argmax
k

(
−1

2
(xxx−μk)TΣ−1(xxx−μk)+ lnW (k)

)

= argmax
k

(
xxxTΣ−1μk−

1
2
μT

k Σ
−1μk + lnW (k)

)
(5.2.7)

because the common variance term drops out. It makes sense to define dk(xxx) to be
the parenthetical quantity in (5.2.7) so that the Bayes classification rule is f (xxx) =



5.2 Discriminant Analysis 243

argmaxk dk(xxx). This means that the decision boundary between two classes k and � is
{xxx|dk(xxx) = d�(xxx)}.
The Bayesian approach extends to the setting in which the variance matrices depend
on the classes. This is sometimes called quadratic discrimination analysis and results
in the quadratic discriminant function

dk(xxx) =−1
2

lndet(Σ)− 1
2
(xxx−μk)′Σ−1(xxx−μk)+ lnW (k),

so that the classification rule is, again, to assign class argmaxk dk(xxx) to xxx. However,
decision boundaries of the form {dk(xxx) = dm(xxx)} become more complicated to express
and there are many more parameters from the variance matrices that must be estimated.

For contrast, recall that the first discriminant given at the start of this section used a
projection based on www = Σ−1(μ2− μ1). Here, it is worth noting that, when K = 2,
setting vvv = (v1, ...,vp) = Σ−1(μ2−μ1) and

v0 = ln(W (1)/W (2))+(1/2)(μ2−μ1)TΣ−1(μ1 +μ2)

means the Bayes classification rule reduces to assigning xxx to class 1 when

v0 + vvv · xxx > 0.

5.2.2.2 Decision-Theoretic Justification

In classification problems, the data (yi,xxxi), i = 1, · · · ,n, are assumed to be indepen-
dently and identically drawn from a joint distribution IPX,Y (xxx,y). Deterministic designs
common to regression do not occur, and IP summarizes the error structure instead of a
perturbation ε . It is IP that defines the conditional probabilities of Y given X as

pk(xxx) = IP(Y = k|XXX = xxx), k = 1, . . . ,K.

Earlier, the mode of a posterior was used to give a classification. Here, it will be seen
that the mode is the Bayes action under a specific loss structure.

Let C be the K×K cost matrix associated with classification, i.e., an entry C(k, l) rep-
resents the cost of classifying a data point from class k to class l. In general, C(k,k) = 0
for k = 1, . . . ,K since correct classifications should not be penalized. For any classifier
f , the risk is the expected cost of misclassification,

EX,Y (C(Y, f (XXX))) = EXXX

(
K

∑
k=1

C(k, f (xxx))Pr(Y = k|XXX = xxx)

)

= EXXX

(
K

∑
k=1

C(k, f (xxx))pk(xxx)

)
. (5.2.8)

The Bayes rule, which minimizes the risk functional, is given by
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fB(xxx) = arg min
k=1,...,K

(
K

∑
l=1

C(k, l)pk(xxx)

)
. (5.2.9)

In the special case of equal misclassification costs, the risk in (5.2.8) is equivalent to
the expected misclassification rate

E [ f (XXX) 	= Y ] = EXXX

(
K

∑
k=1

I ( f (xxx) 	= k)P(Y = k|XXX = xxx)

)
, (5.2.10)

and the Bayes rule becomes

fB(xxx) = arg min
k=1,...,K

[1− pk(xxx)] = arg max
k=1,...,K

pk(xxx), (5.2.11)

which assigns xxx to the most likely class. Thus, the modal class is the optimal Bayes
rule and would be computable if the underlying conditional distribution IP(Y |XXX) were
known. Many classification methods have been proposed to estimate, or approximate,
the Bayes rule directly or indirectly. Based on their learning schemes, existing classi-
fication methods fall into two main categories: probability-based, which are discussed
in the next subsection, and margin-based, of which SVMs taken up in Section 5.4 are
the most popular.

5.2.2.3 LDA Redux

Recall (5.2.6), which gives the conditional probability of a class Y = y given XXX .
Sometimes explicitly, but often implicitly, LDA assumes each class density is a p-
dimensional multivariate Gaussian MVN(μμμk,Σk). Often, equal variances are assumed,
Σk = Σ for all k. Therefore,

fk(xxx) = (2π)−p/2|Σ |−1/2 exp

{
−1

2
(xxx−μμμk)

TΣ−1(xxx−μμμk)
}

.

The log ratio of a sample belonging to class k and belonging to class l is

log
IP(Y = k|XXX = xxx)
IP(Y = l|XXX = xxx)

= log
πk

πl
− 1

2
(μμμk +μμμ l)

TΣ−1(μk−μμμ l)+ xxxTΣ−1(μμμk−μμμ l).

For each class k, the associated discriminant function is defined as

dk(xxx) = xxxTΣ−1μk−
1
2
μμμT

k Σ
−1μμμk + logπk.

The decision rule is given by

Ŷ (xxx) = arg max
k=1,...,K

dk(xxx).

Note that we can rewrite dk(xxx) as
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dk(xxx) =−1
2
(xxx−μμμk)

TΣ−1(xxx−μμμk)+
1
2

xxxTΣ−1xxx+ logπk.

If prior probabilities are the same, the LDA classifies xxx to the class with centroid clos-
est to xxx using the squared Mahalanobis distance based on the within-class covariance
matrix. The decision boundary of the LDA is linear in xxx due to the linear form of dk,

dk(xxx) = wwwT
k xxx+bk, where wwwk = Σ−1μμμk, k = 1, · · · ,K.

The boundary function between class k and class l is then

(wwwk−wwwl)T xxx+(bk−bv) = w̃wwT xxx+ b̃ = 0,

where w̃ww = Σ−1(μμμk − μμμ l). The normal vector w̃ww is generally not in the direction of
μμμk − μμμ l , and it attempts to minimize the overlap for Gaussian data. In practice, the
parameters are estimated from the training data

π̂k = nk/n, μ̂k = ∑
Yi=k

xxxi/nk,

where nk is the number of observations in class k. The common covariance is often
estimated by the pooled within-class sample variances

Σ̂ =
K

∑
k=1
∑

Yi=k

(xxxi− μ̂k)(xxxi− μ̂k)T /(n−K).

However, in the presence of outliers, these estimates can be unstable, so more robust
estimators are often preferred.

5.2.3 Probability-Based Discriminant Analysis

In probability-based discriminant functions, the optimal Bayes rule is estimated or
approximated directly. This can be done by estimating the probabilities or densities
that appear in (5.2.6). For instance, if K = 2, IP(Y = y|xxx) can be obtained by estimating
the densities f1(x) and f2(x) by f̂1 and f̂2 and the proportions of the two classes by the
sample proportions π̂1 and π̂2. The basic idea is to form

ÎP(Y = k|x) =
π̂k f̂k(x)

π̂1 f̂1(x)+ π̂2 f̂2(x)

and choose the value of k that maximizes it. Alternatively, a model for the conditional
probability can be proposed and the Bayes rule estimated by it. Both approaches bear
some discussion.
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5.2.3.1 Multiple Logistic Regression Models

Given IID observations (xxxi,yi), i = 1, . . . ,n, the counts for the K classes can be treated
as multinomial with probabilities {p1(xxx), . . . , pK(xxx)}. The multiple logistic regression
model (MLR) is merely one successful way to obtain a classifier by using a model
based estimate of the Bayes rule. The MLR simultaneously proposes a specific form
for the log odds for all

(K
2

)
pairs of classes, so the log odds can be estimated.

By regarding the last class as a baseline, the MLR model assumes the linear form for
the following K−1 logits:

log
pk(xxx)
pK(xxx)

= ηk(xxx), k = 1, . . . ,K−1. (5.2.12)

With the model (5.2.12), the conditional probabilities pk(xxx) become

pk(xxx) =
exp{ηk(xxx)}

1+∑K−1
k=1 exp{ηk(xxx)}

, k = 1, . . . ,K. (5.2.13)

In particular, the linear MLR model assumes the linear forms for the logits

log
pk(xxx)
pK(xxx)

= αk +βββ T

kxxx, k = 1, . . . ,K−1, (5.2.14)

with αK = 0,βββK = 0.

Maximum likelihood estimation can be used to estimate θθθ =
(
α1,βββ T

1, . . . ,αK−1,βββ T

K−1

)
.

For the ith sample, let the vector zzzi = (zi1, . . . ,ziK)T represent its membership charac-
teristic; i.e., zik = 1 if yi = k and zik = 0 otherwise. Note that ∑K

k=1 zik = 1. The log
likelihood function is then given by

l(θθθ) = log
n

∏
i=1

[
K

∏
k=1

pk(xxxi)zik

]

=
n

∑
i=1

{
K−1

∑
k=1

zik(αk +βββ T

kxxxi)− log

[
1+

K

∑
k=1

exp(αk +βββ T

kxxxi)

]}

=
K−1

∑
k=1

αk

(
n

∑
i=1

zik

)
+

K−1

∑
k=1

d

∑
j=1

β jk

(
n

∑
i=1

xi jzik

)
−

n

∑
i=1

log

[
1+

K−1

∑
k=1

exp(αk +βββ T

kxxxi)

]
.

The negative log likelihood function is convex, so the Newton-Raphson algorithm is
often used to optimize the function. Denote the maximum likelihood estimates by θ̂θθ
and p̂k(xxx), k = 1, . . . ,K. The MLR decision rule classifies data with an input xxx to its
most probable class, i.e., f (xxx) = argmaxk=1,...,K p̂k(xxx).
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5.2.3.2 Variants on the Linear MLR

Consider the linear version of the MLR, but, following Dreiseitl and Ohno-Machado
(2002), write it as

IP(Y = 2|xxx,βββ ) =
1

1+ e−βββ ·x
(5.2.15)

for the binary case, where IP(Y = 1|xxx,βββ ) = 1−P(Y = 2|xxx,βββ ). It is seen that the hyper-
plane βββ · xxx = 0 is the decision boundary between class 1 and class 2 and corresponds
to the case where the two classes are equally likely, IP(Y = 2|xxx,βββ ) = IP(Y = 1|xxx,βββ ).
The linear function is written β · xxx, but this can be generalized to nonlinear functions
in the covariates.

In particular, it is seen that the logistic model (5.2.15) is a one node neural net if 1/(1+
e−t) is taken as the sigmoid. So, the whole model can be generalized by replacing βββ ·xxx
to give

IP(Y = 2|xxx,βββ ) = outr =
1

1+ e−β ·outr−1(βββ r−1,xxx)+β0
,

where outr−1(βββ r−1,xxx) is the vector of outcomes of the nodes at the r−1 hidden layer,
with all parameters at that layer denoted by βββ r−1.

Typically, one uses a maximum likelihood approach to estimate β . That is, one uses

β̂ββ = argmax
βββ

Π n
i=1P(yi|xi,βββ ).

Alternatively, Bayesian estimates can be developed. Given a prior on β , the posterior
density is

p(βββ |xi,yi : i = 1, ...n) =
p(βββ )Π n

i=1 p(yi|xi,βββ )∫
βββ p(βββ )Π n

i=1 p(yi|xi,βββ )dβββ
.

This becomes sharply peaked at its mode β̂ββ pm, which will generally be close to β̂ββML;

it’s as if β̂ββ pm is the same as β̂ββML but using an extra finite number of data points cor-
responding to the information in the prior. Clearly, one can imagine using gradient
descent and other techniques from NNs as well.

Since Idiots Bayes, logistic regression, and neural nets can be regarded as successive
generalizations, some comments on model evaluation and discriminant analysis more
generally may be helpful.

The two main criteria for model evaluation are discrimination and calibration. Discrim-
ination asks how well the classes are separated; in the K = 2 case, common measures
of discrimination include the familiar concepts of sensitivity and specificity (i.e., the
proportion of class 1 and class 2 cases correctly identified). This is often summarized
graphically by plotting the true positive rate against the false positive rate, the “sensi-
tivity versus 1 minus specificity”. The graph is called a receiver operating characteristic
(ROC) curve. An ideal classifier rises from (0,0) straight up to one and then is constant
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to (1,1). This never happens in practice, so classifiers with a large area under the ROC
curve are preferred.

Calibration asks how accurately the model probability p(·|xxx,βββ ) estimates the correct
probability p(y|xxx). This is harder to automate because the true probability function is
never known. So, one may be led instead to compare two different estimates of the
probability, a sort of robustness check. Another is to divide the sample into smaller
subsets, estimate βββ s on each, and then calculate the sum of the predictions and the
sum of the outcomes for each subset (i.e., for each βββ ). If these are close, then the
modeling may be good.

Overall, discriminant analysis is fundamental to the traditional ways classification was
done. This is partially because it is relatively easy to understand and it is computation-
ally relatively easy: It mostly devolves to matrix calculations. Linear discriminants are
related to principal component analysis because the rows of the data matrix, and the
class mean vectors, can be regarded as points in a p-dimensional space. The strategy
then, whether based on maximum separation or Bayes methods, determines discrimi-
nating axes in this space. This accounts for the multiplicity of roughly equivalent forms
for Fisher’s LDA. Mathematically, the problem becomes finding the eigenvectors of a
symmetric, real matrix because the eigenvalues represent the ability of the eigenvectors
to discriminate along the eigendirections. One of the most important improvements to
conventional use of LDA is the use of robust estimates for the μk and Σs since these
define the discriminants.

However, when p is large, the sample sizes required to estimate the parameters well
can be prohibitive. Consequently, over time, discriminant analysis has been modern-
ized to deal with more complex settings where model selection and uncertainty have
been central to finding good choices for P(xxx|Y = k). Indeed, even when the number of
explanatory variables p is not particularly large, it may be important to include more
than univariate functions of the components of xxx. Then, merely including the second-
order terms x2

i and xix j increases the dimension of the parameter space (Σ and the μks)
beyond most reasonable data sets. The problem becomes worse if general univariate
functions of the components of xxx are permitted, let alone general functions of two or
more components. In these contexts, traditional dimension-reduction techniques such
as principal components and factor analysis have been used to reduce the number of
explanatory variables; see Chapter 9.

Recently, numerous variants on discriminant analysis have been proposed. Some au-
thors have combined discriminant analysis with boosting to get better predictive per-
formance or with regularization methods to do difficult model selection. Others have
used kernel methods to recast J(www) so as to get more general decision boundaries with
a linear form in the nonlinearly transformed feature space.

The problem is even more difficult when the nonindependence of the explanatory vari-
ables is considered. In fact, it is unclear whether modeling the dependence is worth-
while when p gets large. Bayes methods are often less sensitive to such dependencies
than frequentist methods, and Idiot’s Bayes is a colloquial term indicating the neglect
of correlation between explanatory variables in a Bayes framework. In a counterintu-
itive paper, Bickel and Levina (2004) demonstrate that Idiot’s Bayes may not be so
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idiotic in a classification context: Idiot’s Bayes often outperforms “intelligent” linear
discriminant analysis that models the dependencies when p >> n.

5.3 Tree-Based Classifiers

In Chapter 4, tree structures were used for regression, although some of the termi-
nology (e.g., homogeneity of nodes) was appropriate for classification as well. This
section focuses on the classification story. Regression and classification differ in their
formalities but have many common features. For instance, both network architecture
(the recursive partitioning) and parameter estimation are needed to specify the tree.

5.3.1 Splitting Rules

Again, a model of the form

Y =
r

∑
j=1

β jI(xxx ∈ R j) (5.3.1)

is to be found, but Y is categorical taking values from 1 to K and the node functions are
constant; in principle, one can set βk = k for k = 1, ...,K for appropriate regions R j, so
the node functions identify the classes. The error in modeling represents the mismatch
between the estimated and correct regions on which a class is identified. Assuming
there is one fixed optimality criterion for evaluating classification tree performance
(e.g., zero-one loss or some other cost of misclassification) the main issue is choosing
the partition of the range of the XXXs (i.e., selecting the splits). Two methods for select-
ing the splits were discussed in Chapter 4: clustering on a variable so as to separate the
clusters and finding a split to minimize a sum of squared errors. This was in the regres-
sion context. Here, three further methods are given. The first two, hypothesis testing
and finding optimal directions, could be used in regression as well; the third replaces
the squared error criterion for finding optimal splits for regression with other criteria
appropriate for classification.

First, to select splits, consider the situation at a node, possibly the root, but more gen-
erally any terminal node in a growing tree. At the node, one can choose which variable
to split on by hypothesis testing, for instance. Suppose the jth explanatory variable
has values Xj,i for i = 1, ...,n. One can do a test of dependence, for instance the χ2,
between the Yis and the Xj,is for each j to find the variable with the lowest p-value.
Using the most dependent variable, one can cluster its values (using the techniques of
Chapter 8) and then choose a split to partition the clusters. There are techniques from
Bayesian clustering (see Chapter 8) that test whether a candidate partition of the data
at a node is optimal. Clearly, there are many tests and clustering procedures.
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Second, an alternative to testing to find a single variable to split on is to find splits based
on linear combinations of the Xjs. This is a more elaborate procedure than finding a
single variable since there are many more choices for directions than for variables. One
way to find a direction comes down to looking for eigenvectors of the design matrix
XXX . For square matrices, this is called principal components, which will be discussed in
Chapter 9 in detail as a dimension-reduction technique. Here, because design matrices
are usually not square, a slightly different version of eigenvector decomposition called
a singular value decomposition (SVD) must be used. An SVD helps find the internal
structure of XXX as an operator on a linear space.

Consider the subdesign matrix, also denoted XXX for convenience, formed from the over-
all design matrix by including only those rows that correspond to the data points as-
signed to a given node. These are the vectors of explanatory variables that might be
split at the next iteration of tree formation. Essentially, an SVD represents a rectangu-
lar matrix, such as the n× p matrix XXX , as a product of three matrices, the middle one of
which has nonzero elements only on its main diagonal. The SVD theorem states that
for any matrix XXX there exist matrices UUU and VVV such that UUUTUUU = Idn×n and VVVTVVV = III p×p
so that

XXX = UUUn×nSSSn×pVVVT
p×p, (5.3.2)

in which SSSn×p is an n× p diagonal and UUU is unitary. Clearly, this is a generalization to
rectangular matrices of the familiar eigenvalue decomposition of square matrices.

Looking at (5.3.2), SSS contains the eigenvalues, now square rooted and called singular
values, while UUU and VVV contain the analogs of eigenvectors. However, there are right
eigenvectors and left eigenvectors, now called singular vectors. The columns of UUU are
the left singular vectors, say uuuk for k = 1, ...,n, that comprise an orthonormal basis and
the rows of UUU are the right singular vectors, say vvvk, also comprising an orthonormal
basis for k = 1, ..., p. The diagonal values sk for k = 1, ...,min p,n of SSS are assumed to
be in decreasing order. Let SSS� be an n× p submatrix formed from using only the first �
singular values in SSS. An important property of the SVD is that

XXX � = UUUn×nSSS�VVV
T
p×p =

�

∑
k=1

uuukskvvvT
k (5.3.3)

is the best rank �≤min(p,n) approximation to XXX in Frobenius norm (basically, squared
error applied to the elements of a matrix as if it were a vector).

In principle, it is not hard to find the SVD for XXX . Write

XXXTXXX = VVV SSS2VVVT

and then find the eigenvalues for SSS and the corresponding eigenvectors for VVV by the
usual diagonalization procedure. Now, UUU = XXXVVV SSS−1. If there are r nonzero sks, then the
remaining n−r columns of VVV are ignored in the last matrix multiplication. Choices for
those n− r singular vectors in VVV (or VVV ) may be found by Gram-Schmidt (or any other
method for filling out the dimensions). It is worth noting that although this method can
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be used, it is often numerically unstable when any of the singular values are near zero.
In practice, more sophisticated procedures are generally used.

Given an SVD for XXX , one can find the principal components as if calculated from an
empirical covariance matrix. If the columns of VVV are centered, then XXXTXXX = Σis2

i vvvvvvT is
seen to be proportional to the empirical covariance matrix. This means that the diago-
nalization of XXXTXXX that gives VVV also gives the principal components, with variances s2

i .
A similar argument holds if the rows of XXX are centered. In this case, XXXTXXX =∑i s2

i uuuiuuuT
i

and the left singular vectors are the principal components with variances s2
i . In statis-

tics, it is usually the left principal components that are used unless specified otherwise.
(The other side can be related to factor analysis; see Chapter 9.)

Now, the PCs generated from an SVD can be used to choose splits at a node. For
instance, the first PC, the vector u1, corresponding to the element of SSSn×p with the
largest absolute value, can be used to give a projection of the data points xxxi ·uuu1 along
the direction uuu1. Clustering these values for the xxxis at the node gives a way to find a
threshold for splitting at a node. Recalling that in the case of two thin, parallel ellipses,
it was the direction with smallest variance (the last principal component) that gave a
good split, not the direction with the smallest variance, it is clear that more complicated
node-splitting rules than just using the first PC may be necessary for a good fit.

A third possibility is the regression style search of all possible splits using an error
criterion. This was discussed in Chapter 4, where E(g) or, more empirically, Ê(g∗) was
minimized. Instead of squared error, suppose the XXXis consist entirely of categorical
variables, and consider what happens at a node. The jth predictor variable Xj may
assume, say, �node levels among the data points at the node. So, in principle, there are
2�(node)− 1 ways to divide the data points into two sets using Xj alone. If each Xj

has � possible values, then the only general upper bound for the splits at a node is
trivial, (2�)p− 1, from taking the product over all p variables. This is very large so
simplifications, such as choosing specific Xjs, are necessary.

One way to simplify is to use indices of impurity. Such indices can be used to choose
splits as well as to decide when to stop splitting. The Gini index is specifically for
discrete variables and is a measure of inequality. Given a data set D of size n, say, with
data points ranging over K classes, let nk be the number of data points in class k for
k = 1, . . . ,n so that n1 + . . .+nK = n. Then p̂k = nk/n is the relative frequency of class
k in the data. The Gini index for D is

Gini(D) = 1−
K

∑
k=1

p̂2
k .

Clearly, Gini≤ 1 with equality if and only if K →∞ and all the p̂ks tend to zero. Also,
Gini≥ 0 with equality if all p̂ks are zero except for one, which assumes the value one.
(The only if part fails; it is enough for the p̂is to lie on the unit sphere.)

To obtain a split of the points at a node, write

Ginisplit(D) =
N1

n
Gini(D1)+

N2

n
Gini(G2),
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where D1∪D2 = D , with cardinalities N1 = #(D1) and N2 = #(D2). The optimal split
of the data in D is the one that minimizes Ginisplit . This can be done when D is defined
as the set of p-dimensional vectors xxxi or for the individual explanatory variables that
are components of the xxxis.

Essentially, minimizing the Gini index to find splits is a way to try to pull off distinct
classes sequentially in order of size. Suppose there is a collection of homogeneous
classes of distinct sizes perfectly represented by the data at the root node. If Gini
were used, and worked perfectly, the first split would set a threshold to reduce the
Gini index by finding the split that optimally reduced the inequality. This would set a
threshold to pull off the largest class by itself. So, the first split would separate it from
the other classes. Since the first class would be homogeneous, Gini would not split
it further. However, Gini would split the other data points since they comprised the
reduced set of homogeneous distinct classes. So, the second split would set a threshold
to reduce the Gini index of the reduced set by finding the split that again optimally
reduced inequality. Thus, the second largest homogeneous class would be pulled off.
The procedure would then repeat until the classes were all pulled off, one at each
iteration. If successful, the final tree would ideally look like a long skinny branch with
single leaves coming off it along the way, one for each class.

There is a version of the Gini index appropriate for continuous data; it too is a measure
of inequality. The idea is to choose a Lorenz curve (i.e., a curve of the form f (x) =∫ x

0 xdF(x)/μ) as the density for some positive random variable X on [0,1]. Then, the
Gini index of X is

Gini = 2
∫

(x− f (x))dx =
1

2E(X)

∫ ∞

0

∫ ∞

0
|x− y| f (x) f (y)dxdy.

Empirically, if μ = E(X), the Gini index can be estimated by

Ĝini =
1

2n2μ̂

n

∑
i=1

n

∑
j=1
|xi− x j|;

it ranges from zero, when all xs are the same, to a maximum of one.

The entropy is another notion of impurity. It is

H(D) =
K

∑
k=1

p̂k log
1
p̂k

.

The entropy has an interpretation in terms of information gain. It often gives results
similar to Gini.

The idea behind twoing is the opposite of Gini. In idealized form, twoing first splits the
points at the root node into two groups, attempting to find groups that each represent
50 percent of the data. This contrasts with Gini, trying to pull off a single class. Twoing
then searches for a split to partition each of the two subgroups, again into two groups,
each containing now 25 percent of the data. That is, Twoing seeks equal-sized leaves
from a node, under some splitting rule. Although twoing tries to ensure the leaves
from a split are equal, this can be difficult, especially at terminal nodes from the same
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parent. As with Gini, most real-world classification problems will not allow impurity
measures to give such a clean result.

Different splitting rules may result in the same tree, but usually they predispose the
procedure to a class of trees – twoing favors equal binary splits giving bushy, shortish
trees, whereas Gini favors trees that often have long, straggly branches.

Because of their high variability, it is important to evaluate trees comparatively. The
two basic techniques for generating alternatives within a class of trees and selecting
among them have already been discussed in Chapter 4: pruning back on the basis of
some cost-complexity criterion and using some version of cross-validation to choose
a tree in the class with the least average error. It is important to realize that there can
be bias in classification as a consequence of variable selection as well as variability
in the trees produced; see Strobl (2004) and the references therein. A survey of these
methodologies from the information theory standpoint can be found in Safavian and
Landgrebe (1991). They also contrast tree structures with neural net classification.

5.3.2 Logic Trees

A different tree-based tack for classification, called logic trees, is due to Ruczinski
et al. (2003). The idea is to recognize that the classification trees presented so far are
really “decision” trees, based on regression and incorporating variability in the usual
statistical way, but that there are alternatives that are more overtly rule-based. Logic
trees can be regarded as a sort of generalized linear models approach where the terms
in the model are Boolean functions.

The basic structure is as follows. Let XXX = (X1, ...,Xp) be a sequence of 0-1 predictors
and Y be a class indicator. The logic tree model is to write

g(E(Y )) = β0 +
K

∑
k=1

βkLk,

where the βks are coefficients, g is the function that makes the linear model “gen-
eralized”, and Lk is a Boolean function of the covariates Xj. For instance, if Xc

k is
the opposite of Xk, then one might have L(XXX) = (X1 ∨X2)∧Xc

3 . If p = 3, the value
XXX = (0,1,0) gives L(0,1,0) = 1 because 0∨ 1 gives 1 and 1∧ 0c gives 1. The task is
to estimate the Lks and the βks; the link function g is chosen by the user.

Note that the linear combination of logic functions is a tree not in the recursive parti-
tioning sense but in a Boolean function sense. However, functions of the form of the
right-hand side span the space of all real-valued functions when the Xjs are categor-
ical, as does recursive partitioning when it is applied to categorical variables. Thus,
logic trees and recursive partitioning trees are merely different representations for the
same function space. The difference is in which functions are conveniently expressed
in each form. In both recursive partitioning and logic trees an “and” function such as
(X1 = 1)∨ (X2 = 1)∨ (X3 = 1)∨ (X4 = 1) when the Xjs are binary is parsimoniously
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represented as a single long branch or as a single term, respectively. In both recursive
partitioning and logic trees, the components Xj = 1 can be adjoined (or removed) se-
quentially. However, a function such as ((X1 = 1)∨(X2 = 1))∧((X3 = 1)∨(X4 = 1)) is
easy to find as one term in a logic tree since it is not hard to build sequentially from its
individual components, whereas in recursive partitioning the cases X1 = 0 and X1 = 1
would correspond to two branches that would have similar structures and be hard for
recursive partitioning to find.

Building logic trees consists of adding or removing Boolean functions of individual
variables sequentially, and model selection can be done on the basis of MSE in simu-
lated annealing; see Ruczinski et al. (2003). This can be extended to continuous pre-
dictors as well.

5.3.3 Random Forests

So far, attention has focused on obtaining a specific tree for classification. However,
this is a model and hence subject to model misspecification. Thus, choosing a single
tree and not giving some assessment of its MSE or other measure of variability that
includes variability over model selection gives a falsely precise notion of how good a
classifier is. Although it is unclear how to assign a standard error or bias to a tree, it is
worthwhile to look into techniques that take averages over trees because the average
will typically reduce the variability from what one would have with a single tree. In
practice, this means that averaging trees will often give better classifiers.

Random forests are a generalization of recursive partitioning that combines a collection
of trees called an ensemble. However, random forests is best seen as a bootstrapped
version of a classification tree generating procedure. It was invented by Breiman
(2001) and substantially developed by Breiman and Cutler (2004). A random forest
is a collection of identically distributed trees whose predicted classes are obtained by
a variant on majority vote. Another way to say this is that random forests are a bagged
version of a tree classifier – improved by two clever tricks. The term bagging, or boot-
strap aggregation, will be discussed in detail in the next chapter; roughly one uses the
bootstrap to generate the members of an ensemble, which are then aggregated in some
way. As discussed in Breiman and Cutler (2004), random forests may also be used for
regression, but their advantages are less clear.

Operationally, one starts with a data set. From that, one draws multiple bootstrap sam-
ples, constructing a classification rule for each, for instance by recursive partitioning.
The random forest consists of the trees formed from the bootstrap samples. However,
no pruning of the trees is done. The tree is just grown until each terminal node contains
only members of a single class. Usually, about 100 trees are generated, each from an
independent bootstrap sample.

To classify a new observation, one uses each of the trees in the forest. If a plural-
ity of the trees agree on a given classification, then that is the predicted category of
the observation. Note that there is a built-in estimate of the uncertainty in each new
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classification: The distribution of the votes indicates whether nearly all trees agree or
whether there are many dissenters.

There are two clever “tricks” that make random forests particularly effective. The first
is an “out of bag” error estimate; the second is random feature selection.

The first trick is a technique to get an estimate of the misclassification error. Indeed, the
estimate is often claimed to be unbiased when the training set is a random sample from
the population. The idea is to estimate the expected predictive accuracy by running
each observation through all of the trees that were formed without using it. It will be
seen below that, for each data point, approximately one-third of the bootstrap samples
will not contain it, so approximately two-thirds of the trees generated can be used. If k
be the class that gets the most votes for the ith data point. The proportion of times that
k differs from the class of the initial data point is the out-of-bag error estimate.

Before going on to the second trick, it’s worth looking closely at the bootstrapping
procedure in more detail since random forests relies on it.

5.3.3.1 Occupancy

For the bootstrap, start with a sample xxx1,...,xxxn and then sample from it with replacement
until a new sample of size n, say y1,...,yn, has been generated. It is possible that some
of the yis will be repeated and that some of the xxxis will not be among the yis. Since
each bootstrap sample is drawn with replacement, about a third of the original sample
is not chosen. This is important because the effectiveness of bootstrapping depends
on the overlap of the resampling. If one has a fixed sample of size n and intends to
take n bootstrap samples of size n from it, then, asymptotically, 1/e of the original
sample is not chosen. This is seen by the elementary argument that P(xxx1 not chosen) =
(1−1/n)n → 1/e.

More generally, this result follows from a central limit theorem because selecting a
bootstrap sample can be modeled by a ball-and-urn scheme. Let n urns represent the
n original data points, the xxxis. Imagine randomly dropping balls into the urns one at a
time and independently. If n balls are dropped, then the number of balls in the ith urn
represents how many times xxxi occurs in the first bootstrap sample.

This is seen to be a multinomial problem: Given that n is fixed and n balls are dropped
at random, define Xk to be the (random) count of how many balls are in urn k, k =
1, ...,n. Now,

IP(X1 = j1, ...,Xn = jn) =
n!

j1!... jn!
p j1

1 ....p jn
n ,

in which ∑ jk = n. If all p j = 1/n, then

IP(X1 = j1, ...,Xn = jn) =
n!

j1!... jn!
1
nn .



256 5 Supervised Learning: Partition Methods

The study of the properties of these urns is called the occupancy problem; see Barbour
et al. (1992). If n increases, a classical central limit theorem for the occupancy problem
has been established by Rahmann and Rivals (2000).

Theorem (Rahman and Rivals, 2000): Let Nk and Mk be sequences of natural num-
bers such that Nk → ∞ and Mk → ∞ with (Nk/Mk) → λ as k → ∞. Let Wk be the
sequence of random variables denoting the number of empty urns after Nk balls have
been dropped independently into Mk urns. Then, as k→ ∞,

E(Wk/Mk)→ e−λ ,

Var(Wk/
√

Mk)→ (eλ −1−λ )e−2λ ,

and we have that
Wk−Mke−λ√

Mk(eλ −1−λ )e−2λ
→ N(0,1)

in distribution.

Proof: See Johnson and Kotz (1977); Harris (1966) gives a superb reference list and
observes that the proof goes back to Geiringer (1937). �
This result shows, in principle, how bootstrapping on discretized data tends to operate
as the discretization, represented by Mk, gets finer and the number of samples of size
Nk increases.

One of the important implications of the out-of-bag prediction error analysis is that
random forests do not overfit. Breiman’s theorem below shows that the average mis-
classification rate decreases to a fixed value. As the number of trees N increases, the
estimated predictive error converges to a value bounded above by the ratio of the av-
erage correlation between trees to a function of the “strength” of a set of classifiers.
The correlation decreases as the size of the training sample increases and the strength
increases as the signal in the data grows.

5.3.3.2 Random Feature Selection

The second clever trick is random feature selection. Recall that, at each step in grow-
ing a tree, classic recursive partitioning examines all p variables to determine the best
split. By contrast, random forests (usually) picks

√
p of the variables at random, tak-

ing the best split among them. This extra level of selection makes the different trees
in the forest less similar by allowing highly correlated variables to play nearly equiv-
alent roles (otherwise, the slightly more predictive variable would always be chosen).
Random feature selection decorrelates the trees, lowering the prediction error.

As part of feature selection, random forests can be used to estimate the relative im-
portance of, say, the jth explanatory variable. To do this, recall that a random forest
runs each observation through all the trees for which the observation is out-of-bag and
counts the number of votes for the correct class each observation gets. This vote count
can be compared to the corresponding vote count after randomly permuting the values
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of variable j among the samples. So, permute the values of Xj and run them down the
corresponding trees, again counting the number of correct votes. The difference in the
number of correct votes under the two procedures is the raw importance for variable j.
Usually this is standardized so the scores sum to one.

Rather than looking at features, one can look at observations and create a local measure
of importance specific to each observation in the training sample. For observation i,
run it down all the trees for which it is out-of-bag. Repeat the process with randomly
permuted values of variable j, and look at the difference in the number of correct
votes. This is a measure of how important variable j is for classifying cases in the
neighborhood of observation i.

5.3.3.3 Breiman’s Theorems

So far, the discussion of random forests has been informal, describing heuristics that
can be calculated to evaluate performance. So it is important to present several of the
formal results that ensure random forests will work well. These are primarily due to
Breiman (2001).

First note that a good classifier h has a high value of IP(h(XXX) = Y ), where the proba-
bility IP is in the joint probability of XXX×Y . It is assumed that Y ranges over {1, ...,K},
and, as ever, the vector XXX = xxx represents explanatory variables and Y is the response.
In practice, usually an IID sample (xxx1,y1), ...,(xxxn,yn) is available from which to learn
h. Estimation of h can be done as described in the first part of this section, or as in the
other sections of this chapter, so the construction of finitely many distinct classifiers
hi can be assumed. Random forests as a procedure takes a set of his as an input and
produces an improved classifier from them.

Recall that effectively each h j is equivalent to a partition of the range of the xxxs based on
the values of Y . Although random forests can be applied to many types of classifiers,
here it will only be used for tree-based methods. Thus, it will be enough to consider
only those partitions of the feature space that correspond to trees. To state this formally,
define a function h : X → {1, . . . ,K} to be tree-structured if and only if the partition
of the domain it induces is described by a finite sequence of inequalities involving
individual x js in xxx = (x1, ...,xp). Now, a classifier h(xxx,Θ) is tree-structured if and only
if for each outcome Θ = θ , h(xxx,θ) is tree-structured as a function of xxx. A random
forest is a classifier derived from a collection of tree-structured classifiers, {h j(xxx) =
h(xxx,θ j)| j = 1, ...,J}, where θ1,...,θJ are IID outcomes ofΘ .

For a collection of tree-structured classifiers h j, consider the random forest classifier
formed by taking a vote of the individual tree-structured classifiers comprising it. The
average number of correct classifications is the proportion of classifiers identifying the
right class and is

AV (Y ) =
1
J

J

∑
j=1

1{h j(XXX)=Y},
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in which 1A is the indicator function for a set A. The average number of misclassifica-
tions of type k, for k 	= Y , is the proportion of h js misclassifying Y as k,

AV (k) =
1
J

J

∑
j=1

1{h j(XXX)=k}.

For good classification, AV (Y ) should be large relative to all the AV ( j)s with j 	= Y ,
for all (XXX ,Y ). The worst case occurs for the value of k achieving maxk 	=Y AV (k). Since
it is enough for AV (Y ) to be large relative to the worst case, let

CA = CA(XXX ,Y ) = AV (Y )−max
j 	=Y

AV ( j)

be the classification accuracy. CA represents how many more of the classifiers get the
right class than get the wrong class; a good classifier would give large CA. If CA were
negative and K = 2, it would indicate that interchanging the predicted classes would
give a better classifier. On average, the behavior of CA is described by the probability
of error

PE = IP(CA(XXX ,Y ) < 0),

in which XXX ,Y are both treated as random variables. It is seen that PE is the probability
that the correct classification by the pooled classifiers is given less often than the most
likely of the wrong classifications. Clearly, it is desirable for PE to be small.

Suppose the J classifiers are tree-structured with h j(xxx) = h(xxx,θ j) and the random forest
generated from them is formed by majority vote. In this notation, θ summarizes the
extra variability used in constructing the tree, for instance the dropping of n balls into
K urns in the occupancy theorem scenario. Breiman’s random forest theorem states
that as J increases (i.e., more and more trees are aggregated) PE, which depends on
J, the size of the forest, converges to a limiting value. This limiting value, P(CA), is
derived from CA by replacing indicator functions with expectations. Formally, we have
the following theorem.

Theorem (Breiman, 2001): As the number of tree-structured classifiers in the random
forest increases, PE converges a.s. to P(CA). That is, as j→ ∞

PE → IP

[
PΘ (h(X ,Θ) = Y )−max

k 	=Y
PΘ (h(X ,Θ) = k) < 0

]
,

in which PΘ is the probability forΘ .

Remark: This result is asymptotic in the number of trees in the forest, not the sample
size. Thus, it ensures that, as more trees are added, the random forest does not overfit.
Entertainingly, no assumption has been made that any of the trees in the forest actually
are good classifiers, only that they are randomly generated. This will include some
good classifiers, but many poor ones, too.

Proof: Fix a value k. As J → ∞, it is intuitive that
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1
J

J

∑
j=1

1{h(XXX ,θ j)=k} → PΘ (h(XXX ,Θ) = k). (5.3.4)

However, it is not enough just to use an LLN to take expectations because the average
in (5.3.4) is over functions h(·,Θ), not individual random variables.

To verify (5.3.4), first observe that the J functions are tree-structured. So, together
they induce a minimal partition of, say, L elements S1,...,SL of the feature space. That
is, each h(·,θ j) corresponds to a partition of the feature space into K sets, each a finite
union of hyperrectangles, representing the points on which the classifier assumes the
K values in S. These J partitions can be represented as subpartitions of a larger but
finite partition, and it is the smallest of these, of size L, that is most useful.

Fix k ∈ {1, . . . ,K} and define a function φ(θ) = φk(θ) by setting

φ(θ) = �⇔{xxx|h(xxx,θ) = k}= S� ⇔ h−1
θ (k) = S�, (5.3.5)

i.e., for a given k, φ(θ) gives the index of the partition element for which h(·,θ) = k.
(In fact, the partition element may be a finite union of partition elements; this abuse of
notation should not be confusing.) Set φ(θ) = 0 if h(θ , ·) is never 1. To use (5.3.5), let
N� count the number of times φ(θk) = � on the sequence θ1,...,θK . That is,

N� =
J

∑
j=1

1{φ(θ j)=�}. (5.3.6)

The usual LLN applies to (5.3.6) to give

N�

J
→ PΘ (φ(Θ) = �).

Now, the strategy of proof is to convert the sum over J outcomes of the tree-structured
classifier in (5.3.4) to a sum over the partition elements since the LLN can be applied
to all L of them individually. Thus, for each k,

1
J

J

∑
j=1

1{h(XXX ,θ j)=k} =
1
J

J

∑
j=1

L

∑
�=1

1{h(XXX ,θ j)=k}1{φ(θ j)=�}

=
1
J

J

∑
j=1

L

∑
�=1

1{XXX∈S�,φ(θ j)=�}

=
1
J

L

∑
�=1

(
J

∑
j=1

1{φ(θ j)=�}

)
1{XXX∈S�} =

L

∑
�=1

N�

J
1{XXX∈S�}

=
L

∑
�=1

PΘ (φ(Θ) = �)1{XXX∈S�}+
L

∑
�=1

(
N�

J
−PΘ (φ(θ) = �)

)

=
L

∑
�=1

PΘ (φ(Θ) = �)PΘ (h(Θ ,XXX) = k|φ(Θ) = �)+oPΘ (1)

= PΘ (h(Θ ,XXX) = k)+oPΘ (1). (5.3.7)
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Clearly, (5.3.7) is another way to write (5.3.4). Now, a series of Slutsky arguments
gives the result: The limiting value in the theorem is

K

∑
k=1

IP(PΘ (h(XXX ,Θ) = k)−max
u:u 	=k

PΘ (h(XXX ,Θ) = u) < 0|Y = k)IP(Y = k).

So, as long as the quantities conditional on k converge to their limits as above as J
increases, AV (Y ) and the AV (k)s converge as in the theorem. �
Breiman’s theorem has several implications. First, it shows that the reason there is
no overfit is that outcomes of θ effectively search the model space for scenarios at
random. So, probability cannot pile up at any one model on account of an apparent
ability to explain the data. That is, a model that explains the data perfectly may be
found by chance by θ , but only as one of many models that are found. A model that
was good as a consequence of overfit would be washed out by averaging over other
models that more fairly represented the explanatory power of the data. Second, the
proof leads one to suspect that, in general, averaging can be used to avoid overfit. The
avoidance of overfit may be a general property of many ensemble methods discussed
in the next chapter. Indeed, in practice, ensemble methods based on randomness do not
appear to lead to overfit unless used improperly (e.g., the selection of splits for the tree
is unduly narrow). Third, the theorem assumes endless outcomes θ j at random. With
samples of finite size n, typically one does not take more than n bootstrap samples. If
one were to take “too many” bootstrap samples, the result would be like taking a limit
in the empirical distribution; this has good properties, as seen in Chapter 1, but would
give a false sense of convergence because the empirical distribution function itself is
only an approximation. In the present context, it would typically take many more than
n bootstrap samples to fill out the empirical distribution over trees.

Another important theorem from Breiman (2001) bounds PE. To state this result, two
definitions are required. First is the strength s of a classifier, and second is the standard-
ized correlation ρ̄ . Following the structure of Breiman (2001), let the limiting random
variable from CA be

LCA(XXX ,Y ) = PΘ (h(XXX ,Θ) = Y )−max
k 	=Y

PΘ (h(XXX ,Θ) = k).

Take the expectation of this, overΘ , to get the “strength” of the set of classifiers:

s = E(LCA(X ,Y )).

This summarizes the strength of the entire set of classifiers because LCA is the per-
formance measure for a given θ and s is the average performance over classifiers
generated by the randomness in Θ . It is a measure of how good the collection of tree-
structured classifiers is.

The second definition is more involved. It encapsulates the correlation between the
performances of two randomly generated classifiers. The tricky part is the need to
standardize the expected correlation (over θ ) by the variability in θ . To set up this
correlation, observe that another expression for LCA comes from identifying the best
wrong classifier. Let
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k̂(X ,Y ) = argmax
k 	=Y

PΘ (h(XXX ,Θ) = k),

so that LCA can be written as

LCA = PΘ (h(XXX ,Θ) = Y )−PΘ (h(XXX ,Θ) = k̂)

= EΘ
[
1{h(XXX ,Θ)=Y} −1{h(XXX ,Θ)= ĵ}

]
,

in which the subscriptΘ indicates that the probability measure involved only looks at
the randomness inΘ , not XXX or Y . Nevertheless, the expression in brackets is a function
of Θ , XXX , and Y , indicating how much better the best classifier does given that both
were generated from θ . Let this be the empirical classification accuracy,

ECA(Θ ,XXX ,Y ) = 1{h(XXX ,Θ)=Y} −1{h(XXX ,Θ)= ĵ}.

It is seen that E(ECA) = LCA.

At its root, it is the ECA that characterizes the correlation between the classifiers cor-
responding to independent copies ofΘ . When the correlation is nonzero, it arises from
the XXX and Y in the two indicator functions in ECA. Indeed, it is important to distinguish
conceptually between what is random and what is not, (i.e., expectations over Θ , EΘ
versus expectations over (XXX ,Y ) where E does not have a subscript).

Suppose independent copies ofΘ , sayΘ andΘ ′, have been generated, the expectation
of their product factors giving

LCA2 = EΘ ,Θ ′
[
ECA(Θ ,XXX ,Y )ECA(Θ ′,XXX ,Y )

]
,

in which XXX and Y remain random. The variance over XXX and Y is

Var(LCA) = EΘ ,Θ ′Cov(ECA(Θ ,XXX ,Y ),ECA(Θ ′,XXX ,Y ))
= EΘ ,Θ ′ρ(Θ ,Θ ′)SD(Θ)SD(Θ ′),

in which ρ(Θ ,Θ ′) is the correlation between ECA(Θ ,XXX ,Y ) and ECA(Θ ′,XXX ,Y ) hold-
ing Θ and Θ ′ fixed, and SD is the standard deviation of ECA, again holding Θ or Θ ′
fixed. Finally, the standardized correlation is

ρ̄ =
EΘ ,Θ ′ρ(Θ ,Θ ′)SD(Θ)SD(Θ ′)

EΘ ,Θ ′SD(Θ)SD(Θ ′)
,

in which the quantities inside the expectation are random only in Θ and Θ ′. It is seen
that ρ̄ is a measure of how correlated two randomly chosen trees are on average, stan-
dardized by their variability. The result is the following.

Theorem (Breiman, 2001): The generalization error can be bounded:

PE ≤ ρ̄(1− s2)
s2 . (5.3.8)

Proof: Chebyshev’s inequality can be applied to PE:
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PE = IP(CA < 0)≤ IP([CA−E(LCA)]2 > E(LCA)2)≤ Var(LCA)
s2 .

Next, the numerator on the right-hand side is

Var(LCA) = ρ̄[EΘSD(Θ)]2 ≤ ρ̄EΘ (Var(Θ))≤ ρ̄EΘ (EECA(Θ ,X ,Y ))2− s2

by Jensen’s inequality (twice) and the definition of ECA and LCA. Putting these to-
gether gives the theorem. The right-hand side is bounded by ρ̄(1− s2) since ECA2 is
bounded by 1. The ratio in (5.3.8) follows. �
The qualitative behavior of the ratio in (5.3.8) is intuitively reasonable. When the
strength increases or decreases, the bound on PE tightens or loosens. When the cor-
relation is small or large, then repeated sampling gives more or less information and,
again, the bound tightens or loosens. A strong set of classifiers with little correlation
gives a strong bound.

Overall, random forests of trees tend to give good classifiers, competitive with SVMs,
the topic of the next section. Unlike SVMs they often work relatively well with missing
data, too. Random forests can give decent results even when as much as 80% of the
data are missing at random.

5.4 Support Vector Machines

The core idea behind support vector machines (SVMs) as developed by Vapnik (1998),
among others, is to define a boundary between two classes by maximal separation of
the closest points. It turns out that, in addition to nice theoretical properties, SVMs
give exceptionally good performance on classification tasks and avoid the Curse.

5.4.1 Margins and Distances

The underlying intuition of SVMs can be seen in the basic problem of building a
classifier for a linearly separable, two-class problem, in the plane. This case will help
introduce the key ideas underlying the SVM machinery.

It is intuitive that a good separating hyperplane is one that is far from the data; this
will be formalized in the concept of a large margin classifier, where the term margin
refers to the width of the blank strip separating two data clouds. Figure 5.2 shows
a near trivial case where two classes are perfectly separated. Clearly, even for this
data set, there is an infinity of hyperplanes that can separate the observations. The
problem of which boundary to choose for classifying future observations remains and
is dramatized by Fig. 5.3 which shows four superficially reasonable choices for how
to choose boundaries to separate the two classes in Fig. 5.2. The boundary in Fig. 5.3d
most accurately represents the margin and so would be preferred.
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Observations from class "+1"

Observations from class "−1"

Fig. 5.2 The solid circles and the empty squares indicate the xxx-values for two classes labeled 1 and
−1. It is seen that the two classes are linearly separable.

Observations from class "+1"

Observations from class "−1"

(a) First

Observations from class "+1"

Observations from class "−1"

(b) Second

Observations from class "+1"

Observations from class "−1"

(c) Third

Observations from class "+1"

Observations from class "−1"

(d) Fourth

Fig. 5.3 These panels show four ways to separate the two classes. In (a), the boundary tries to draw
a path around one class. In (b), and (c), the boundary is strongly affected by points that may not be
representative of the data cloud. In (d), the boundary runs down the middle of the margin between the
data clouds.

More formally, the margin is defined as the shortest perpendicular distance between the
hyperplane and the observations. In effect, this is a minimax distance, as will be seen in
the next subsection, because it maximizes over planes that satisfy a minimal distance
criterion. Figure 5.4 shows the ideal case and gives the terminology. The dashed lines
in Fig. 5.5 indicate the two hyperplanes closest to, or in this case on, the data points,
realizing the smallest perpendicular distance. The margin is the distance between the
two “outer” hyperplanes and is equidistant from them. The solid line indicates the large
margin classifier or optimal separating hyperplane.

To formalize the central concept of margin, there are 4 tasks: (i) compute the distance
between a point and the separating hyperplane, (ii) determine the minimum of such
a distance from a given set of observations, (iii) compute the distance between two
parallel hyperplanes, and (iv) verify that the two outer hyperplanes are equidistant
from the separating hyperplane. These tasks are geometrically intuitive but necessitate
some definitions.

Let www = (w1,w2, · · · ,wp)T ∈ Rp be a vector of coefficients and b ∈ R be a constant.
Write the linear function h : Rp →R as

h(xxx) = wwwTxxx+b.
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Fig. 5.4 The margin is the minimal perpendicular distance between the points in the two data clouds.
The optimal separating hyperplane, the solid line, runs down the middle of the margin; it can be shown
to be equidistant from the closest points on each of its sides. The dashed lines run through these points,
indicating hyperplanes that are closest to, or indeed right on, certain of the data points.

Now, for a given constant c ∈R,

Hc(www,b) =
{

xxx : h(xxx) = c
}

is a (p−1)-dimensional hyperplane. If c = 0, Hc=0(www,b) is denoted H(www,b).

A vector is a direction vector of a hyperplane if it is parallel to that hyperplane and is a
normal vector of a hyperplane if it is perpendicular to all possible direction vectors of
that hyperplane. Clearly, the vector www is a normal vector to Hc(www,b) for any c. Indeed,
∀xxxi,xxx j ∈ Hc(www,b), wwwTxxxi +b = c = www′xxx j +b, so wwwT(xxxi− xxx j) = 0.

The formulation of the SVM classifier requires the expression of the perpendicular
distance between a point in Rp and a hyperplane. This is indicated in Fig. 5.5 and
stated in the following theorem.

w’x
+b =

 c z

z+tw

||tw||

w

Fig. 5.5 The point zzz is t units away from the hyperplane indicated by the solid line in direction www.

Theorem: The perpendicular distance d(zzz,Hc(www,b)) between the hyperplane Hc(www,b)
and a point zzz ∈Rp is given by



5.4 Support Vector Machines 265

d(zzz,Hc(www,b)) =
|wwwTzzz+b− c|

‖www‖ .

Proof: Let t ∈R. Since d(zzz,Hc(www,b)) is a perpendicular distance, it has to be traveled
in the direction of the vector www, which is normal to the hyperplane Hc(www,b). As a
result, the vector zzz∗ = zzz + twww in Fig. 5.4 must lie on Hc(www,b), giving wwwTzzz∗+ b = c.
This is equivalent to wwwT(zzz+ twww)+b = c⇐⇒ wwwTzzz+ twwwTwww+b = c. Therefore

t =
c−b−wwwTzzz

wwwTwww
=

c−b−wwwTzzz
‖www‖2 .

This expression for t gives

‖twww‖2 = |t|2‖www‖2 =
|c−b−wwwTzzz|2

‖www‖2 ,

which in turn gives

d(zzz,Hc(www,b)) = ‖twww‖=
|wwwTzzz+b− c|

‖www‖ . �

Theorem: The perpendicular distance between two parallel hyperplanes Hc(www,b) and
Hc′(www,b) is given by

d(Hc(www,b),Hc′(www,b)) =
|c− c′|
‖www‖ . (5.4.1)

Proof: This distance is found by choosing a point in one of the two hyperplanes
and then using the previous theorem to compute the distance between that point and
the other hyperplane. Without loss of generality, choose a point from the hyperplane
Hc(www,b). Suppose it has the form zzz = ((c− b)/w1,0, · · · ,0). Then, the distance be-
tween the hyperplane wwwTxxx+b = c′ and zzz is

d(Hc(www,b),Hc′(www,b)) =
|c′ −b−wwwTzzz|

‖www‖ =

∣∣∣c′ −b−w1( c−b
w1

)
∣∣∣

‖www‖ =
|c− c′|
‖www‖ . �

5.4.2 Binary Classification and Risk

Now the generic problem of binary classification starts with an input domain X ⊆Rp

to represent the values of the explanatory variables and a class domain Y = {−1,+1}
to act as labels. Note that for mathematical convenience below, the values of Y are
now ±1 rather than Y = 1,2. Let D = {(xxx1,y1),(xxx2,y2), · · · ,(xxxn,yn)} be a data set.
Assuming linear separability, the goal in binary classification is to use the data to
estimate the p dimensional vector www = (w1,w2, · · · ,wp)T and the constant b, so that
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the hyperplane

H(www,b) =
{

xxx : wwwTxxx+b = 0
}

separates the observations xxxi into their class labels−1 and +1. More formally, the goal
is to find a function f : X −→ {−1,+1} so that

class(xxxi) = f (xxxi) = sign(wwwTxxxi +b) =
{

+1, wwwTxxxi +b > 0,
−1, wwwTxxxi +b≤ 0,

for xxxi ∈D .

Clearly, all the separating hyperplanes of Fig. 5.2 achieve such a separation. However,
it is apparent that although the separating hyperplanes in Figs. 5.2a-c separate the data
in hand, they may be more likely to misclassify future data than the hyperplane in
Fig. 5.2d is under the assumption of linear separability. That is, these three classifiers
may not generalize as well as the one in Fig. 5.2d does. One can argue that the key
property making Fig. 5.2d more desirable is that its separating hyperplane is further
from the data than the separating hyperplanes in the others. In general, it is intuitive
that by making the boundaries between the two classes as far apart as possible, little
changes in the data are less likely to make the classifier change value. Thus, stability
(or robustness) is a desirable consequence of the large margin concept on which SVMs
are based.

Overall, an SVM classifier rests on a five-step concept: (i) Identify the class of func-
tions from which the decision boundary is to be chosen (so far, this has been linear
functions of xxx); (ii) formally define the margin, which is the minimal distance between
a candidate decision boundary and the points in each class; (iii) choose the decision
boundary from the class in (i) (so far, this has been a hyperplane); (iv) evaluate the
performance of the chosen decision boundary on the training set (this is usually the
empirical risk); and (v) evaluate the anticipated classification performance on new data
points (this is the generalization error).

It will be seen that accomplishing these tasks for SVMs is somewhat lengthy, as it
requires a logical and conceptual development. See also Burges (1998) for a good,
slightly different overview.

To begin, the quantities in (i), (iv) and (5) should be identified. So, consider the func-
tion class F of functions built from hyperplanes in Rp,

F = { f : Rp −→ {−1,+1},s.t. ∀xxx ∈X , f (xxx) = sign(h(x)), h is hyperplane in Rp}.

As an assessment of error, 0-1 loss is often used: If the true class of xxx is y and the
classifier delivers f (xxx), the loss incurred, or the misclassification error, is

�(y, f (xxx)) = I( f (xxx) 	= y), (5.4.2)

which is 0 if the classifier is correct and 1 otherwise, hence the name. As a point of
terminology, in machine learning parlance, the classifier f is often called a hypothesis,
and the class F from which f is taken is called the hypothesis class. Expression (5.4.2)
leads to the generalization error, also called the prediction error, or theoretical risk. Let
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P be a population with two variables, X ∈X ⊆ Rp and Y ∈ Y = {−1,+1}, and a
(usually unknown) probability IP(X ,Y ) on X ×Y . Let f be a classifier (hypothesis)
defined on X , with �(·, ·) as in (5.4.2). The generalization error of f is

R( f ) = E[�(Y, f (XXX))] =
∫

X ×Y
�(y, f (xxx))dIP(xxx,y). (5.4.3)

This is the probability that f will misclassify a randomly selected member of X .

The ideal would be to find the best f , namely

f ∗ = arg inf
f

R( f ). (5.4.4)

Unfortunately, finding f ∗ presupposes the ability to derive closed-form expressions for
R( f ) and a way to search the space of functions {−1,+1}card(X ). Clearly, the goal of
(5.4.4) is an ill-posed problem in Hadamard’s sense, as defined in Chapter 3. So, it is
helpful to use some prior knowledge to restrict the class of possible hypotheses. Thus,
the minimization is done over a class say F ; i.e., one seeks

f ◦ = arg inf
f∈F

R( f ).

The risk under 0-1 loss, R( f ), is not really available because only a small fraction of
the population is in the random sample. However, since R( f ) is also the probability
of misclassification, it can be estimated by the empirical risk, or training error, R̂n( f ),
computed from the size n sample. For a hypothesis space H of classifiers, a data set
D = {(xxx1,y1),(xxx2,y2), · · · ,(xxxn,yn)} and f ∈H ,

R̂n( f ) =
1
n

n

∑
i=1

I( f (xxxi) 	= yi). (5.4.5)

This functional, R̂n( f ), is the empirical fraction of points misclassified by f . Minimiz-
ing (5.4.5) means finding the classifier f̂ that minimizes the empirical risk functional,

f̂ = arg min
f∈F

R̂n( f ). (5.4.6)

Observe that (5.4.5) and (5.4.6) can be directly generalized to any loss function even
though they have only been defined for 0-1 loss.

Superficially, (5.4.6) looks reasonable. However, because f̂ is chosen to make R̂n( f̂ )
as small as possible, R̂n( f̂ ) tends to underestimate R( ˆftrue), the true error rate. This
follows because the optimal classifier from (5.4.6) is likely to achieve a zero empirical
risk at the cost of overfitting from merely memorizing the sample. Quantifying the
degree of underestimation requires a trade-off between ensuring (i) that the true risk
R( f̂ ) associated with f̂ is as close as possible to R( f ◦) = min

f∈F
R( f ), the lowest risk

achieved in F , and (ii) that R̂n( f̂ ) is as small as it can be.

More formally, the empirical risk R̂n( f ) should converge to the true risk R( f ). So, for
preassigned δ and ε and uniformly over f ∈F ,
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IP
(
|R̂n( f )−R( f )|< ε

)
≥ 1−δ , ∀ f ∈F . (5.4.7)

Essentially, (5.4.7) is a generalized variance–bias trade-off: The approximation error –
the event in (5.4.7) – is a sort of bias, and R̂(·) itself is comprised of both a variability
term and a bias term. In other words, what is being sought is not a zero empirical risk
but the smallest empirical risk that also corresponds to a small approximation error so
that the combination of the two has a low prediction error.

If one assumes that the class F contains the best function f ∗, then there is no ap-
proximation error from using f ◦. However, in practice, little is known a priori about
f ∗, so no assumptions can be made about its form or properties. Inference in this con-
text is called agnostic learning. In agnostic learning, it is usually necessary to quantify
uncertainty about f as an estimator of f ∗ using bounds.

5.4.3 Prediction Bounds for Function Classes

First, consider both the pointwise and the uniform convergences of the empirical risk
to the true risk in the case of a finite function class. Without further comment, this
subsection uses the Hoeffding inequality; it is stated and proved in the Notes at the end
of the chapter.

Let F = { f1, f2, · · · , fm} be a finite list of classifiers. By the law of large numbers,
the empirical risk R̂n( f ) converges pointwise for f ∈F almost surely to the true risk
R( f ) for any fixed classifier f ∈ F . As usual, one usually wants a stronger mode
of convergence than pointwise. Thus, uniform convergence for f ∈ F is defined as
follows. If the space F of classifiers is finite, then ∀ε > 0,

lim
n→∞

IP

(
max
f∈F

∣∣R̂n( f )−R( f )
∣∣< ε

)
= 1.

In fact, since it is mostly upper bounds that will matter for controlling risk, one-sided
uniform convergence is enough. This amounts to removing the absolute value bars and
requiring

lim
n→∞

IP

(
max
f∈F

{
R̂n( f )−R( f )

}
< ε

)
= 1.

Now, a small empirical risk is likely to correspond to a small true risk.

However, for practical purposes, asymptotic verifications are not usually enough; it
is important to quantify how fast the empirical risk converges to the true risk. Risk
bounds provide insights into the difference between empirical and true risk. For finite
sets of classifiers, the uniform risk bound is ∀ε > 0,

IP

(
max
f∈F

∣∣R̂n( f )−R( f )
∣∣> ε

)
≤ 2|F |e−2nε2

. (5.4.8)
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Expression (5.4.8) leads to a confidence interval for R( f̂ ). Let ĥ minimize the empirical
risk minimizer and let 1−η be the desired confidence level. Set

ε =

√
1

2n
log

(
2|F |
η

)
.

Then,

IP
(∣∣R̂n( f̂ )−R( f̂ )

∣∣> ε
)
≤ IP

(
max
f∈F

∣∣R̂n( f )−R( f )
∣∣> ε

)
≤ 2|F |e−2nε2

= η ,

which is equivalent, after inversion, to

IP
(∣∣R̂n( f̂ )−R( f̂ )

∣∣< ε
)
≥ 1−2|F |e−2nε2

= 1−η ,

which gives the traditional form of (1−η) confidence intervals. That is, R̂n( f̂ )± ε is
a 1−η confidence interval for R( f̂ ).

Now, the most common one-sided uniform risk bound can be obtained. For finite F
and ∀n > 0 and ∀η > 0,

IP

[
R( f )− R̂n( f ) <

√
1
2n

log

(
|F |
η

)]
≥ 1−η ∀ f ∈F

which means that, with probability at least 1−η ,

R( f ) < R̂n( f )+

√
log |F |+ log(1/η)

2n

for all f ∈F and all η > 0.

Although this last bound is not valid when F is not finite, the basic result generalizes
if the Vapnik-Chervonenkis dimension of a collection of functions is used in place of
the cardinality, as in (5.4.9) below. The VC dimension is treated in the Notes at the
end of this chapter. For the present, the following will suffice. Say that a set of points
U in IRp is “shattered” by a set of functions F if and only if every partition of U into
two subsets can be represented in terms of a function in F . Here, represented means
that for each subset V ⊂U , there is a function f ∈F such that the points in V are on
one side of the surface generated by f . There are 2#(U) subsets, so any set of functions
F that can shatter a set U with cardinality at least 3 must have at least eight elements.
Any set F of eight or fewer functions cannot shatter more than three points. Now, the
VC dimension of F is the cardinality of the largest set of points that can be shattered
by F and written ζ = VCdim(F ); see Vapnik and Chervonenkis (1971).

Theorem (Vapnik and Chervonenkis, 1971): Let F be a class of functions with VC
dimension ζ with risks as in (5.4.3) and (5.4.5). Then, with uniformly high probability,
∀ f ∈F the theoretical risk is bounded by the empirical risk plus a term of order ζ/

√
n.

That is, for given η > 0 and ∀ f ∈F ,
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R( f )≤ R̂n( f )+

√√√√ζ
(

log 2n
ζ +1

)
− log η

4

n
(5.4.9)

with probability of at least 1−η . �
The right-hand side of (5.4.9) is the VC bound. One of its greatest appeals is that even
though it holds for arbitrary F s, it preserves the same form as for finite F s. One
heuristic interpretation that justifies this is the following. Since ζ is a natural number,
there are approximately ζ equal-sized subsets, of size 2n/ζ , among 2n points. If one
chooses ζ of these subsets at random, with replacement, there are (2n/ζ )ζ vectors of
length ζ . Roughly, if ζ = VCdim(F ), then the functions in F can shatter point sets of
size ζ . Replacing the ζ points in such a set with the vectors of length ζ means that the
number L of possible labeling configurations obtainable from F with VCdim(F ) = ζ
over 2n points satisfies

L≤
[

en
ζ

]ζ
. (5.4.10)

The VC bound is seen to be obtained by replacing log |F | with L in the expression
of the risk bound for finite-dimensional F . Thus, the generalization ability of a learn-
ing machine depends on both the empirical risk and the complexity of the class of
functions used, and the bounds are distribution-free. This means that, in general, the
predictive performance of a class of machines can be improved by finding the best
trade-off between small VC dimension and minimization of the empirical risk, which
is a measure of fit. In a sense, the VC bound is acting like the number of parameters
since both are assessments of the complexity of F .

A key result in SVM classification is that, within the class of separating hyperplanes,
those hyperplanes based on larger margins achieve a better predictive performance.
This can be seen intuitively by noting that the larger the margin, the less the corre-
sponding classifier is sensitive to small perturbations in the data. The size of the margin
is a measure of how much one can move the separating hyperplane without misclas-
sifying future points. In addition, large margin classifiers are also associated with a
lower VC dimension. Recall that the VC dimension is a sort of generalization of the
real dimension obtained by looking at the largest number of points that can be parti-
tioned in all possible ways into two subsets obtainable from a class F of classifiers.
Since these partitions correspond to binary labelings of the data and SVMs amount
to choosing a partition of the data, the class of separating hyperplanes based on large
margins corresponds to fewer labelings than the class of all separating hyperplanes.

Note that the classification by SVMs depends on the points closest to each other in the
two classes. This means SVMs are driven only by the vectors on the margin. These
are called support vectors since, as will be seen, their coefficients in the expression
for the classifier are positive. Since the number of support vectors is much less than n,
the number of labelings needed is enormously reduced. The relationship between the
VC dimension and number of labelings, as in (5.4.10), suggests that lower numbers of
labelings correspond to smaller VC dimensions. Therefore, with their reduced number
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of possible labelings, large margin classifiers correspond to lower VC bounds, which
in turn reflect a lower VC dimension. This intuition is formalized in the following
theorems; see Vapnik (1995) for detailed proofs.

Proposition (Vapnik, 1995): Let X ⊆Rp be the domain of a set of functions imple-
menting binary SVM classification. Let F denote the space of all separating hyper-
planes and ζ = VCdim(F ). Assume that all training sample points are contained in a
ball of radius at most γ; i.e.,

xxxi ∈ ball of radius γ, ∀xxxi ∈D .

Let M be the margin of the SVM under consideration. Then,

ζ ≤min(γ2/M2, p)+1. �

This result shows that large margin classifiers reduce the VC bound, which translates
into a lower prediction error or better generalization on new data points. In fact, SVM
classifiers are also motivated by their link to cross-validation.

Theorem (Vapnik, 1995): Let En be the classification error rate for an SVM classifier,
estimated by leave-one-out cross-validation using a sample of size n. Let s be the
number of support vectors used in the SVM procedure. Then,

En ≤
s
n
. �

That is, the fewer support vectors needed, the less likely SVMs are to misclassify new
examples.

5.4.4 Constructing SVM Classifiers

Given the last proposition, it is desirable to find a classifier that maximizes the margin
M = 1/‖www‖, which corresponds to minimizing ‖www‖/2. In Fig. 5.6, cases (a) and (b)
are examples of separating hyperplanes with margins that are so narrow as to cause in-
stability of the decision boundary and hence poor generalization. Case (c) indicates the
best choice of hyperplane from the standpoint of good generalization or equivalently,
large margin and VC dimension.

More formally, given D = {(xxx1,y1), · · · ,(xxxn,yn)}, with xxxi ∈Rp and yi ∈ {−1,+1}, the
margin maximization principle applied to linear classifiers is:

Find the function h(xxx) = wwwTxxx+b that achieves

max
www,b

[
min

yi=+1
d(xxxi,H(www,b))+ min

yi=−1
d(xxxi,H(www,b))

]

subject to yi(wwwTxxxi +b)≥ 1, ∀i = 1, · · · ,n.



272 5 Supervised Learning: Partition Methods
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Fig. 5.6 The top panel has a smaller margin than the middle panel does, which is smaller than the
(visually) optimal separating hyperplane in the bottom panel.

Using the fact that the distance from a point xxxi to hyperplane H(www,b) is given by

d(xxxi,H(www,b)) =
|wwwTxxxi +b|
‖www‖ ,

the formulation above translates more succinctly into
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Find the function h(xxx) = wwwTxxx+b that achieves

max
www,b

[
min

yi=+1

{
|wwwTxxxi+b|
‖www‖

}
+ min

yi=−1

{
|wwwTxxxi+b|
‖www‖

}]

subject to yi(wwwTxxxi +b)≥ 1, ∀i = 1, · · · ,n.

As written, this optimization problem can be solved, but not uniquely; there are an
infinite number of solutions. This can be seen by observing that if www and b are solutions,
then for any constant κ ≥ 1, κwww and κb also give a solution. Indeed, when ‖κwww‖ ≥
‖www‖, the boundaries of the classes move closer to the hyperplane H(www,b), contrary to
the goal of large margins.

It would be nice to have a unique solution that makes www and b as small as possible.
To do this, one seeks the smallest κ ∈ (0,1] such that κwww and κb remain solutions
to the constrained optimization problem. Since small κs push the boundaries of the
classes away from the separating hyperplane, the constraint yi(wwwTxxxi +b)≥ 1 must be
enforced. So, solutions are characterized by the fact that at least one pair (xxxi,yi) exists
such that yi(wwwTxxxi + b) = 1 holds for each of the two classes. This means that it is
enough for the points to be correctly classified; how far within its class a point is does
not matter.

Now, since yi =±1, an optimal solution to the minimization of the distance is charac-
terized by wwwTxxx∗i + b = +1 for some points xxx∗i with y∗i = +1 and wwwTxxx∗i + b = −1 for
some other points xxx∗i with y∗i = −1. In this context, for given www and b, the canonical
hyperplane for points of class +1 is defined by

H+1(www,b) = {xxx ∈X : wwwTxxx+b = +1, for y = +1},

and the canonical hyperplane for points of class −1 is defined by

H−1(www,b) = {xxx ∈X : wwwTxxx+b =−1, for y =−1}.

Using the results above, the expression for the margin is

M = min
yi=+1

{
|wwwTxxxi +b|
‖www‖

}
+ min

yi=−1

{
|wwwTxxxi +b|
‖www‖

}

=
1
‖www‖ +

1
‖www‖ =

2
‖www‖ .

Alternatively, the margin could have been calculated directly using the distance (5.4.1)
between two canonical hyperplanes. This is

M = d(H+1(www,b),H−1(www,b)) =
|1− (−1)|
‖www‖ =

2
‖www‖ .
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Finding the maximum perpendicular distance that satisfies the SVM constraint implies
finding a hyperplane H(www,b) such that the minimal distance from it to points of class
+1 equals the minimal distance from it to points of class −1.

Now, the optimization problem can be reformulated as

Find the function h(xxx) = wwwTxxx+b that achieves

max
www,b

2
‖www‖

subject to yi(wwwTxxxi +b)≥ 1, ∀i = 1, · · · ,n.

Clearly, maximizing M = 2/‖www‖ is equivalent to minimizing ‖www‖/2, which in turn is
equivalent to minimizing (1/2)‖www‖2. As a result, support vector classification under
the linearly separable assumption becomes the solution to

Find the function h(xxx) = wwwTxxx+b that achieves

minwww,b
1
2‖www‖2

subject to yih(xxxi)≥ 1, ∀i = 1, · · · ,n.

5.4.4.1 Constrained Optimization Problems

The last formulation of SVM classification is as a nonlinear constrained convex op-
timization. To understand the solutions, some key definitions of convex optimization
under inequality constraints must be mastered. Consider a domain X and a nonlinear
constrained optimization problem of “primal” form,

minimize f (www)
subject to hi(www)≥ 0, i = 1, · · · ,n.

In a more general setting, there are both equality and inequality constraints on the
objective function f (www). Here, it will be enough to focus on the inequality constraints,
which are often more difficult. The set of is for which the inequality constraints become
equalities is particularly important.

Definition an inequality constraint hi(www)≥ 0 to be active (or effective) at a point www∗ if
hi(www∗) = 0. Then, given www∗, the set of constraints that are active at www∗ is

A (www∗) =
{

i : hi(www∗) = 0
}

.
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In nonlinear constrained optimization, the Karush-Kuhn-Tucker conditions (also known
as the Kuhn-Tucker or the KKT conditions) are necessary and a useful way to construct
a solution.

Theorem (KKT necessary conditions for local minima): Let X ⊆Rp and f : X →
R, with continuously differentiable constraint functions hi : X → R, i = 1,2, · · · ,n.
Suppose www∗ is a local minimum of f on the set

S = X ∩{www ∈Rp | hi(www)≥ 0, i = 1, · · · ,n}

and that {∇hi(www∗) | i∈A (www∗)}, the derivatives of the active constraints at www∗ are a set
of independent vectors. Then ∃ α∗1 ,α∗2 , · · · ,α∗n ∈R so that

α∗i ≥ 0, i = 1,2, · · · ,n,

∇ f (www∗)−
n

∑
i=1

α∗i ∇hi(www∗) = 0,

α∗i hi(www∗) = 0, i = 1,2, · · · ,n. �

The n conditions α∗i hi(www∗) = 0 are called the complementary slackness conditions. By
the KKT local minimum conditions, it can be shown that

α∗i > 0 whenever hi(www∗) = 0

and
α∗i = 0 whenever hi(www∗) > 0,

i.e., α∗i and hi(www∗) cannot both be zero. The α∗i s are called the KKT multipliers, in
the same spirit as the Lagrange multipliers. Clearly, α∗i > 0 only on the set of active
constraints, as will be seen later with SVMs. The support vectors will be defined as
those points xxxi that have nonzero coefficients.

5.4.4.2 From Primal to Dual Space Formulation

In optimization parlance, the initial problem of this subsection is the optimization for-
mulation in “primal” space, usually just called the primal problem. The primal problem
is often transformed into an unconstrained one by way of Lagrange multipliers, and the
result is called the dual problem. The Lagrangian corresponding to the primal space
formulation is

EP(www,ααα) = f (www)+
n

∑
i=1

αihi(www).

Reformulating the primal problem into dual space makes certain aspects of the prob-
lem easier to manipulate and also makes interpretations more intuitive. Basically, the
intuition is the following. Since the solution of the primal problem is expressed in
terms of αααT = (α1, · · · ,αn), plugging such a solution back into the Lagrangian yields
a new objective function where the roles are reversed; i.e., ααα becomes the objective
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variable. More specifically, the Lagrangian of the dual problem is

ED(ααα) = inf
www∈X

EP(www,ααα),

and, since the KKT conditions give that α∗i ≤ 0 at the local minimum www∗, the dual
problem can be formulated as

Minimize ED(ααα)
subject to ααα ≥ zero.

One of the immediate benefits of the dual formulation is that the constraints are simpli-
fied and generally fewer in number. Also, if the primal objective function is quadratic,
then the dual objective will be quadratic. Finally, by a result called the duality theorem
(not discussed here), the solution to the dual problem coincides with the solution to the
primal problem.

5.4.4.3 SVMs as a Constrained Optimization

Given the SVM problem statement and the mini-review on constrained optimization,
SVM classification in primal space can be written as

Find the function h(xxx) = wwwTxxx+b that

minimizes
1
2
‖www‖2

subject to yi(wwwTxxxi +b)≥ 1, i = 1, · · · ,n.

The Lagrangian objective function for “unconstrained” optimization is

EP(www,b,ααα) =
1
2
‖www‖2−

n

∑
i=1

αi[yi(wwwTxxxi +b)−1],

where αi ∈ IR, for all i = 1,2, · · · ,n, are the Lagrange multipliers.

To solve the problem mathematically, start by computing the partial derivatives and
solve the corresponding equations. Clearly,

∂
∂www

EP(www,b,ααα) = www−
n

∑
i=1

αiyixxxi and
∂
∂b

EP(www,b,ααα) =−
n

∑
i=1

αiyi.

Solving ∇EP(www,b,ααα) = 0 for both www and b, a local minimum must satisfy

www =
n

∑
i=1

αiyixxxi with
n

∑
i=1

αiyi = 0.
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Based on this local minimum, the KKT conditions imply that there exists an ααα∗ such
that α∗i = 0 for all xxxi satisfying yi(wwwTxxxi +b) > 1. So, as noted after the KKT Theorem,
for all i ∈ {1,2, · · · ,n}, it follows that

α∗i = 0 when yi(wwwTxxxi +b) > 1

and
α∗i > 0 when yi(wwwTxxxi +b) = 1.

The vectors xxxi for which αi > 0 (i.e., the solution has strictly positive weight) are the
support of the solution and hence called the support vectors.

This definition is reasonable because support vectors belong to the hyperplanes form-
ing the boundary of each class, namely H+1 = {xxx : wwwTxxx + b = +1} or H−1 = {xxx :
wwwTxxx + b = −1}, thereby providing the definition of the margin. This is depicted in
Fig. 5.7, where the support vectors lie on either of the two hyperplanes parallel to the
optimal separating hyperplane.

Support vectors

Support vectors

h(
x)

 =
 0

h(
x)

 =
 +

1

h(
x)

 =
 −

1

Fig. 5.7 Each of the two hyperplanes has three of the data points on it. Midway between them is the
actual separating hyperplane. All other data points are outside the margin.

Figure 5.7 shows the desirable case in which most of the αis are zero, leaving only
very few αi > 0. When this is the case, the solution (i.e., the separating hyperplane)
is a sparse representation of the function of interest (i.e., the optimal boundary). But
note that it is dual space sparsity that is meant, and this is different from the traditional
sparsity, or parsimony, based on the primal space formulation in terms of the inputs
directly. The next subsection will clarify this.

5.4.4.4 Dual Space Formulation of SVM

The dual space formulation for the SVM problem is easily derived by plugging
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www =
n

∑
i=1

αiyixxxi

into the original objective function. It is easy to see that EP(www,b,ααα) becomes

EP(www,b,ααα) =
1
2

wwwTwww−
n

∑
i=1

αi[yi(wwwTxxxi +b)−1]

=
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jxxx
T
i xxx j

−
n

∑
i=1

n

∑
j=1

αiα jyiy jxxx
T
i xxx j−b

n

∑
i=1

αiyi +
n

∑
i=1

αi.

Since the new objective function has neither www nor b, denote it ED(ααα). Now, the dual
space formulation of linear SVM classification is

Maximize

ED(ααα) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jxxx
T
i xxx j

subject to
n

∑
i=1

αiyi = 0 and αi ≥ 0, i = 1, · · · ,n.

This last formulation is particularly good for finding solutions because it devolves to
a quadratic programming problem for which there is a large established literature of
effective techniques. In fact, defining the n×n matrix Q = (Qi j), where

Qi j = y jyixxx
T
j xxxi,

and the n-dimensional vector c = (−1,−1, · · · ,−1)T, training a linear SVM classifier
boils down to finding

α̂αα = arg max
ααα

{
−cTααα− (1/2)αααTQααα

}
.

That is, all the abstract manipulations undergirding linear SVM classification problems
can be summarized in a recognizable quadratic minimization problem:

Minimize

ED(ααα) =
1
2
αααTQQQααα+ cTααα

subject to
n

∑
i=1

αiyi = 0 and αi ≥ 0, i = 1, · · · ,n.
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The matrix Q is guaranteed to be positive semidefinite, so traditional quadratic pro-
gramming algorithms will suffice.

To finish this development, note that from the determination of the αis, the vector
www can be deduced so all that remains is the determination of the constant b. Since
yi(wwwTxxxi +b) = 1 for support vectors, write

b̂ =−1
2

(
min

yi=+1

{
ŵwwTxxxi

}
+ max

yi=−1

{
ŵwwTxxxi

})
. (5.4.11)

A simpler way to find b̂ is to observe that the KKT conditions give

αi(yi(wwwTxxxi +b)−1) = 0, ∀i = 1, · · · ,n.

So, for support vectors αi 	= 0, it is seen that

b̂ = yi− ŵwwTxxxi.

Equivalently, this gives b̂ =−1− min
yi=−1

{
ŵwwTxxxi

}
and b̂ = 1− min

yi=+1

{
ŵwwTxxxi

}
, again giving

(5.4.11). Finally, the SVM linear classifier can be written as

f (xxx) = sign

(
n

∑
i=1

α̂iyixxx
T
i xxx+ b̂

)
.

To emphasize the sparsity gained by SVM, one could eliminate zero terms and write

f (xxx) = sign

(
|sss|

∑
j=1

α̂s j ys j xxx
T
s j

xxx+ b̂

)
, (5.4.12)

where s j ∈ {1,2, · · · ,n}, sssT = (s1,s2, · · · ,s|sss|), and |sss|  n.

5.4.5 SVM Classification for Nonlinearly Separable Populations

So far, the data have been assumed linearly separable. However, truly interesting real-
world problems are not that simple. Figure 5.8 indicates a more typical case where two
types of points, dark circles and empty boxes, are scattered on the plane and a (visually
optimal) decision boundary is indicated. The points labeled A are on the boundary
(support vectors), but other points, labeled B, are in the margin. SVM has misclassified
points labeled F . This is a setting in which the data are not linearly separable. Even so,
one might want to use a linear SVM and somehow correct it for nonseparability.

For problems like those in Fig. 5.8, there is no solution to the quadratic programming
formulation given above; the optimization will never find the optimal separating hy-
perplane because the margin constraints in the linearly separable case are too “hard”.
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B
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A

Fig. 5.8 Nonlinearly separable data. Dark circles and empty boxes indicate two types of points. Points
labeled A or B are classified correctly, on the boundary or in the margin. The misclassified points
labeled F can be on either side of the separating hyperplane.

They will not allow points of type B, for instance, to be correctly classified. It’s worse
for points labeled F , which are on the wrong side of the margin.

To circumvent this limitation, one can try to “soften” the margins by introducing what
are called “slack” variables in the constraints. This gives a new optimization problem,
similar to the first, to be solved for an optimal separating hyperplane. In other words,
when the hard constraints yi(wwwTxxxi +b)−1≥ 0 cannot be satisfied for all i = 1,2, · · · ,n,
replace them with the soft constraint

yi(wwwTxxxi +b)−1+ξi ≥ 0, ξi ≥ 0,

in which new ξis are the slack variables. With the ξi ≥ 0, the new form of the classifi-
cation rule is: For i = 1,2, · · · ,n,

wwwTxxxi +b≥+1−ξi for yi = +1

and
wwwTxxxi +b≤−1+ξi for yi =−1.

Now, the indicator for an error is a value ξi > 1 so

number of errors =
n

∑
i=1

I(ξi > 1). (5.4.13)

Next, the optimization problem resulting from including slack variables in the con-
straints must be identified. It is tempting to use the same objective function as before
apart from noting the difference in the constraints. Unfortunately, this doesn’t work
because it would ignore the error defined in (5.4.13), resulting typically in the trivial
solution www = zero. To fix the problem, at the cost of introducing more complexity, one
can add a penalty term to the objective function to account for the errors made. It is
natural to consider

EP(www,ξ ) =
1
2
‖www‖2 +C

n

∑
i=1

I(ξi > 1) (5.4.14)
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for some C > 0 as a possible penalized objective function. Unfortunately, (5.4.14) is
hard to optimize because it is nonconvex.

Something more needs to be done. Traditionally, the problem is simplified by dropping
the indicator function and using the upper bound ξi in place of I(ξi > 1). The new
primal problem that can be solved is

Find the function h(xxx) = wwwTxxx+b and ξ that

minimizes EP(www,ξ ) =
1
2
‖www‖2 +C

n

∑
i=1

ξi

subject to yi(wwwTxxxi +b)≥ 1−ξi and ξi ≥ 0 i = 1, · · · ,n.

As with trees and RKHS methods, among others, there is a trade-off between com-
plexity and error tolerance controlled by C. Large values of C penalize the error term,
whereas small values of C penalize the complexity.

Having written down a primal problem that summarizes the situation, the next question
is what the dual problem is. Interestingly, the dual problem turns out to be essentially
the same as before. Unlike the primal problem, it is enough to record the difference in
the constraint formulation. More precisely, the dual problem is

Maximize

ED(ααα) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jxxx
T
i xxx j

subject to
n

∑
i=1

αiyi = 0 and 0≤ αi ≤C, i = 1, · · · ,n.

With this new definition of the constraints, the complete description of the KKT con-
ditions is not as clean as in the separable case. Parallel to the last subsection, it can be
verified (with some work) that the KKT conditions are equivalent to

n

∑
i=1

αiyi = 0 and (C−αi)ξi = 0 and αi(yi(wwwTxxxi +b)−1+ξi) = 0.

Vapnik (1998) shows that the KKT conditions in the nonlinearly separable case reduce
to the following three conditions:

αi = 0 ⇒ yi(wwwTxxxi +b)≥ 1 and ξi = 0,

0 < αi < C ⇒ yi(wwwTxxxi +b) = 1 and ξi = 0,

αi = C ⇒ yi(wwwTxxxi +b)≤ 1 and ξi ≥ 0.

From this, it is seen that there are two types of support vectors in the nonlinearly
separable case:
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• Margin support vectors: These correspond to those points lying on one of the
hyperplanes H+1 or H−1 parallel to the “optimal” separating hyperplane. These
are controlled by the second of the three KKT conditions above and correspond to
points of type A in Fig. 5.8.

• Nonmargin support vectors: The condition of the third equation contains the
case where 0 ≤ ξi ≤ 1 and αi = C. Points satisfying these conditions are correctly
classified and correspond to points of type B in Fig. 5.8.

Points within the margin but not correctly classified are not support vectors, but are er-
rors, and likewise for any points outside the margin. Indeed, the third equation implies
that points satisfying αi = C and ξi > 1 are misclassified and correspond to errors. In
Fig. 5.8, these are points of type F .

Using all the details above, the SVM classifier for the nonlinearly separable case has
the same form as in (5.4.12), namely

f (xxx) = sign

(
|sss|

∑
j=1

α̂s j ys j xxx
T
s j

xxx+ b̂

)
,

where s j ∈ {1,2, · · · ,n}, sssT = (s1,s2, · · · ,s|sss|), and |sss|  n. However, it is important to
note that the clear geometric interpretation of support vectors is now lost because of
the use of slack variables.

By permitting errors, slack variables represent a compromise between linear solutions
that are too restrictive and the use of nonlinear function classes, which, although rich,
can be difficult. This is a sort of complexity–bias trade-off: The use of the ξis reduces
the complexity that would arise from using a nonlinear class of functions but of course
is more complicated than the original linear problem. However, even as it reduces bias
from the linear case, it can allow more bias than the nonlinear problem would have.

5.4.6 SVMs in the General Nonlinear Case

The intuitive idea in SVM classification for nonlinear problems lies in replacing the
Euclidean inner product xxxT

j xxx in

h(xxx) = sign

(
n

∑
j=1

α jy jxxx
T
j xxx+b

)
, (5.4.15)

the expression for the linear SVM classifier, with Φ(xxx j)TΦ(xxx), to give

h(xxx) = sign

(
n

∑
j=1

α jy jΦ(xxx j)TΦ(xxx)+b

)
. (5.4.16)



5.4 Support Vector Machines 283

The Euclidean inner product in (5.4.15) is computed in the input space of the primal
problem, and the generalization (5.4.16) uses a transformationΦ that converts an input
vector xxx into a point in a higher-dimensional feature space. Using Φ allows the inclu-
sion of more features in the vectors making them easier to separate with hyperplanes.

Figure 5.9 is inspired by an example from Scholkopf and Smola (2002). It provides a
visual for what a transformation like the Φ helps achieve. In Fig. 5.9, a suitable Φ is as
follows. Let xxxT = (x1,x2), and consider feature vectors zzzT = (z1,z2,z3) in the feature
space, Euclidean IR3. Define Φ : IR2 → IR3 by

Φ(xxx) =Φ(x1,x2) = (x2
1,
√

2x1x2,x
2
2) = zzzT.

With thisΦ , a difficult nonlinear classification problem in 2D is converted to a standard
linear classification task in 3D. In general, Φ : X −→F transforms an input space
X to a feature space F of much higher dimension, so that inclusion of more features
makes the data in F linearly separable.
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(b) Linearly separable in 3D

Fig. 5.9 Panel (a) shows original data in the plane. They cannot be separated linearly. However, a
transformation may be used so that a higher-dimensional representation of the pluses and minuses
becomes linearly separable.

The core problem in implementing this strategy is to know which, if any, transforma-
tionΦ will make the data separable in feature space. Clearly, if the transformation does
not linearize the task, the effort is wasted. The central development to follow will be a
systematic way to determine the right transformation to “linearize” a given nonlinear
classification task.

5.4.6.1 Linearization by Kernels

It is evident that, to have a linear solution to the classification problem, the image of Φ
must be of higher dimension than its inputs. Otherwise, the transformation is just the
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continuous image of IRp and unlikely to be any more linearly separable than its inputs.
On the other hand, if Φ constructs a feature vector of much higher dimension than the
input vector, the Curse of Dimensionality may become a problem. This can be avoided
in principle, as will be seen.

In fact, these concerns are largely bypassed by the kernel trick. In the context of Fig.
5.9, the kernel trick can be developed as follows. Let xxxT = (x1,x2) and yyyT = (y1,y2)
be two vectors in input space X = IR2, and consider the transformation to 3D used
earlier. Let Φ(xxx) and Φ(yyy) be two feature vectors generated by xxx and yyy. Now, look at
the inner product Φ(xxx)TΦ(yyy) in feature space. It is

Φ(xxx)TΦ(yyy) = (x2
1,
√

2x1x2,x
2
2)(y

2
1,
√

2y1y2,y
2
2)

T

= (x1y1 + x2y2)2 = (xxxTyyy)2 = K(xxx,yyy). (5.4.17)

Equation (5.4.17) shows how an inner product based on Φ converts to a function of
the two inputs. Since choosing an inner product and computing with it in feature space
can quickly become computationally infeasible, it would be nice to choose a function
K, again called a kernel, so as to summarize the geometry of feature space vectors and
ignore Φ entirely.

Now the kernel trick can be stated: Suppose a function K(·, ·) : X ×X → IR operat-
ing on input space can be found so that the feature space inner products are computed
directly through K as in (5.4.17). Then, explicit use of Φ has been avoided and yet re-
sults as if Φ were used can be delivered. This direct computation of feature space inner
products without actually explicitly manipulating the feature space vectors themselves
is known as the kernel trick.

Assuming that a kernel function K can be found so that K(xxx j,xxx) = Φ(xxx j)TΦ(xxx), the
classifier of (5.4.16) can be written as

h(xxx) = sign

(
n

∑
j=1

α jy jK(xxx j,xxx)+b

)
. (5.4.18)

Equation (5.4.18) is a solution of the optimization problem

Maximize

ED(ααα) =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jK(xxxi,xxx j)

subject to
n

∑
i=1

αiyi = 0 and 0≤ αi ≤C, i = 1, · · · ,n.

These expressions are the same as before except that K(xxxi,xxx j) =Φ(xxxi)TΦ(xxx j) replaces
the inner product xxxT

i xxx j in (5.4.15).

By the kernel trick, the optimization problem for the nonlinear case has the same form
as in the linear case. This allows use of the quadratic programming machinery for
the nonlinear case. To see this more explicitly, one last reformulation of the generic
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optimization problem in quadratic programming form is

Minimize

ED(ααα) =
1
2
αααTKααα+ cTααα

subject to
n

∑
i=1

αiyi = 0 and 0≤ αi ≤C, i = 1, · · · ,n,

where K = (Ki j) with Ki j = yiy jK(xxxi,xxx j) is called the Gram matrix. The only drawback
in this formulation is that the matrix K is not guaranteed to be positive semidefinite.
This means the problem might not have a solution. Nevertheless, when it does, this is
a convenient form for the problem.

Since bivariate functions K do not necessarily yield positive semidefinite matrices K,
the question becomes how to select a kernel function K that is positive definite and
represents an underlying feature space transformation Φ that makes the data linearly
separable. It turns out that if K corresponds to an inner product in some feature space
F , then the matrix K is guaranteed to be positive definite. It remains to determine
the conditions under which a bivariate function K corresponds to an inner product
K(xxx,yyy) =Φ(xxx)TΦ(xxx) for some Φ : X →F . The answer is given by Mercer’s condi-
tions, discussed next.

5.4.6.2 Mercer’s conditions and Mercer’s kernels

For the sake of completeness, it is worthwhile restating the Mercer-Hilbert-Schmidt
results as they arise in this slightly different context. The reader is referred to Chapter
3 for the earlier version; as there, proofs are omitted. The core Mercer theorem is the
following.

Theorem (Mercer conditions): Let X be a function domain, and consider a bivariate
symmetric continuous real-valued function K defined on X ×X . Then K is said to
fulfill Mercer’s conditions if, for all real-valued functions on X ,

∫
g(xxx)2dxxx < ∞=⇒

∫
K(xxx,yyy)g(xxx)g(yyy)dxxxdyyy≥ 0. �

This theorem asserts that K is well behaved provided it gives all square-integrable
functions finite inner products. As seen in Chapter 2, the link between Mercer kernels
and basis expansions must be made explicitly.

Theorem: Let X be a function domain, and consider a bivariate symmetric continuous
real-valued function K defined on X ×X . Now, let F be a feature space. Then there
exists a transformation Φ : X →F such that

K(xxx,yyy) =Φ(xxx)TΦ(yyy)
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if and only if K fulfills Mercer’s conditions. �
Taken together, these theorems mean that the kernel under consideration really has to
be positive definite. Recall that the discussion in Chapter 3 on Mercer’s theorem led
to using an eigenfunction decomposition of any positive definite bivariate function K
to gain insight into the corresponding reproducing kernel. Here, by Mercer’s theorem,
we can write the decomposition

K(xxx,yyy) =
∞

∑
i=1

λ jψi(xxx)ψi(yyy)

with ∫
K(xxx,yyy)ψi(yyy)dyyy = λiψi(xxx).

Then, by defining φi(xxx) =
√
λiψi(xxx), it follows that

K(xxx,yyy) =Φ(xxx)TΦ(yyy).

For a given bivariate function K, verifying the conditions above might not be easy. In
practice, there exist many functions that have been shown to be valid kernels, and for-
tunately many of them deliver good performance on real-world data. A short annotated
list is compiled at the end of this subsection.

5.4.6.3 SVMs, RKHSs and the Representer Theorem

For completeness, it’s worth seeing that the SVM classifier fits the regularized approx-
imation framework discussed in Chapter 3.

Consider the formulation of the SVM classification:

Find the function h(xxx) = wwwTxxx+b and ξ that

minimizes EP(www,ξ ) =
1
2
‖www‖2 +C

n

∑
i=1

ξi

subject to yih(xxxi)≥ 1−ξi and ξi ≥ 0 i = 1, · · · ,n.

Now consider the following regularized optimization:

Minimize
www,b

{
n

∑
i=1

[1− yih(xxxi)]+ +λ‖www‖2

}

subject to h(xxx) = wwwTxxx+b.

Sometimes the product yih(xxxi) is called the margin and [1− yih(xxxi)]+ is called the
hinge loss; this is another sense in which SVM is a maximum margin technique.

Theorem: These two optimization problems are equivalent when λ = 1/2C.
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Proof: First, the constraints can be rewritten as [1− yih(xxxi)]≤ ξi with ξi ≥ 0. Clearly,
if yih(xxxi) > 1, then the constraint is satisfied, since ξ must be positive. However, when
yih(xxxi) < 1 instead, the corresponding positive quantity [1− yih(xxxi)] is compared with
another positive quantity, ξi. Therefore, the bulk of the constraint lies in cases cor-
responding to [1− yih(xxxi)] > 0, so that it is enough to minimize the positive part of
[1−yih(xxxi)], denoted by [1−yih(xxxi)]+. For a given ξi, seek the function h(xxx) such that
[1−yih(xxxi)]+ ≤ ξi, which, by ignoring ξi, boils down to making [1−yih(xxxi)]+ as small
as possible. Finally, dividing EP(www,ξ ) by C and taking λ = 1/2C, the desired result
follows (see Fig. 5.10).�

10 y h(x)

[1−y h(x)]

Fig. 5.10 This graph shows the hinge loss function [1− yih(xxxi)]+. The theorem states that the SVM
formulation is equivalent to a decision problem using the hinge loss.

In fact, this machinery fits the RKHS paradigm from Chapter 3. For instance, the the-
orem casts SVM in the classical framework of regularization theory, where the more
general form

minimize
www,b

{
n

∑
i=1

�(yi,h(xxxi))+λ‖h‖2
HK

}
(5.4.19)

was defined. In (10.3.3), �(·, ·) is the loss function and ‖ · ‖2
HK

is the penalty defined
in the RKHS used to represent the function h. For the SVM classifier in the nonlinear
decision boundary case, reintroduce the feature space transformation Φ , and then the
regularized optimization formulation becomes

Minimize www,b

{
n

∑
i=1

[1− yih(xxxi)]+ +λ‖www‖2

}

subject to h(xxx) = wwwTΦ(xxx)+b, (5.4.20)

where the norm ‖www‖2 is now computed in the feature space that constitutes the image
of Φ . The transformation Φ can be derived from an appropriately chosen Mercer ker-
nel K guaranteeing that K(xxxi,xxx j) = Φ(xxxi)TΦ(xxx j). So, considering results on RKHSs
from Chapter 3, ‖www‖2 is the norm of the function h in the RKHS corresponding to the
kernel that induces Φ .

From all this, equation (5.4.20) can be written as
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Minimize www,b

{
n

∑
i=1

�(yi,h(xxxi))+λ‖h‖2
HK

}

subject to h(xxx) = wwwTΦ(xxx)+b, (5.4.21)

where �(yi,h(xxxi)) = [1−yih(xxxi)]+ is the hinge loss function shown earlier. The formu-
lation (5.4.21) contains all the ingredients of the RKHS framework and is essentially
an instance of (10.3.3). As a result, the representer theorem applies, so that the solution
to (5.4.21) is of the form

h(xxx) =
n

∑
i=1

αiK(xxxi,xxx)+b

as determined earlier.

5.4.7 Some Kernels Used in SVM Classification

To conclude the formal treatment, it is worth listing several of the variety of kernels
used most regularly. The simplest kernel choice is linear. The linear kernel corresponds
to the identity transformation as defined by the Euclidean inner product

K(xxxi,xxx j) = 〈xxxi,xxx j〉.

This is the one underlying the SVM classifier for linearly separable data.

Slightly more elaborate is the polynomial kernel defined in its homogeneous form,

K(xxxi,xxx j) = (〈xxxi,xxx j〉)d .

This was seen in the 3D example for d = 2; see (5.4.17). The nonhomogeneous version
of the polynomial kernel is defined by

K(xxxi,xxx j) = (〈xxxi,xxx j〉+ c)d .

The greatest advantage of the polynomial family of kernels lies in the fact that they
are direct generalizations of the well-known Euclidean norm and therefore intuitively
interpretable. Indeed, it is straightforward, though tedious, to obtain representations
for the ψis that correspond to these kernels. (For p = 2, say, let xxx = (x1,x2) and xxx∗ =
(x∗1,x

∗
2) and start with c = 1 and d = 3. Derive a polynomial expression for K(xxx,xxx∗),

and recognize the ψis as basis elements.)

The Laplace radial basis function (RBF) kernel is

K(xxxi,xxx j) = exp

(
− 1

2σ
||xxxi− xxx j||

)
.
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As the cusp at 0 suggests, this kernel might be more appropriate than others in applica-
tions where sharp nondifferentiable changes in the function of interest are anticipated.
Using the Laplace RBF kernel for very smooth functions understandably gives very
poor results, lacking sparsity and having a large prediction error. This occurs with rel-
evance vector machines (RVMs) as well. (Roughly, RVMs are a Bayesian version of
SVMs based on recognizing the prior as a penalty term in a regularization framework;
see Chapter 6.) This is consistent with regarding kernel selection as similar to selecting
a model list.

Arguably, the most widely used kernel is the Gaussian RBF kernel defined by

K(xxxi,xxx j) = exp

(
− 1

2σ2 ||xxxi− xxx j||2
)

.

The parametrization of such kernels by σ creates a large, flexible class of models. The
class of kernels is large enough that one can be reasonably sure of capturing the un-
derlying function behind a wide variety of data sets, provided σ is well tuned, usually
by cross-validation.

Sigmoid kernels are used in feedforward neural network contexts, as studied in Chapter
4. One sigmoid is defined by

K(xxxi,xxx j) = tanh(κxxxT
i xxx j + γ).

In contexts where it is important to be able to add steps in a smooth way (e.g., hand-
written digit recognition), this kernel is often used.

To finish, two other kernels that arise are the Cauchy kernel

K(xxxi,xxx j) =
1
π

1
1+ ||xxxi− xxx j||2

,

which is a further variant on the Laplace or Gaussian RBF kernels (to give more spread
among the basis functions), and the thin-plate spline kernel

K(xxxi,xxx j) = ‖xxxi− xxx j‖ log‖xxxi− xxx j‖,

implicitly encountered in Chapter 3.

5.4.8 Kernel Choice, SVMs and Model Selection

The kernel plays the key role in the construction of SVM classifiers. Steinwart (2001)
provides a theoretical discussion on the central role of the kernel in the general-
ization abilities of SVMs and related techniques. Genton (2001) discussed the con-
struction of kernels with details on aspects of the geometry of the domain, partic-
ularly from a statistical perspective. More generally, the webpage http://www.
kernel-machines.org/jmlr.htm has many useful references.
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In overall terms, partially because of the use of a kernel, SVMs typically evade the
Curse. However, the selection of the kernel itself is a major issue, and the comput-
ing required to implement an SVM solution (which can be used in certain regression
contexts, too) can be enormous.

On the other hand, conceptually, SVMs are elegant and can be regarded as a deter-
ministic method with probabilistic properties as characterized by the VC-dimension.
Indeed, prediction on a string of data such as characterized by Shtarkov’s theorem and
follow-on techniques from the work of Cesa-Bianchi, Lugosi, Haussler, and others is
similar in flavor: Predictions and inferences are done conditionally on the string of data
received but characterized in the aggregate by probabilistic quantities. In principle, it
is possible to choose a kernel in an adaptive way (i.e., data-driven at each time step),
but this approach has not been investigated.

At its root, choosing a kernel is essentially the same as choosing an inner product,
which is much like choosing a basis. Usually, one wants a basis representation to be
parsimonious in the sense that the functions most important to represent can be rep-
resented with relatively few terms, so that for fixed bias tolerance, the variance from
estimating the coefficients will be small. Thus, in a regression or classification con-
text, selecting the kernel is like selecting a whole model space or a defined model class
to search; fixing a K can be likened to a specific model selection problem in the tra-
ditional statistical sense. In other words, different Ks correspond to different model
space coordinatizations, not to individual models within a space.

5.4.9 Support Vector Regression

The key difference between support vector classification and support vector regression
lies in the noise model and loss function; the paradigm of maximization of a margin
remains the same. Vapnik calls the loss function used for support vector regression
ε-insensitive loss, defined as follows: Let ε > 0 and set

�(u)≡ |u|ε ≡
{

0, |u|< ε
|u|− ε, otherwise.

It is seen in Fig. 5.11 that this loss function assigns loss zero to any error smaller than
ε , whence the name. This means that any function closer than ε to the data is a good
candidate. Pontil et al. (1998) observe that the ε-insensitive loss function also provides
some robustness against outliers.

Using ε-insensitive loss for regression amounts to treating the regression function as
a decision boundary as sought in classification. This is valid because the ε-insensitive
loss corresponds to a margin optimization interpretation. That is, support vector re-
gression estimates the true function by constructing a tube around it. The tube defines
a margin outside of which the deviation is treated as noise.

Given a data set {(xxxi,yi), i = 1, · · · ,n}, support vector regression is formulated in the
same way as the optimization underlying support vector classification, i.e., one seeks
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Fig. 5.11 The ε-insensitive loss function.

the f achieving

min 1
2‖www‖2 subject to

�(yi− f (xxxi)) < ε, ∀i = 1, · · · ,n,

where f is of the form
f (xxx) = wwwxxx+b.

An equivalent formulation in a single objective function consists of finding the function
f (xxx) = wwwxxx+b that minimizes

Remp( f ) =
1
n

n

∑
i=1

�(yi− f (xxxi))+
λ
2
‖www‖2.

When the constraints are violated (i.e., some observations fall within the margin), then,
just like in classification, slack variables are used. The regression problem is then

min
1
2
‖www‖2 +C

n

∑
i=1

(ξi +ξ ∗i )

subject to
yi− f (xxxi) < ε+ξi, and
f (xxxi)− yi < ε+ξ ∗i

∀i = 1, · · · ,n, ξi,ξ ∗i ≥ 0,C > 0.

In the formulation above, C controls the trade-off between the flatness of f (xxx) and the
amount up to which deviations larger than the margin ε are tolerated. From a compu-
tational standpoint, the estimator, just as in support vector classification, is obtained
by solving the dual optimization problem rather than the primal one. As with support
vector classification, this is tackled by forming the primal Lagrangian function,
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LP =
1
2
‖www‖2 +C

n

∑
i=1

(ξi +ξ ∗i )

−
n

∑
i=1

αi(ε+ξi− yi +wwwTxxxi +b)

−
n

∑
i=1

α∗i (ε+ξ ∗i + yi−wwwTxxxi−b)

−
n

∑
i=1

(βiξi +β ∗i ξ ∗i ),

where αi,α∗i ,βi,β ∗i ≥ 0 are the Lagrange multipliers. Classical optimization of LP

proceeds by setting derivatives equal to zero,

∂LP

∂w
= 0,

∂LP

∂b
= 0,

∂LP

∂ξ
= 0,

∂LP

∂ξ ∗
= 0,

and using the resulting equations to convert LP into the dual problem. The constraint
∂LP/∂w = 0 gives

www∗ =
n

∑
i=1

(αi−α∗i )xxxi,

so the dual problem is to maximize

LD(〈αi〉,〈α∗i 〉) =
1
2

n

∑
i, j=1

(αi−α∗i )(α j−α∗j )xT
i x j− ε

n

∑
i=1

(αi−α∗i ),

where 0≤ αi ≤C and 0≤ α∗i ≤C. Note that the intercept b does not appear in LD, so
maximizing LD only gives the values αi and α∗i . However, given these and using www∗ in
f (xxx) = wwwTxxx+b results in the desired estimator

f (xxx) =
n

∑
i=1

(αi−α∗i )xxxT
i xxx+b.

The correct value of b∗ can be found by using the Karush-Kuhn-Tucker conditions. In
fact, these conditions only specify b∗ in terms of a support vector. Consequently, com-
mon practice is to average over the b∗s obtained this way. To a statistician, estimating
b directly from the data, possibly by a method of moments argument, may make as
much sense.

Clearly, this whole procedure can be generalized by replacing wTx with wTΦ(x) and
setting K(x,x′) =Φ(x)′Φ(x). Then, an analogous analysis leads to

f (xxx) =
n

∑
i=1

(αi−α∗i )K(xxxi,xxx)+b.

More details on the derivation of support vector regression and its implementation can
be found in Smola and Scholkopf (2003).
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5.4.10 Multiclass Support Vector Machines

As noted in Section 5.1, there are two ways to extend binary classification to multiclass
classification with K ≥ 3. If K is not too large, the AVA case of training K(K− 1)/2
binary classifiers can be implemented. However, here it is assumed that K is too large
for this to be effective, so an OVA method is developed.

The geometric idea of margin – perpendicular distance between the points closest to a
decision boundary – does not have an obvious natural generalization to three or more
classes. However, the other notion of margin, y f (xxx), which is also a measure of sim-
ilarity between y and f , does generalize, in a way, to multiclass problems. Following
Liu and Shen (2006), note that for an arbitrary sample point (xxx,y), a correct decision
vector fff (xxx) should encourage a large value for fy(xxx) and small values for fk(xxx),k 	= y.
Therefore, it is the vector of relative difference, fy(xxx)− fk(xxx),k 	= y, that characterizes
a multicategory classifier. So, define the (K−1)-dimensional ggg-vector

ggg( fff (xxx),y) = ( fy(xxx)− f1(xxx), . . . , fy(xxx)− fy−1(xxx), fy(xxx)− fy+1(xxx), . . . , fy(xxx)− fK(xxx)).
(5.4.22)

It will be seen that the use of ggg simplifies the representation of generalized hinge loss
for multiclass classification problems.

Several multiclass SVMs, MSVMs, have been proposed. Similar to binary SVMs (see
(10.3.3)) these MSVMs can be formulated in terms of RKHSs. Let fff (xxx)∈∏K

k=1({1}+
HK) be the product space of K reproducing kernel Hilbert spaces HK . In other words,
each component fk(xxx) can be expressed as bk + hk(xxx), where bk ∈ R and hk ∈ HK .
Then the MSVM can be defined as the solution to the regularization problem

1
n

n

∑
i=1

l(yi, fff (xxxi))+λ
K

∑
k=1

||hk||2HK
, (5.4.23)

where l(·, ·) is the loss function. The basic idea behind the multiclass SVM is, for any
point (xxx,y), to pay a penalty based on the relative values given by fk(xxx)s.

In Weston and Watkins (1999), a penalty is paid if

fy(xxx) < fk(xxx)+2, ∀k 	= y.

Therefore, if fy(xxx) < 1, there is no penalty provided fk(xxx) is sufficiently small for
k 	= y. Similarly, if fk(xxx) > 1 for k 	= y, there is no penalty if fy(xxx) is sufficiently larger.
Therefore, the loss function can be represented as

n

∑
i=1

l(yi, fff (xxxi)) =
n

∑
i=1
∑

k 	=yi

[2−{ fyi(xxxi)− fk(xxxi)}]+ . (5.4.24)

In Lee et al. (2004), a different loss function,

n

∑
i=1

l(yi, fff (xxxi)) =
n

∑
i=1
∑

k 	=yi

[ fk(xxxi)+1)]+, (5.4.25)
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is used, and the objective function is minimized subject to a sum-to-zero constraint,

K

∑
k=1

fk(xxx) = 0.

If the generalized margin gggi = ggg( fff (xxxi),yi) defined in (5.4.22) is used, then (5.4.25)
becomes

n

∑
i=1

l(yi, fff (xxxi)) =
n

∑
i=1

V (gggi),

where V (u) = ∑K−1
k=1 [(∑K−1

j=1 u j)/K−uk +1]+.

The following result establishes the connection between the MSVM classifier and the
Bayes rule.

Proposition (Lee et al., 2004): Let f(x) = ( f1(x), . . . , fk(x)) be the minimizer of
E [L(Y, f(x))] defined in (5.4.25) under the sum-to-zero constraint. Then

arg max
l=1,··· ,k

fl(x) = fB(x).

5.5 Neural Networks

Recall from Chapter 4 that a single hidden layer feedforward neural network (NN)
model is of the form

Y = β0 +
r

∑
u=1

γkψ(xxxTβu +νu)+ ε, (5.5.1)

where ψ is a sigmoidal function and each term is a node, or neuron, and ε is an error
term. When r = 1 and ψ is a threshold, the simple model is often called a perceptron.
The β js are weights, and the ν js are sometimes called biases. More complicated neural
net models permit extra layers by treating the r outputs from (5.5.1) as inputs to another
layer.

One extension of NNs from regression to classification is based on using categorical
variables and regarding the likelihood as multinomial rather than normal. However,
this rests on a multivariate generalization of regression networks because K class clas-
sification problems must be transformed to a regression problem for a collection of K
indicator functions.

First, in a multivariate response regression problem, regard an output as YYY = (Y1, ...,YK),
where each Yj is an indicator for class j taking values zero and one. Then, for each out-
come Yj,i for i = 1, ...,n of Yj, there is an NN model of the form

Yj = β0, j +
r

∑
u=1

γu, jψ(xxxTβu)+ ε j, (5.5.2)
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in which, for simplicity, all the sigmoids are the same, the νs are absorbed into the
β s by taking a constant as an explanatory variable, and it is seen that the β s do not
depend on j. This means that the indicator functions for all K classes will be exhibited
as linear combinations of the same r sigmoids that play the role of a basis. Explicitly,
a logit sigmoid gives

ψ(xxxTβu) =
1

1+ e−νu−∑p
h=1 βu,hxh

. (5.5.3)

Next, in the classification problem, let Z be the response variable assuming values
in {1, ...,K}. Following Lee (2000), represent the categorical variable ZZZ as a vector
YYY = (Y1, ...,YK) of length K, where Yj is the indicator for Z = j; i.e., Yj = 1 when Z = j
and Z j = 0 otherwise. Now, the response Yis have regression functions as in (5.5.2).
Suppose the Zis are independent, and write

f (Zn|ppp) =Π n
i=1 f (Zi|p1, ..., pK),

in which p j = P(Z = j) = P(Yj = 1) and

f (Zi|p1, ..., pK) ∝ p
y1,i
1 ...p

yK,i
K .

The p̂ js are estimated from the regression model by finding

Ŵi,k = β0,k +
r

∑
u=1

βu,kψu(xxxT
i βu)

and setting

p̂k =
eŴk

∑p
h=1 eŴh

(5.5.4)

using (5.5.3). Note that the Ŵks are the continuous outputs of the regression model in
(5.5.2), which are transformed to the probability scale of the pks in (5.5.4). In practice,
one of the Wks must be set to zero, say WK , for identifiability. It is seen that there are r
nodes, rk real parameters from the γs (K for each node), and r(p+1)+K parameters
from the β s (p+1 for each node and K offsets).

Despite the logical appeal of using a multinomial model, many practitioners use a
normal type model, even for classification. This is valid partially because they intend
to derive a discriminant function from using K networks, say N̂etk(xxx), of the form
(5.5.2). Then argmaxk ˆNetk(xxxnew) can be taken as a discriminant function to assign a
class to Ynew. A related point is that the estimation procedures in NNs, as in basic linear
regression, rest on optimizations that are independent of the error term. In fact, using
techniques like bootstrapping and cross-validation, some inferences can be made about
NNs that are also independent of the error term. The error term really only figures in
when it is important to get estimates of parameters.
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5.6 Notes

Here Hoeffding’s inequality is presented, followed by some details on VC dimension.

5.6.1 Hoeffding’s Inequality

For completeness, a statement and proof of Hoeffding’s inequality are provided.

Lemma: If Z is a random variable with E[Z] = 0 and a≤ Z ≤ b, then

E[esZ ]≤ e
s2(b−a)2

8 .

Proof: By the convexity of the exponential function, for a≤ Z ≤ b,

esZ ≤ Z−a
b−a

esb +
b−Z
b−a

esa.

Now,

E[esZ ] ≤ E

[
Z−a
b−a

esb
]

+E

[
b−Z
b−a

]
esa

=
b

b−a
esa− a

b−a
esb since E[Z] = 0

= (1− t + tes(b−a))e−ts(b−a), where t =
−a

b−a
.

Let u = s(b−a) and φ(u) =−tu+ log(1− t + teu). Then,

E[esZ ]≤ eφ(u).

It is easy to see that φ(0) = 0, with the Taylor series expansion of φ(u) given by

φ(u) = φ(0)+uφ ′(0)+
u2

2
φ ′′(v), where v ∈ [0,u].

It is easy to check that φ ′(0) = 0 since φ ′(u) =−t + teu

1−t+teu . Also,

φ ′′(u) =
teu

1− t + teu −
teu

(1− t + teu)2 =
teu

1− t + teu

[
1− teu

1− t + teu

]
,

which can be written as φ ′′(u) = π(1−π), where π = (teu)/(1− t + teu). The maxi-
mizer of φ ′′(u) is π∗ = 1/2. As a result,

φ ′′(u)≤ 1
4
, so that φ ′′(u)≤ u2

8
=

s2(b−a)2

8
.
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Therefore,

E[esZ ]≤ e
s2(b−a)2

8 . �

Theorem (Hoeffding’s inequality): Let Y1,Y2, · · · ,Yn be bounded independent ran-
dom variables such that ai ≤Yi ≤ bi with probability 1. Let Sn =∑n

i=1 Yi. Then, for any
t > 0,

IP(|Sn−E[Sn]| ≥ t)≤ 2e
−2t2

∑n
i=1 (bi−ai)2 .

Proof: The upper bound of the lemma above is applied directly to derive Hoeffding’s
inequality. Now,

IP(Sn−E[Sn]≥ t) ≤ e−st
n

∏
i=1

E
[
es(Li−E[Li])

]

≤ e−st
n

∏
i=1

e
s2(bi−ai)

2

8

≤ e−stes2∑n
i=1

(bi−ai)
2

8

= e
−2t2

∑n
i=1 (bi−ai)2 ,

where s is replaced by s = 4t
∑n

i=1 (bi−ai)2 . �

5.6.2 VC Dimension

The point of the VC dimension is to assign a notion of dimensionality to collections of
functions that do not necessarily have a linear structure. It often reduces to the usual
real notion of independence – but not always. The issue is that just as dimension in
real vector spaces represents the portion of a space a set of vectors can express, VC
dimension for sets of functions rests on what geometric properties the functions can
express in terms of classification. In DMML, the VC dimension helps set bounds on
the performance capability of procedures.

There are no less than three ways to approach defining the VC dimension. The most
accessible is geometric, based on the idea of shattering a set of points.

Since the VC dimension h of a class of functions F depends on how they separate
points, start by considering the two-class discrimination problem with a family F
indexed by θ , say f (x,θ) ∈ {−1,1}. Given a set of n points, there are 2n subsets that
can be regarded as arising from labeling the n points in all 2n possible ways with 0,1.
Now, fix any one such labeling and suppose there is a θ such that f (xi,θ) assigns 1
when xi has the label 1 and −1 when xi has the label 0. This means that f (·,θ) is a
member of F that correctly assigns the labels. If for each of the 2n labelings there
is a member of F that can correctly assign those labels to the n points, then the set
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of points is “shattered” by F . The VC dimension for F is the maximum number of
points that can be shattered by the elements of F – a criterion that is clearly relevant
to classification.

Now, the VC dimension of a set of indicator functions Iα(z), generated by, say, F ,
where α ∈ Λ indexes the domains on which I = 1, is the largest number h of points
that can be separated into two different classes in all 2n possible ways using that set
of indicator functions. If there are n distinct points z1, ...,zn (in any configuration) in a
fixed space that can be separated in all 2n possible ways, then the VC dimension h is
at least n. That is, it is enough to shatter one set of n vectors to show the dimension is
at least n.

If, for every value of n, there is a set of n vectors that can be shattered by the I(z,α)s,
then F has VC dimension infinity. So, to find the VC dimension of a collection of
functions on a real space, one can test each n = 1,2,3... to find the first value of n for
which there is a labeling that cannot be replicated by the functions. It is important to
note that the definition of shattering is phrased in terms of all possible labelings of n
vectors as represented by the support of the indicator functions, which is in some fixed
space. So, the VC dimension is for the set F whose elements define the supports of
the indicator functions, not the space itself.

In a sense, the VC dimension is not of F itself so much as the level sets defined by
F since they generate the indicator functions. Indeed, the definition of VC dimension
for a general set of functions F , not necessarily indicator functions, is obtained from
the indicator functions from the level sets of F = { fα(·) : α ∈ Λ}. Let fα ∈F be a
real-valued function. Then the set of functions

I{z: fα (z)−β≥0}(z) for α ∈Λ ,β ∈
(

inf
z,α

fα(z),sup
z,α

fα(z)
)

is the complete set of indicators for F . The VC dimension of F is then the maximal
number h of vectors z1,...,zh that can be shattered by the complete set of indicators of
F , for which the earlier definition applies.

To get a sense for how the definition of shattering leads to a concept of dimension, it’s
worth seeing that the VC dimension often reduces to simple expressions that are minor
modifications of the conventional dimension in real spaces.

An amusing first observation is that the collection of indicator functions on IR with
support (−∞,a] for a ∈ IR has VC dimension 2 because it cannot pick out the larger
of two points x1 and x2. However, the collection of indicator functions on IR with
support (a,b] for a,b ∈ IR has VC dimension 3 because it cannot pick out the largest
and smallest of three points, x1, x2, and x3. The natural extensions of these sets in IRn

have VC dimension d +1 and 2d +1.

Now, consider planes through the origin in IRn. That is, let F be the set of functions of
the form fθ (x) = θ · x = ∑n

i=1 θixi for θ = (θ1, ...,θn) and xxx = (x1, ...,xn). The task is
to determine the highest number of points that can be shattered by F . It will be seen
that the answer depends on the range of xxx.
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First, suppose that xxx varies over all of IRn. Then the VC dimension of F is n+1. To see
this, recall that the shattering definition requires thinking in terms of partitioning point
sets by indicator functions. So, associate to any fθ the indicator function I{x: fθ (x)>0}(x),
which is 1 when fθ > 0 and zero otherwise. This is the same as saying the points on
one side of the hyperplane fθ (x) ≥ 0 are coded 1 and the others 0. (A minus sign
gives the reverse, 0 and 1.) Now ask: How many points in Rn must accumulate before
they can no longer be partitioned in all possible ways? More formally, if there are k
points, how large must k be before the number of ways the points can be partitioned
by indicator functions I{x: fθ (x)>0}(x) falls below 2k?

One way to proceed is to start with n = 2 and test values of k. So, consider k = 1 point
in IR2. There are two ways to label the point, 0 and 1, and the two cases are symmetric.
The class of indicator functions obtained from F is I{x: fθ (x)>0}(x). Given any labeling
of the point by 0 or 1, any f ∈F gives one labeling and − f gives the other. So, the
VC dimension is at least 1.

Next, consider two points in IR2: There are four ways to label the two points with 0
and 1. Suppose the two points do not lie on a line through the origin unless one is the
origin. It is easy to find one line through the origin so that both points are on the side
of it that gets 1 or that gets zero. As long as the two points are not on a line through the
origin (and are distinct from the origin), there will be a line through the origin so that
one of the points is on the side of the line that gets 1 and the other will be on the side of
the line that gets 0. So, there are infinitely many pairs of points that can be shattered.
Picking one means the VC dimension is at least 2.

Now, consider three points in IR2. To get VC dimension at least three, it is enough to
find three points that can be shattered. If none of the points is the origin, typically they
cannot be shattered. However, if one of the points is the origin and the other two are
not collinear with the origin, then the three points can be shattered by the indicator
functions. So, the VC dimension is at least 3.

In fact, in this case, the VC-dimension cannot be 4 or higher. There is no configuration
of four points, even if one is at the origin, that can be shattered by planes through
the origin. If n = 3, then the same kind of argument produces four points that can be
shattered (one is at the origin) and four is the maximal number of points that can be
shattered. Higher values of n are also covered by this kind of argument and establish
that VCdim(F ) = n+1.

The real dimension of the class of indicator functions I{x: fθ (x)>0}(x) for f ∈ F is,
however, n, not n + 1. The discrepancy is cleared up by looking closely at the role of
the origin. It is uniquely easy to separate from any other point because it is always
on the boundary of the support of an indicator function. As a consequence, the linear
independence of the components xi in xxx is indeterminate when the values of the xis are
zero. Thus, if the origin is removed from IRn so the new domain of the functions in F
is IRn \{000}, the VC dimension becomes n.

For the two-class linear discrimination problem in IRp, the VC dimension is p + 1.
Thus, the bound on the risk gets large as p increases. But, if F is a finite-dimensional
vector space of measurable functions, it has a VC dimension bounded by dimF + 2.
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Moreover, if φ is a monotonic function, its set of translates {φ(x−a) : a ∈ IR} has VC
dimension 2.

One expects that as the elements of F get more flexible, then the VC dimension should
increase. But the situation is complex. Consider the following example credited to E.
Levin and J. Denker. Let F = { f (x,θ)}, where

f (x,θ) =
{

1 if sin(θx) > 0,
−1 if sin(θx)≤ 0.

Select the points {xi = 10−i} for i = 1, . . . ,n, and let yi ∈ {0,1} be the label of xi. Then
one can show that, for any choice of labels,

θ = π

[
1+

n

∑
i=1

1
2
(1− yi)10i

]

gives the correct classification. For instance, consider y1 = −1 and yi = 1 for i 	= 1.
Then, sin(x1θ) = sin(π(1 + 10−1)) < 0, correctly leading to −1 for x1 and, for i 	= 1,
sin(xiθ) = sin(π(1/10i +1/10i+1)) > 0 correctly leading to 1. The other labelings for
the xis in terms of the yis arise similarly. Thus, a sufficiently flexible one-parameter
family can have infinite VC dimension.

5.7 Exercises

Exercise 5.1 (Two normal variables, same mean). Suppose X ∈ IRp and is drawn
from one of two populations j = 0 and j = 1 having (conditional) density p(xxx| j) given
by either N(0,Σ0) or N(0,Σ1), where the variance matrices are diagonal; i.e., Σ j =
diag(σ2

j,1, ·,σ2
j,p) for j = 0,1, and distinct. Show that there exists a weight vector w ∈

IRp and a scalar α such that Pr( j = 1|xxx) can be written in the form

IP( j = 1|xxx) =
1

1+ exp(−www�xxx+α)
.

Exercise 5.2. Let H : g(xxx) = www�xxx+w0 = 0 be a hyperplane in IRp with normal vector
www ∈ IR and let xxx′ ∈ IRp be a point.

1. Show that the perpendicular distance d(H,xxx′) from H to the point xxx′ is |g(xxx′)|/‖www‖
and this can be found by minimizing ‖xxx− xxx′‖2 subject to g(xxx) = 0. That is, show
that

d(H,xxx′) =
|g(xxx′)|
‖www‖ = min

g(xxx)=0

(
‖xxx− xxx′‖2) .

2. Show that the projection of an arbitrary point xxx′ onto H is

xxx′ − g(xxx′)
‖www‖2 www.
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Exercise 5.3 (Quadratic discriminant function). Consider the generalization of the
linear discriminant function in Exercise 2 given by the quadratic discriminant function

g(xxx) = w0 +
p

∑
j=1

wixi +
p

∑
j=1

p

∑
k=1

wi jxix j = w0 +www�xxx+ xxxWxxx,

where www ∈ IRp and W = (wi j) is a symmetric nonsingular matrix. Show that the deci-
sion boundary defined by this discriminant function can be described in terms of the
matrix

M =
W

w�W−1w−4w0

in terms of two cases:

1. If M is positive definite, then the decision boundary is a p-dimensional ellipsoid.

2. If M has both positive and negative eigenvalues, then the decision boundary is a
hyperboloid, also in p dimensions.

Note that item 1 gives a p-dimensional sphere when all the axes of the ellipsoid are
the same length.

3. Suppose w = (5,2,−3)� and

W =

⎡
⎣1 2 0

2 5 1
0 1 −3

⎤
⎦ .

What does the decision boundary look like?

4. Suppose w = (2,−1,3)� and

W =

⎡
⎣1 2 3

2 0 4
3 4 −5

⎤
⎦ .

What does this decision boundary look like?

Exercise 5.4 (Single node NNs can reduce to linear discriminants). Consider a “net-
work” of only a single output neuron, i.e., there are no hidden layers. Suppose the net-
work has weight vector www ∈ IRp, the input xxx has p entries and the sigmoid in the output
neuron is

φ(u) =
1

1+ exp(−u)
.

Thus, the network function is

f (xxx) = φ

(
p

∑
k=0

wkxk

)

and has, say, threshold w0.
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1. Show that the single output neuron implements a decision boundary defined by
a hyperplane in IRp. That is, show that f is a linear discriminant function with
boundary of the form

p

∑
j=0

w jx j = 0.

2. Illustrate your answer to item 1 for p = 2.

Exercise 5.5 (Continuation of Exercise 5.4).

1. Redo Exercise 5.4 item 1, but replace the sigmoid with a Heaviside function; i.e.,
use

f (xxx) = H

(
p

∑
j=0

w jx j

)

where H(u) = 1 if u > 0, H(u) =−1 if u < 0, and H(u) = 0 if u = 0.

2. How can you make this classifier able to handle nonlinearly separable xxxs?

Exercise 5.6 (Gradient descent to find weights in a NN). Consider a data set {(xxxi,yi),
i = 1, · · · ,n} where xxxi is an input vector and yi ∈ {0,1} is a binary label indicating
the class of xxxi. Suppose that given a fixed weight vector www, the output of the NN is
f (xxx) = f (xxx,www). To choose xxx, define the binomial error function

E(www) =−
n

∑
i=1

[yi ln f (xxxi,www)+(1− yi) ln(1− f (xxxi,www))].

1. Verify that ggg = ∂E/∂www has entries given by

g j =
∂E
∂w j

=
n

∑
i=1
−(yi− f (xxxi,www))xi j,

for j = 1, ..., p.

2. Why does the derivative in item 1 suggest gradient descent is possible for estimating
www? How would you do it?

Hint: Observe that for each j, g j = ∑n
i −(yi− f (xxxi;www))xi j.

Exercise 5.7 (Examples of kernels).

1. To see how the concept of a kernel specializes to the case of discrete arguments, let
S be the set of strings of length at most ten, drawn from a finite alphabet A ; write
s ∈ S as s = a1, ...,a10 where each a j ∈ A . Now, let K : S× S→ Z be defined for
s1,s2 ∈ S by K(s1,s2) is the number of substrings s1 and s2 have in common, where
the strings needn’t be consecutive.

Prove that K is a kernel. To do this, find a pair (H ,Φ) with Φ : S →H so that
K(s,s′) = 〈Φ(s),Φ(s′)〉 for every s′ ∈ S.
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2. Here is another discrete example. Let x,x′ ∈ {1,2, ...,100} and set

K(x,x′) = min(x,x′).

Show that K is a kernel.

3. In the continuous case, let d be a positive integer, and c ∈ IR+. Let

K(xxx1,xxx2) = (xxx�1 xxx2 + c)d .

Show that K is a kernel.

Hint: Try induction on d.

4. Show that if K1 and K2 are kernels then so is K1 +K2.

5. Show that if K is a kernel with feature map Φ , then the normalized form of K,

K̃1 =
K1(x,z)√

K1(x,x)K1(z,z)
,

is a kernel for Φ̃ =Φ(x)/‖Φ(x)‖.
6. To see that not every function of two arguments is a kernel, define

K(x,s′) = e‖x−x′‖2

for x,x′ ∈ R
n. Prove that this K is not a kernel.

Hint: Find a counterexample. For instance, suppose K is kernel and find a contra-
diction to Mercer’s theorem or some other mathematical property of kernels.

Exercise 5.8. Let N be a node in a tree based classifier and let r(N) be the proportion
of training points at N with label 0 rather than 1. Let psi be a concave function with
ψmax = ψ(1/2) and ψ(0) = ψ(1) = 0. Write i(N) = ψ(r(N)) to mean the impurity of
node N under ψ .

Verify the following for such impurities.

1. Show that i is concave in the sense that, if N is split into nodes N1 and N2, then

i(N)≥ r(N1)i(N1)+ r(N2)i(N2). (5.7.1)

2. Consider a specific choice for ψ , namely the misclassification impurity in which
ψ(r) = (1−max(r,1− r)). Note that this ψ is triangle shaped and hence concave,
but not strictly so. Suppose you are in the unfortunate setting where a node has, say,
70 training points, 60 from class 0 and 10 from class 1 and there is no way to split
the class to get a daughter node which has a majority of class 1 points in it. (This
can happen in one dimension if half the class 0 points are on each side of the class
1 points.) Show that in such cases equality holds in (5.7.1), i.e.,

i(N) = r(N1)i(N1)+ r(N2)i(N2).
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3. Now, let i be the Gini index and suppose there is a way to split the points in N into
N1 and N2 so that all 10 class 1 points are in N1 along with 20 class 0 points, and the
remaining 40 class 0 points are in N2. Write Gini in terms of r and an appropriate
ψ . Show that in this case,

i(N) > r(N1)i(N1)+ r(N2)i(N2).

4. What does this tell you about the effect of using the Gini index as an impurity versus
the misclassification impurity?

Exercise 5.9 (Toy data for a tree classifiers). Consider a classification data set in the
plane, say (yi,xxxi) for i = 1, ...,9, with yi = 0,1 and xxxi ∈ IR2. Suppose the first point is
class 1 at the origin, i.e., (y1,xxx1) = (0,(0,0)), and the other eight points are of the form
(1,(Rsin(2πi/8),Rcos(2πi/8))) for i = 1,...,8, i.e., class 2 points, equally spaced on
the circle of radius R centered at the origin.

Suppose you must find a classifier for this data using only linear discriminant func-
tions; i.e., a decision tree where the node functions assign class 1 when f (x1,x2) =
sign(a1x1 +a2x2 +b) > 0 for real constants a1, a2 and b.

1. What is the smallest tree that can classify the data correctly?

2. Choose one of the impurities in the previous exercise (Gini or triangle) and calculate
the decrease in impurity at each node of your tree from item 1.

3. If the eight points were located differently on the circle of radius R, could you find a
smaller tree than in item 1? If the eight points were located differently on the circle
of radius R, would a larger tree be necessary?

Exercise 5.10 (Ridge regression error). Another perspective on regularization in lin-
early separable classification comes from the ridge penalty in linear regression. Con-
sider a sample (x1,y1),..., (xn,yn) in which xi ∈ R

p and yi ∈ {−1,1} and define the
span of the design points to be the vector space

V =

{
n

∑
i=1

αixi|αi ∈ R

}
.}

Let C > 0 and define the regularized risk

E(w) =
n

∑
i=1

(w ·xi− yi)2 +C‖w‖2
2. (5.7.2)

1. Show that the minimizer ŵ = arg minw E(w) is an element of V .

Hint: Although it is worthwhile to rewrite (5.7.2) in matrix notation and solve for
the projection matrices, there is a more conceptual proof. Let w ∈ V and let v be a
vector in IRp that is orthogonal to all the xis. Show that adding any such v to w will
always increase E(w).

2. Show that the argument in item 1 is not unique to (5.7.2) by giving another loss
function and penalty for which it can be used to identify a minimum.
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Exercise 5.11 (Pruning trees by hypothesis tests). Once a tree has been grown, it is
good practice to prune it a bit. Cost-complexity is one method, but there are others.
Hypothesis testing can be used to check for dependence between the “Y ” and the co-
variate used to split a node. The null hypothesis would be that the data on the two
sides of the split point were independent of Y . If this hypothesis cannot be rejected, the
node can be eliminated. Although not powerful, the chi-square test of independence is
the simplest well-known test to use. Suppose there are two covariates X1 and X2, each
taking one of two values, say T and F , in a binary classification problem with Y =±1.
For splitting on X1 to classify Y , imagine the 2× 2 table of values (Y,X1). Then, the
chi-square statistic is

χ2
s =

2,2

∑
j=1,k=1

(O j,k−E j,k)
E j,k

,

where O j,k is the number of observations in cell (i,k) and E j,k = np( j)p(k) is the
expected number of observations in cell ( j,k) under independence; i.e., p( j) is the
marginal probability of Y = j and p(k) is the marginal probability of X1 = k. Under
the null, χ2

s ∼ χ2
1 and the null is rejected for large values of χ2

s . The same reasoning
holds for (Y,X2) by symmetry. (All of this generalizes to random variables assuming
any finite number of values.)

Now, consider the data in the table for an unknown target function f : (X11,X22)→Y .
Each 4-tuple indicates the value of Y observed, the two values (X1,X2) that gave it, and
how many times that triple was observed.

Y X1 X2 count Y X1 X2 count
+1 T T 5 -1 T T 1
+1 T F 4 -1 T F 2
+1 F T 3 -1 F T 3
+1 F F 2 -1 F F 5

1. Generate a classification tree and then prune it by cost-complexity and by using a
χ2 test of independence.

2. Now, examine the splits in the cost-complexity generated tree. Use the chi-square
approach to see if the splits are statistically significant; i.e., if you do a chi-square
test of independence between Y and the covariate split at a node, with level α =
0.10, do you find that dependence?

3. The sample entropy of a discrete random variable Z is Ĥ(Z) = ∑ P̂ ln(1/P̂), where
the P̂s are the empirical probabilities for Z. What is the sample entropy for Y using
the data in the table?

4. What is the sample entropy for X1 and X2, (Y,X1), (Y,X2), and (Y,X1,X2)?

5. Sometimes the Shannon information I(Y ;X) = H(Y )−H(Y |X) is called the in-
formation gain, in which the conditional entropy is H(Y |X) = ∑x∑y P(Y = y|X =
x) ln(1/P(Y = y|X = x)).

6. What is the information gain after each split in the trees in item 1?

7. What is the information gain I(Y ;X1) for this sample?
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8. What is the information gain I(Y ;X2) for this sample?

Exercise 5.12. Consider the two quadratic functions f (x) = x2 and g(x) = (x−2)2 and
suppose you want to find

minimize f (x) subject to g(x)≤ 1.

1. Solve the problem by Lagrange multipliers.

2. Write down the Lagrangian L(x,λ ) and solve the problem using the KKT conditions
from Section 5.4.4.1.

3. Give a closed form expression for the dual problem.

4. Plot the function y = L(x,λ ) in IR3 as a function of x and λ . On the surface, find
the profile of x; i.e., identify y = maxλ L(x,λ ), and the profile of λ ; i.e., identify
y = minx L(x,λ ). At what point do the intersect?

5. Suppose the constraint g(x)≤ 1 is replaced by the constraint g(x)≤ 1. If a 	= 1, do
the results change?

Exercise 5.13. In the general nonlinearly separable case, support vector machine clas-
sification was presented using a fixed but arbitrary kernel. However support vec-
tor regression was only presented for the kernel corresponding to the inner product:
K(x,y) = x ·y. Using the support vector machine classification derivation, extend the
support vector machine regression derivation to general kernels.

Exercise 5.14 (LOOCV error for SVMs). Recall (5.4.12), the final expression for a
linear SVM on a linearly separable data set ((y1,xxx1), ...,(yn,xxxn)). Note that s is the
number of support vectors. Although CV is usually used to compare models, the fact
that CV can be regarded as an estimator for the predicted error makes it reasonable to
use CV to evaluate a single model, such as that in (5.4.12).

1. Show that the leave-one-out CV error for the linear SVM classifier in (5.4.12) is
bounded by s/n for linearly separable data.

Hint: In the leave-one-out CV error, note that each xxxi is either a support vector or is
a nonsupport vector. So, there are two cases to examine when leaving out one data
point.

2. Suppose the data have been made linearly separable by embedding them in a high-
dimensional feature space using a transformation Φ from a general Mercer kernel.
Does the bound in item 1 continue to hold? Explain.

Hint: The Φ is not unique.



Chapter 6

Alternative Nonparametrics

Having seen Early, Classical and New Wave nonparametrics, along with partitioning-
based classification methods, it is time to examine the most recently emerging class
of techniques, here called Alternative methods in parallel with contemporary music.
The common feature all these methods have is that they are more abstract. Indeed,
the four topics covered here are abstract in different ways. Model-averaging methods
usually defy interpretability. Bayesian nonparametrics requires practitioners to think
carefully about the space of functions being assumed in order to assign a prior. The
relevance vector machine (RVM) a competitor to support vector machines, tries to
obtain sparsity by using asymptotic normality; again the interpretability is mostly lost.
Hidden Markov models pre-suppose an unseen space to which all the estimates are
referred. The ways in which these methods are abstract vary, but it is hard to dispute
that the degree of abstraction they require exceeds that of the earlier methods.

As a generality, Alternative techniques are evaluated mostly by predictive criteria only
secondarily by goodness of fit. It is hard to overemphasize the role of prediction for
these methods since they are, to a greater or lesser extent, black box techniques that
defy physical modeling even as they give exceptionally good performance. This is so
largely because interpretability is lost. It is as if there is a trade-off: As interpretability
is allowed to deteriorate, predictive performance may improve and conversely. This
may occur because, outside of simple settings, the interpretability of a model is not re-
liable: The model is only an approximation, of uncertain adequacy, to the real problem.
Of course, if a true model can be convincingly identified and the sample size is large
enough, the trade-off is resolved. However, in most complex inference settings, this is
just not feasible. Consequently, the techniques here typically give better performance
than more interpretable methods, especially in complex inference settings.

Alternative techniques have been developed as much for classification as regression. In
the classification context, most of the techniques are nonpartitioning. This is typical for
modelaveraging techniques and is the case for the RVM. Recall that nonpartitioning
techniques are not based on trying to partition the feature space into regions. This is a
slightly vague classification because nearestneighbor methods are non-partitioning but
lead naturally to a partition of the feature space, as the RVM does. The point, though,
is that nonpartitioning techniques are not generated by directly evaluating partitions.

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 307
in Statistics, DOI 10.1007/978-0-387-98135-2 6, c© Springer Science+Business Media, LLC 2009
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The biggest class of Alternative techniques is ensemble methods. The idea is to back
off from choosing a specific model and rest content with averaging the predictions
from several, perhaps many, models. It will be seen that ensemble methods often im-
prove both classification and regression. The main techniques are Bayes model av-
eraging (BMA) bagging (bootstrap aggregation), stacking, and boosting. All of these
extend a set of individual classifiers, or regression functions, by embedding them in a
larger collection formed by some kind of averaging. In fact, random forests, seen in
the previous chapter, is an ensemble method. It is a bagged tree classifier using major-
ity vote. Like random forests, ensemble methods typically combine like objects; e.g.,
combining trees with other trees or neural nets with other neural nets rather than trees
with neural nets. However, there is no prohibition on combining like with unlike; such
combinations may well improve performance.

Bayesian nonparametrics has only become really competitive with the other nonpara-
metric methods since the 1990s, with the advent of high-speed computing. BMA was
the first of the Bayesian nonparametric methods to become popular because it was im-
plementable and satisfied an obvious squared error optimality. As noted above, it is
an ensemble method. In fact, all Bayes methods are ensemble based because the pos-
terior assigns mass over a collection of models. Aside from computing the posterior,
the central issue in Bayesian nonparametrics is the specification of the prior, partially
because its support must be clearly specified. One of the main benefits of the Bayesian
approach is that the containment property of Bayes methods (everything is done in
the context of a single probability space) means the posterior fully accounts for model
variability (but not bias).

A third Alternative method is the RVM. These are not as well studied as SVMs, but
they do have regression and classification versions. Both of these are presented. RVMs
rest on a very different intuition than SVMs and so RVMs often give more sparsity than
SVMs. In complex inference problems, this may lead to better performance. Much
work remains to be done to understand when RVMs work well and why; their deriva-
tion remains heuristic and their performance largely unquantified. However, they are a
very promising technique.

As a final point, a brief discussion of Hidden Markov Models (HMMs) is provided for
the sake of expressing the intuition. These are not as generally applicable, at present, as
the other three techniques, but HMMs have important domains of application. More-
over, it is not hard to imagine that HMMs, with proper development, may lead to a
broad class of methods that can be used more generally.

6.1 Ensemble Methods

Ensemble methods have already arisen several times. The idea of an ensemble method
is that a large model class is fixed and the predictions from carefully chosen elements
of it are pooled to give a better overall prediction. As noted, Breiman’s random forests
is an ensemble method based on bootstrapping, with trees being the ensemble. In other
words, random forests is a “bagged” (i.e., bootstrap aggregated) version of trees. It
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will be seen that bagging is a very general idea: One can bag NNs, SVMs, or any other
model class.

Another way ensemble methods arise is from model selection principles (MSPs). In-
deed, MSPs are equivalent to a class of ensemble methods. Given a collection of mod-
els, every MSP assigns a worth to each model on a list. If the predictions from the
models are averaged using a normalized version of the worths, the result is an en-
semble method. Conversely, any ensemble method that corresponds to a collection of
weights on the models implicitly defines an MSP since one can choose the model with
the maximum of those weights. In this way, Bayesian model selection and CV or GCV
generate BMA and stacking.

A third way ensemble methods arise is from reoptimizing sequentially and averaging
the solutions. This is done by boosting, which uses a class of “weak learners” as its
ensemble. A weak learner is a poor model that still captures some important aspect of
the data. So, it is plausible that pooling over the right collection of weak learners will
create a strong learner; i.e., a good inference technique. Boosting is for classification;
a variant of it has been developed for regression but is less successful than many other
techniques and is not presented here.

Overall, there are two central premises undergirding ensemble methods. First is the
fact that pooling models represents a richer model class than simply choosing one of
them. Therefore the weighted sum of predictions from a collection of models may
give improved performance over individual predictions because linear combinations
of models should give a lower bias than any individual model, even the best, can.
Clemen (1989) documents this principle in detail. The cost, however, may be in terms
of variance, in that more parameters must be estimated in a model average than in the
selection of a single model.

The second central premise of ensemble methods is that the evaluation of performance
is predictive rather than model-based. The predictive sum of squares is one measure
of error that is predictive and not model-based (i.e., it is not affected by changing the
model); there are others. Predictive evaluations can be compared across model classes
since they are functions only of the predictions and observations. Risk, by contrast, is
model-based and confounds the method of constructing a predictor with the method for
evaluating the predictor, thereby violating the Prequential principle see Dawid (1984).

Combining predictions from several models to obtain one overall prediction is not the
same as combining several models to get one model. The models in the ensemble
whose predictions are being combined remain distinct; this makes sense because they
often rest on meaningfully different assumptions that cannot easily be reconciled, and
they have different parameters with different estimates. This means submodels of a
fixed supermodel can be used to form an ensemble that improves the supermodel.

Indeed, ensemble-based methods only improve on model selection methods when the
models in the ensemble give different predictions. An elementary version of this can
be seen by noting that if three uncorrelated classifiers with the same error rates p < 1/2
are combined by majority voting, then, in the binary case, the combined classifier will
have a lower error rate than any of the individual classifiers. While this example is an
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ideal case, it is often representative of ensemble methods in situations involving high
complexity and uncertainty.

Aside from evaluating predictive performance, ensemble methods can be evaluated by
use of Oracle inequalities. The idea is to compare the performance of a given method
to the theoretically best performance of any such method. If a given method is not too
much worse, in a risk sense, than the best method that would be used by an all-knowing
Oracle, the method satisfies an Oracle inequality. Two such inequalities will be seen
after several ensemble methods have been presented.

6.1.1 Bayes Model Averaging

The key operational feature of Bayesian statistics is the treatment of the estimand
as a random variable. Best developed for the finite-dimensional parametric setting,
the essence is to compare individual models with the average of models (over their
parameter values) via the posterior distribution, after the data have been collected. The
better a summary of the data the model is, the higher the relative weight assigned to
the model. In all cases, the support of the prior defines the effective model class to
which the method applies. Intuitively, as the support of the prior increases, parametric
Bayesian methods get closer to nonparametrics.

Beyond the finite-dimensional parametric case, Bayes methods often fall into one of
two categories: Bayes model averaging (BMA) treated in this section, and general
Bayesian nonparametrics, treated in the next section. In BMA, one typically uses a dis-
crete prior on models and continuous priors on the (finitely many) parameters within
models. In practice, BMA usually uses finitely many models, making the whole pro-
cedure finite-dimensional. However, the number of parameters can be enormous. One
can also imagine that such a BMA is merely the truncated form of countably many
models, and indeed BMAs formed from countably infinite sums of trees, NNs, or basis
expansions or other model classes can be used. Even in the finite case, if the support
of the discrete prior includes a wide enough range of models, the BMA often acts like
a purely nonparametric method.

In general Bayesian nonparametrics, a prior distribution is assigned to a class of models
so large that it cannot be parametrized by any finite number of parameters. In these
cases, usually there is no density for the prior with respect to Lebesgue measure. While
the general case is, so far, intractable mathematically, there are many special cases in
which one can identify and use the posterior. Both BMA and Bayesian nonparametrics
are flexible ensemble strategies with many desirable properties.

The central idea of BMA can be succinctly expressed as follows. Suppose a finite list
E of finite-dimensional parametric models, such as linear regression models involving
different selections of variables, f j(xxx) = f j(xxx|θ j) is to be “averaged”. Equip each θ j ∈
IRp j with a prior density w(θ j|Mj), where Mj indicates the jth model f j from the
ensemble E , and let w(Mj) be the prior on E . Let S ⊂ E be a set of models. Given
data D = {(XXXi,Yi) : i = 1, ...,n}, the posterior probability for S is
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W (S |D) = ∑
Mj∈E

∫
w(Mj,θ j|D)I{ f j∈S }(θ j)dθ j

= ∑
Mj∈E

∫
w(Mj|D)w(θ j|D,Mj)I{ f j∈S }(θ j)dθ j. (6.1.1)

The expression for W (S |D) in (6.1.1) permits evaluation of the posterior probability
of different model choices so in principle one can do hypothesis tests on sets of models
or individual models. Using (6.1.1) when S is a single point permits formation of the
weighted average

ŶB(xxx) = ∑
Mj∈E

W (Mj|D) f j(xxx|E(Θ j|D)) (6.1.2)

to predict the new value of Y at xxx. Note that the more plausible model Mj is, the higher
its posterior probability will be and thus the more weight it will get. Likewise, the more
plausible the value θ j is in Mj, the more weight the posterior w j(·|xn) assigns near the
true value of θ j and the closer the estimate of the parameter in (6.1.2), E(Θ j|D), is
to the true θ j as well. It is seen that the BMA is the posterior mean over the models
in E , which is Bayes risk optimal under squared error loss. For this reason, the pos-
terior mean E(Θ j|D) is used; however, other estimates for θ j may also be reasonable.
One can readily imagine forming weighted averages using coefficients other than the
posterior probabilities of models as well.

Theoretically, Madigan and Raftery (1984) showed that BMA (6.1.1) provides better
predictions under a log scoring rule than using any one model in the average, possibly
because it includes model uncertainty. It should be noted that, depending on the criteria
and setting, non-Bayes averages can be predictively better than Bayes averages when
the prior does not assign mass near the true model; in some cases, non-Bayes optima
actually converge to the Bayesian solution; see Shtarkov (1987), Wong and Clarke
(2004), and Clarke (2007).

Despite extensive use, theoretical issues of great importance for BMA remain unre-
solved. One is prior selection. The first level of selection is often partially accom-
plished by using objective priors of one sort or another. On the continuous parameters
in a BMA, the θ js, uniform, normal, or Jeffreys priors are often used. The more diffi-
cult level of prior selection is on the models in the discrete set E . A recent contribution
focussing on Zellner’s g-prior is in Liang et al. (2008), who also give a good review of
the literature. Zellner’s g-prior is discussed in Chapter 10.

Another issue of theoretical importance is the choice of E . This is conceptually disjoint
from prior selection, but the two are clearly related. The problem is that if E has too
many elements close to the true model, then the posterior probability may assign all
of them very small probabilities so that none of them contribute very much to the
overall average. This phenomenon, first identified by Ed George, is called dilution and
can occur easily when E is defined so that BMA searches basis expansions. In these
cases, often E is just the 2p set defined by including or omitting each of the basis
elements. Thus, as the approximation by basis elements improves, the error shrinks
and the probability associated with further terms is split among many good models.
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For the present, it is important to adapt existing intuition about posterior distributions
to the BMA setting. First, when the true model is on the list of models being averaged,
its weight in the BMA increases to 1 if E and the priors are fixed and n→∞. If the true
model is not in E but E and the priors are fixed, then the weight on the model closest
to the true model in relative entropy goes to 1. This is the usual posterior consistency
(see Berk (1966)) and holds because any discrete prior gives consistency provided the
true model is identifiable.

The problem gets more complicated when n is fixed and E changes. Suppose E is
chosen so large that model list selection can be reduced to prior selection. That is, the
support of the prior W , W in E , is large enough to define a good collection of models
to be averaged. Moreover, suppose the priors within models are systematically chosen,
perhaps by some objective criterion, and so can be ignored. Then, if the models in W
have no cluster points, are not too dispersed over the space F in which f is assumed
to lie, and for the given n are readily distinguishable, the usual posterior consistency
reasoning holds.

However, suppose W is permitted to increase and that E is replaced by Em which
increases as m = m(n) increases, thereby including more and more functions that are
close to f but still distinguishable. Then the posterior probability of each element in
Em – even the true model – can go to zero; this is called vague convergence to zero
because the distribution converges to zero pointwise on each model even though each
Em has probability one overall. This, too, is a sort of dilution because the probability
is split among ever more points that are good approximations to f given the sample
size. This problem only becomes worse as the dimension p increases because there are
more models that can be close to the true model.

A partial resolution of this problem comes from Occam’s window approaches; see
Madigan and Raftery (1984). The idea is to restrict the average to include only those
models with a high enough posterior probability since those are the weights in the
BMA. This violates the usual data independence of priors Bayesians often impose
since the support of the prior depends on the sample. However, this may be necessary
to overcome the dilution effect. Moreover, there is some reason to believe that the data
independence of the prior derived from Freedman and Purves (1969) may not always
be reasonable to apply; see Wasserman (2000), Clarke (2007).

6.1.2 Bagging

Bagging is a contraction of bootstrap aggregation, a strategy to improve the predictive
accuracy of a model as seen in random forests. Given a sample, fit a model f̂ (xxx) called
the base and then consider predicting the response for a new value of the explanatory
vector xxxnew. A bagged predictor for xxxnew is found by drawing B bootstrap samples from
the training data; i.e., draw B samples of size n from the n data points with replacement.
Each sample of size n is used to fit a model f̂i(xxx) so that the the bagged prediction is
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f̂bag(xxxnew) =
1
B

B

∑
i=1

f̂i(xxxnew). (6.1.3)

Note that, unlike BMA, the terms in the average are equally weighted (by 1/B). Thus,
this method relies on the resampling to ensure that the models in the average are rep-
resentative of the data.

A good procedure is one that searches a large enough class of models that it can, in
principle, get a model that has small misclassification error (i.e., in zero-one loss) or
a small error in some other sense. However, even if a procedure does this, it may be
unstable. Unstable procedures are those that have, for instance, a high variability in
their model selection. Neural nets, trees, and subset selection in linear regression are
unstable. Nearest-neighbor methods, by contrast, are stable. As a generality, bagging
can improve a good but unstable procedure so that it is close to optimal.

To see why stability is more the issue than bias is, recall Breiman (1994)’s original
argument using squared error. Let φ̂(x,D) be a predictor for Y when XXX = xxx, where the
data are D = {(y1,xxx1), ...,(yn,xxxn)}. The population-averaged predictor is

φA(xxx, IP) = Eφ̂(xxx,D),

the expectation over the joint probability IP for (XXX ,Y ). In squared error loss, the aver-
age prediction error for φ̂(xxx,D) is

APE(φ̂) = EDEY,XXX (Y −φ(XXX ,D))2

over the probability space for n+1 outcomes, and the error for the population-averaged
predictor is

APE(φA) = EY,XXX (Y −φA(XXX , IP))2.

Jensen’s inequality on x2 gives

APE(φ̂) = EY 2−2EYφA +EY,XXXEDφ̂ 2(XXX ,Data)≥ E(Y −φA)2 = APE(φA).

The difference between the two sides is the improvement due to aggregation.

So, APE(φ̂)−APE(φA) should be small when a procedure is stable. After all, a good,
stable procedure φ̂ should vary around an optimal predictor φopt so that φA ≈ φ̂ ≈ φopt .
On the other hand, APE(φ̂)−APE(φA) should be large when φ̂ is unstable because
then aggregation will stabilize it, necessarily close to a good procedure because the
procedure itself was good; i.e., it had high variance not high bias. This suggests aggre-
gating will help more with instability than bias, but is unlikely to be harmful. At root,
bagging improves φ̂ to φB, a computational approximation to the unknown φA.

Using misclassification error rather than squared error gives slightly different results.
To set up Breiman (1994)’s reasoning, consider multiclass classification and let φ(xxx,D)
predict a class label k ∈ {1, ...,K}. For fixed data D, the probability of correct classifi-
cation is
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r(D) = IP(Y = φ(XXX ,D)|D) =
K

∑
k=1

IP(φ(XXX ,D) = k|Y = k,D)IP(Y = j).

Letting Q(k|xxx) = IPD(φ(xxx,D) = k), the probability of correct classification averaged
over D is

r =
K

∑
k=1

E(Q(k|XXX)|Y = k)IP(Y = k) =
K

∑
k=1

∫
Q(k|xxx)IP(k|xxx)IPX (dxxx),

where IPX is the marginal for XXX . The Bayes optimal classifier is the modal class, so if
Q were correct, φorig would be φorig(xxx) = arg maxk Q(k|xxx), in which case

rorig =
K

∑
k=1

∫
Iφopt (xxx)=kIP(k|xxx)IPX (dxxx).

So, let C = {xxx|arg maxk IP(k|xxx) = arg maxk Q(k|xxx)} be the set, hopefully large,
where the original classifier matches the optimal classifier. It can be seen that the size of
C helps analyze how well the original classifier performs. Breiman (1994)’s argument
is the following: For xxx ∈C we have the identity

K

∑
k=1

Iarg max j Q( j|xxx)=kIP(k|xxx) = max
j

IP( j|xxx).

So the domain in rorig can be partitioned into C and Cc to give

rorig =
∫

xxx∈C
max

j
IP( j|xxx)IPX (dxxx)+

∫
xxx∈Cc

K

∑
k=1

IφA(xxx)=kIP(k|xxx)IPX (dxxx).

Since IP is correct, the best classification rate is achieved by

Q∗(xxx) = arg max
j

IP( j|xxx),

and has rate
r∗ =

∫
max

j
IP( j|xxx)IPX (dxxx).

Observe that if xxx ∈C, it is possible that sum

K

∑
k=1

Q(k|xxx)IP(k|xxx) < max
j

IP( j|xxx).

So, even when C is large (i.e., IPX (C) ≈ 1) the original predictor can be suboptimal.
However, φopt may be nearly optimal. Taken together, this means that aggregating can
improve good predictors into nearly optimal ones but, unlike in the squared error case,
weak predictors can be transformed into worse ones. In other words, bagging unstable
classifiers usually improves them; bagging stable classifiers often worsens them. This
is the reverse of prediction under squared error. The discussion of bagging in Sutton
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(2005), Section 5.2 emphasizes that, in classification, bagging is most helpful when
the bias of the procedures being bootstrapped is small.

There have been numerous papers investigating various aspects of bagging. Friedman
and Hall (2000) and Buja and Stuetzle (2000a) Buja and Stuetzle (2000b) all give
arguments to the effect that, for smooth estimators, bagging reduces higher order vari-
ation. Specifically, if one uses a decomposition into linear and higher-order terms,
bagging affects the variability of higher-order terms. If one uses U-statistics, then it is
the second-order contributions of variance, bias, and MSE that bagging affects.

Buhlman and Yu (2002) tackle the problem of bagging indicator functions. Their work
applies to recursive partitioning, for instance, which is known to be somewhat unstable.
The basic insight is that hard decision rules (i.e., deciding unambiguously which class
to say Ynew belongs to) create instability and that bagging smooths hard decision rules
so as to give smaller variability and MSE. It also smooths soft decision rules (i.e.,
decision rules that merely output a probability that Ynew is in a given class), but as they
are already relatively smooth, the improvement is small.

The template of the Buhlman-Yu argument is the following: Consider a predictor of
the form

θ̂(x) = 1d̂n≤x,

where x ∈R and the threshold d̂n is asymptotically well behaved. That is, (i) there is a
value d0 and a sequence < bn > such that (d̂n−d0)(bn/σ∞) is asymptotically standard
normal, where σ∞ is the asymptotic variance, and (ii) the bootstrapped version of d̂n,
say d̂∗n , is asymptotically normal in the sense that

supv∈R|IP∗(bn(d̂∗n − d̂n)≤ v)−Φ(v/σ∞)|= oP(1),

in which IP∗ is the probability from the bootstrapping; i.e., the distribution functions
converge. Denote the bootstrapped version of θ̂n by θ̂n,B; in essence, it is the expec-
tation of θ̂n in the empirical distribution from the bootstrapping procedure, which the
choice of a specific number of bootstrap samples approximates. Then, Buhlman and
Yu (2002) show the following.

Theorem (Buhlman and Yu, 2002): For x = xn(c) = d0 + cσ∞/bn:

(i) The pure predictor has a step function limit,

θ̂n(xn(c))→ 1Z≤c,

and (ii) The bagged predictor has a normal limit,

θ̂n,B(xn(c))→Φ(c−Z),

where Z is N(0,1).

Proof: Both statements follow from straightforward manipulations with limiting nor-
mal forms. �
An interesting feature of bagging is that it reuses the data to get out more of the in-
formation in them but at the same time introduces a new level of variability, that of
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the model. It is a curious phenomenon that sometimes appearing to use more vari-
ation as in the resampling actually gives better inference. Likely this is because the
extra level of variability permits a large enough reduction in bias that the overall MSE
decreases. This phenomenon occurs with ratio estimators in survey sampling, for in-
stance. Ratio estimators often outperform direct estimators even though the numerator
and denominator are both random. Similarly, it is easy to show that two

√
n consis-

tent estimators are closer to each other than either is to θT :
√

n(θ̂ − θ̃) → 0 even
though both

√
n(θ̂ − θT ) and

√
n(θ̃ − θT ) are asymptotically normal. Paradoxically,

more variability can be an improvement.

6.1.3 Stacking

Stacking is an adaptation of cross-validation to model averaging because the models in
the stacking average are weighted by coefficients derived from CV. Thus, as in BMA,
the coefficient of a model is sensitive to how well the model fits the response. However,
the BMA coefficients represent model plausibility, a concept related to, but different
from, fit. In contrast to bagging, stacking puts weights of varying sizes on models
rather than pooling over repeated evaluations of the same model class. Although not
really correct, it is convenient to regard stacking as a version of BMA where the esti-
mated weights correspond to priors that downweight complex or otherwise ill-fitting
models. That is to say, informally, stacking weights are smaller for models that have
high empirical bias or high complexity.

Here’s the basic criterion: Suppose there is a list of K distinct models f1,..., fK in which
each model has one or more real-valued parameters that must be estimated. When plug-
in estimators for the parameters in fk are used, write f̂k(xxx) = fk(xxx|θ̂k) for the model
used to get predictions. The task is to find empirical weights ŵk for the f̂ks from the
training data and then form the stacking prediction at a point xxx,

f̂stack(xxx) =
K

∑
k=1

ŵk f̂k(xxx).

The ŵks are obtained as follows. Let f (−i)
k (xxx) be the prediction at xxx using model k,

as estimated from training data with the ith observation removed. Then the estimated
weight vector ŵ = (ŵ1, ..., ŵK) solves

ŵ = arg min
w

n

∑
i=1

[
yi−

K

∑
k=1

wk f̂ (−i)
k (xxxi)

]2

. (6.1.4)

This puts low weight on models that have poor leave-one-out accuracy in the training
sample (but beware of the twin problem).

Stacking was invented by Wolpert (1992) and studied by Breiman (1996), among oth-
ers. Clearly, (6.1.4) can be seen as an instance from a template so that, rather than
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linearly combining the models with the above weights, one could use a different model
class. For instance, one could find the coefficients for a single hidden layer neural net
with the f̂ks as inputs or use a different measure of distance.

Several aspects of (6.1.4) deserve discussion.

First, the optimization over w is an exercise in quadratic optimization of varying dif-
ficulty. In parallel with BMA, one can impose the constraint that the wks are positive
and sum to one. Alternatively, one can get different solutions by supposing only that
they are positive or only sum to one. They can also be unconstrained.

Second, this procedure, like BMA, assumes one has chosen a list of models to weight.
Computationally, BMA permits one to use a larger model list more readily than stack-
ing does. In either case, however, the selection of the procedures to combine, the fks,
is a level of variability both methods neglect. In effect, these methods are conditional
on the selection of a suitable list. The difference in performance between one model
list and another can be substantial. For instance, if one list consists of extremely com-
plicated models and another consists of extremely simple models, one expects the
predictions from the first to be highly variable and predictions from the second to be
more biased even if they both achieve the same MSE. Breiman (1996) argues that one
should choose the fks to be as far apart as possible given the nature of the problem.

Third, the deficiencies of leave-one-out cross-validation are well known. Often one
uses a fifths approach: Leave out 1/5 of the data chosen at random in place of leaving
out one data point, and then cycle through the fifths in turn. Whether fifths or other
fractions are better probably depends in part on the placement of the actual model fT

relative to the candidate models fk.

Fourth, the stacking optimization can be applied very generally. It can give averages of
densities (see Wolpert and Smyth (2004)) and averages of averages (a convex combi-
nation of, for instance, a BMA, a bagged predictor, a boosted predictor, and a stacking
average itself). It can be applied to regression problems as well as classifiers or in-
deed to any collection of predictors. The stacked elements need not be from a common
class of models: One can stack trees, linear models, different nonparametric predic-
tors, and neural networks in the same weighted average if desired. Stacking can also
be combined with bagging (see Wolpert and Macready (1996)): Either stack the mod-
els arising from the bootstrapping or bootstrap a stacking procedure.

Fifth, stacking and Bayes are often similar when the model list chosen is good – at least
one member of the list is not too far from fT . If the model list is perfect (i.e., there is
an i such that fi = fT ) BMA usually does better because BMA converges quickly
(posterior weights converge exponentially fast) and consistently. However, as model
list misspecification increases, stacking often does better in predictive performance
relative to BMA. This is partially because stacking coefficients do not depend on the
likelihood as posterior weights do; see Clarke (2004) for details.

This highlights an important interpretational difference between BMA and stacking. In
BMA, the prior weights represent degrees of belief in the model. Strictly speaking, this
means that if one a priori believes a proposed model is incorrect but useful, the conven-
tional Bayes interpretation necessitates a prior weight of zero. Thus, the two methods
are only comparable when the fks are a priori possibly true as models. More general
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comparisons between the two methods go beyond the orthodox Bayes paradigm. If one
regards the fks not as potentially “true” but rather as actions that might be chosen in a
decision theory problem aimed at predicting the next outcome, then the prior weights
are no longer priors, but merely an enlargement of the space of actions to include con-
vex combinations such as BMA of the basic actions fk. In this context, cross-validation
is Bayesianly or decision-theoretically acceptable because it is merely a technique to
estimate the coefficients in the mixture. So, BMA and stacking remain comparable,
but in a different framework.

It is easy to see that stacking is clearly better than BMA because stacking does not
require any interpretation involving a prior. Stacking can be seen as an approximation
technique to find an expansion for fT treating the fis as elements in a frame. The
flexibility makes stacking easier to apply.

It is equally easy to see that stacking is clearly worse than BMA because BMA permits
an interpretation involving a prior. The Bayes or decision theory framework forces
clear-minded construction and relevance of techniques to problems. The constraints
make BMA easier to apply.

6.1.4 Boosting

Classification rules can be weak; that is, they may only do slightly better than random
guessing at predicting the true classes. Boosting is a technique that was invented to
improve certain weak classification rules by iteratively optimizing them on the set of
data used to obtain them in the first place. The iterative optimization uses (implicitly)
an exponential loss function and a sequence of data-driven weights that increase the
cost of misclassifications, thereby making successive iterates of the classifier more
sensitive. Essentially, one applies iterates of the procedure primarily to the data in the
training sample that were misclassified, thereby producing a new rule. The iterates
form an ensemble of rules generated from a base classifier so that ensemble voting by
a weighted sum over the ensemble usually gives better predictive accuracy.

Boosting originated in Schapire (1990) and has subsequently seen rapid development.
To review this, a good place to start is with the Adaboost algorithm in Freund and
Schapire (1999); its derivation and properties will be discussed shortly.

Begin with data (xxx1,y1),...,(xxxn,yn), in which, as ever, xxxi ∈Rp and yi = 1,−1. Choose
an integer T to represent the number of iterations to be performed in seeking an
improvement in a given initial (weak) classifier h0(xxx). At each iteration, a distribu-
tion in which to evaluate the misclassification error of ht is required. Write this as
Dt = (Dt(1), ...,Dt(n)), a sequence of T + 1 vectors, each of length n, initialized
with D(0) = (1/n, ...,1/n).

� Starting with h0 at t = 0, define iterates ht for t = 1, ...,T as follows. Write the
stage t misclassification error as
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εt = PDt (ht(XXXi) 	= Yi) = ∑
i:ht (xxxi) 	=yi

Dt(i). (6.1.5)

This is the probability, under Dt , that the classifier ht misclassifies an xxxi.

� Set

αt =
1
2

log
1− εt

εt
,

and update Dt to Dt+1 by

Dt+1(i) =
Dt(i)e−αt yiht (xxxi)

Ct
, (6.1.6)

in which Ct is a normalization factor to ensure Dt+1 is a probability vector (of
length n). In (6.1.6), the exponential factor upweights the cost of misclassifica-
tions and downweights the cost of correct classifications.

� Set h∗t+1(x) to be

h∗t+1(x) = arg min
g∈G

n

∑
i=1

Dt(i)1{yi 	=g(xi)},

and, with each iteration, add h∗t+1 to a growing sum, which will be the output.

� The updated weighted-majority-vote classifier is

ht+1(x) = sign

(
t+1

∑
s=0

αth
∗
s (x)

)
, (6.1.7)

and the final classifier in this sequence, hT , is the boosted version of h0.

Several aspects of this algorithm bear comment. First, note that it is the distribution Dt

that redefines the optimization problem at each iteration. The distribution Dt is where
the exponential reweighting appears; it depends on the n pairs and αt . In fact, Dt+1 is
really in two parts: When ht(xi) = yi, the factor is small, e−αt , and when ht(xi) 	= yi, the
factor is large, eαt . In this way, the weights of the misclassification errors of the weak
learner are boosted relative to the classification successes, and the optimal classifier at
the next stage is more likely to correct them. Note that Dt depends on h∗t , the term in
the sum, not the whole partial sum at time t. The αt , a function of the empirical error
εt , is the weight assigned to h∗t . It is justified by a separate argument, to be seen shortly.

The basic boosting algorithm can be regarded as a version of fitting an additive logistic
regression model via Newton-like updates for minimizing the functional

J(F) = E(e−Y F(X).

These surprising results were demonstrated in Friedman et al. (2000) through an intri-
cately simple series of arguments. The first step, aside from recognizing the relevance
of J, is the following.
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Proposition (Friedman et al., 2000): J is minimized by

F(x) =
1
2

log
IP(y = 1|x)

IP(Y =−1|x) .

Hence,

IP(y = 1|x) =
eF(x)

eF(x) + e−F(x) and IP(y =−1|x) =
e−F(x)

eF(x) + e−F(x) .

Proof: This follows from formally differentiating

E(e−yF(x)|x) = IP(Y = 1|x)e−F(x) + IP(Y =−1|x)eF(x)

with respect to F and setting the derivative to zero. �
The usual logistic function does not have the factor (1/2) but

IP(Y = 1|x) =
e2F(x)

1+ e2F(x) ,

so minimizing J and modeling with a logit are related by a factor of 2.

Now the central result from Friedman et al. (2000) is as follows; a version of this is in
Wyner (2003), and a related optimization is in Zhou et al. (2005).

Theorem (Friedman et al., 2000): The boosting algorithm fits an additive logistic
regression model by using adaptive Newton updates for minimizing J(F).

Proof: Suppose F(xxx) is available and the task is to improve it by choosing a c and an
f and forming F(xxx)+ c f (xxx). For fixed c and xxx, write a second-order expansion about
f (xxx) = 0 as

J(F(x)+ c f (x)) = E(e−y(F(x)+c f (x)))

≈ E(e−yF(x)(1− yc f (x)+ c2y2 f (x)2/2))

= E(e−yF(x)(1− yc f (x)+ c2/2)); (6.1.8)

the last inequality follows by setting |y|= | f |= 1. (The contradiction between | f |= 1
and f (xxx) = 0 is resolved by noting that in (6.1.8) the role of f is purely as a dummy
variable for a Taylor expansion on a set with high probability.)

Now, setting W (xxx,y)= eyF(xxx) and incorporating it into the density with respect to which
E is defined gives a new expectation operator, EW . Let EW (·|xxx) be the conditional
expectation given xxx from EW so that for any g(xxx,y), the conditional expectation can be
written as

EW (g(XXX ,Y )|XXX = xxx) =
E(W (XXX ,Y )g(XXX ,Y )|XXX = xxx)

E(W (XXX ,Y )|XXX = xxx)
.

Thus, the posterior risk minimizing action over f (xxx) ∈ {1,−1}, pointwise in xxx, is

f̂ = arg min
f

c EW ((1+ c2/2)/c−Y f (XXX)|xxx). (6.1.9)
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Intuitively, when c > 0, the minimum is achieved when Y f (XXX) is large. So, although
pointwise in x, (6.1.9) is equivalent to maximizing

EW (Y f (XXX) =−EW (Y − f (XXX))2/2+1,

on average, using f 2(XXX) = Y 2 = 1. It can be seen that the solution is

f (xxx) =

{
1 if EW (Y |xxx) = IPW (Y = 1|xxx)− IPW (Y =−1|xxx) > 0

−1 else.

Thus, minimizing a quadratic approximation to the criterion gives a weighted least
squares choice for f (x) ∈ {1,−1}. (This defines the Newton step.)

Next, it is necessary to determine c. Given f (x)∈{1,−1}, J(F +c f ) can be minimized
to find c,

ĉ = arg min
c

EW e−cy f (x) =
1
2

log
1− ε
ε

,

in which ε is the misclassification probability now under W (i.e., ε = EW 1{y 	= f̂ (x)})
rather than under Dt as in the procedure.

Combining these pieces, it is seen that F(x) is updated to F(x) + (1/2) log[(1−
ε)/ε] f̂ (x) and that the updating term ĉ f̂ (x) updates Wold(x,y) = e−yF(x) to

Wnew(x,y) = Wold(x,y)e−ĉ f̂ (x)y.

Equivalently, since y f̂ (x) = 21{y 	= f̂ (x)} −1, the updated Wold can be written

Wnew(x,y) = Wold(x,y)e
log[(1−ε)/ε ]1{y 	= f̂ (x)} .

These function updates and weight updates are the same as given in the boosting algo-
rithm when ĉ = αm, Dt = Wold , and Dt+1 = Wnew. �
It is clear that boosting is not the same as SVMs. However, there is a sense in which
boosting can be regarded as a maximum margin procedure. Let

Mα(xxx,y) =
y∑T

t=1αtht(xxx)
∑T

t=1αt
. (6.1.10)

Freund and Schapire (1999) observe that Mα is in [−1,1] and is positive if and only
if hT correctly classifies (xxx,y). The function Mα can be regarded as the margin of the
classifier since its distance from zero represents the strength with which the sign is
believed to be a good classifier. Clearly, a good classifier has a large margin.

In parallel with the vector α = (α1, ...,αT ), write h(x) = (h1(x), ...,hT (x)). Now, max-
imizing the minimum margin means seeking the h that achieves

max
α

min
i=1,...,n

M(xxxi,yi) = max
α

min
i=1,...,n

(α ·h(xxxi))yi

||α||1||h(xi)||∞
(6.1.11)

since ||α||1 = ∑T
t=1 |αt | and, when ht ∈ {1,−1}, ||h(xxx)||∞ = maxt |ht(xxx)|= 1.
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By contrast, SVMs rely on squared error. The goal of SVMs is to maximize a minimal
margin of the same form as (6.1.11) using

||α||2 =

√
T

∑
t=1

α2
t and ||h(xxx)||2 =

√
T

∑
t=1

ht(xxx)2 (6.1.12)

in place of the L1 and L∞ norms in the denominator of (6.1.11). Note that in both cases,
(6.1.11) and (6.1.12), the norms in the denominator of the optimality criteria are dual
because Lp spaces are dual to Lq spaces in the sense that they define each other’s weak
topology. Moreover, in both cases, the quantity being optimized is bounded by one
because of the Cauchy-Schwartz inequality. Indeed, it would be natural to ask how the
solution to an optimization like

max
α

min
i=1,...,n

(α ·h(xxxi))yi

||α||p||h(xxxi)||q

would perform.

To finish this short exposition on boosting, two results on training and generalization
error, from Schapire et al. (1998), are important to state. First, let

φθ (z) =

⎧⎪⎨
⎪⎩

1 if z≤ 0,

1− z/θ if 0 < z≤ θ ,

0 if z≥ θ ,

for θ ∈ [0,1/2]. It is seen that φθ is continuous for θ 	= 0 and that, as θ shrinks to zero,
the range of z that gives φθ 	= 0,1 also shrinks to the right.

Next, call the function
ρ( f ) = y f (xxx)

the margin of f as a classifier. Then, for any function f taking values in [−1,1], its
empirical margin error is

L̂θ ( f ) = (1/n)
n

∑
i=1

φθ (yi f (xi)),

in which taking θ = 0 gives the usual misclassification error and θ1 ≤ θ2 implies
L̂θ1( f )≤ L̂θ2( f ). The empirical margin error for zero-one loss is

L̃θ ( f ) = (1/n)
n

∑
i=1

1yi f (xi)≤θ ,

and, since φθ (y f (x))≤ 1y f (x)≤θ , it follows that L̂θ ( f )≤ L̃θ ( f ). So, to bound L̂θ , it is
enough to bound L̃θ .

Let ε(h,D) be the empirical misclassification error of h under D as before,
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εt(ht ,Dt) =
n

∑
i=1

Dt(i)1yi 	=ht (xi),

with the same normalization constant Ct . The training error can be bounded as in the
following.

Theorem (Schapire et al., 1998): Assume that, at each iteration t in the boosting
algorithm, the empirical error satisfies ε(ht ,Dt) ≤ (1/2)(1− γt). Then the empirical
margin error for hT satisfies

L̂θ ( fT )≤ΠT
t=1(1− γt)(1−θ)/2(1+ γt)(1+θ)/2,

where fT is the final output from the boosting algorithm.

Proof: As given in Meir and Ratsch (2003), there are two steps to the proof. The first
step obtains a bound; the second step uses it to get the result. Recall ht ∈ {1,−1}.
Step 1: Start by showing

L̂θ ( fT )≤ exp

(
θ

T

∑
t=1

αt

)(
ΠT

t=1Ct
)

(6.1.13)

for any sequence of αts.

It can be verified that fT = ∑T
t=1αtht/(∑αt), so the definition of fT gives that

y fT (x)≤ θ ⇒ exp

(
−y

T

∑
t=1

αtht(x)+θ
T

∑
t=1

αt

)
≥ 1,

which implies

1Y fT (X)≤θ ≤ exp

(
−y

T

∑
t=1

αtht(x)+θ
T

∑
t=1

αt

)
. (6.1.14)

Separate from this, the recursive definition of Dt(i) can be applied to itself T times:

DT+1(i) =
DT (i)e−αT yihT (xi)

CT
= ... =

e−∑
T
t=1αt yiht (xi)

nΠT
t=1Ct

. (6.1.15)

Now, using (6.1.14) and (6.1.15),
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L̃θ ( f ) =
1
n

n

∑
i=1

1yi ft (xi)≤θ ≤
1
n

n

∑
i=1

[
exp

(
−yi

T

∑
t=1

αtht(xi)+θ
T

∑
t=1

αt

)]

=
1
n

exp

(
T

∑
t=1

αt

)
n

∑
i=1

exp

(
−yi

T

∑
t=1

αtht(xi)

)

= exp

(
T

∑
t=1

αt

)(
ΠT

t=1Ct
) n

∑
i=1

DT+1(i)

= exp

(
T

∑
t=1

αt

)(
ΠT

t=1Ct
)
, (6.1.16)

which gives (6.1.13).

Step 2: Now the theorem can be proved. By definition, the normalizing constant is

Ct =
n

∑
i=1

Dt(i)e−yiαt ht (xi)

= e−αt ∑
i:yi=ht (xi)

Dt(i)+ eαt ∑
i:yi 	=ht (xi)

Dt(i)

= (1− εt)e−αt + εt e
αt . (6.1.17)

As before, set αt = (1/2) log((1− εt)/εt) to see that

Ct = 2
√
εt(1− εt).

Using this in (6.1.13) gives

L̃θ ( f )≤ΠT
t=1

√
4ε1−θ

t (1− εt)1+θ ,

which, combined with εt = (1/2)(1− γt) and L̂θ ( f )≤ L̃θ ( f ), gives the theorem. �
To see the usefulness of this result, set θ = 0 and note the training error bound

L̂( fT )≤ e−∑
T
t=1 γ

2
t /2.

So, it is seen that ∑T
t=1 γ2

t → ∞ ensures L̂( fT ) → 0. In fact, if γt ≥ γ0 > 0 then for
θ ≤ γ0/2 it follows that L̂θ ( fT )→ 0.

Next consider generalization error. For the present purposes, it is enough to state a
result. Recall that the concept of VC dimension, VCdim(F ), is a property of a col-
lection F of functions giving the maximal number of points that can be separated by
elements in F in all possible ways. A special case, for classification loss, of a more
general theorem for a large class of loss functions is the following.

Theorem (Vapnik and Chervonenkis, 1971; quoted from Meir and Ratsch, 2003):
Let F be a class of functions on a set χ taking values in {−1,1}. Let IP be a probability
on χ ×{−1,1}, and suppose the n data points (xi,yi), i = 1, ...,n are IID IP and give
empirical classification error ÎP(Y 	= f (X)). Then there is a constant C such that ∀n,
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with probability at least 1−δ , all sets of data of size n, and ∀ f ∈F ,

IP(Y 	= f (X))≤ ÎP(Y 	= f (X))+C

√
VCdim(F )+ log(1/δ )

n
. �

Finally, we give some background to boosting. Boosting was originally intended for
weak learners, and the paradigm weak learner was a stump – a single-node tree clas-
sifier that just partitioned the feature space. A stump can have a small error rate if it
corresponds to a good model split, but usually it does not, so improving it in one way
or another is often a good idea. Curiously, comparisons between stumps and boosted
stumps have not revealed typical situations in which one can be certain how boosting
will affect the base learner.

That being admitted, there are some typical regularities exhibited by boosting. Like
bagging, boosting tends to improve good but unstable classifiers by reducing their
variances. This contrasts with stacking and BMA, which often give improvement pri-
marily by overcoming model misspecification to reduce bias. (There are cases where
boosting seems to give improvements primarily in bias (see Schapire et al. (1998), but
it is not clear that this is typical).

Friedman et al. (2000), as already seen, attribute the improved performance from
boosting to its effective search using forward stagewise additive modeling. The role
of T in this is problematic: Even as T increases, there is little evidence of overfitting,
which should occur if stagewise modeling is the reason for the improvement. There
is evidence that boosting can overfit, but its resistance to overfitting is reminiscent of
random forests, so there may be a result like Breiman’s theorem waiting to be proved.
An issue that does not appear to have been studied is that the summands in the boosted
classifier are dependent.

There is some evidence that neither bagging nor boosting helps much when the clas-
sifier is already fairly good – stable with a low misclassification error. This may be so
because the classifier is already nearly optimal, as in some LDA cases.

There is even some evidence that boosting, like bagging, can make a classifier worse.
This is more typical when the sample size is too small: There is so much variability due
to lack of data that no averaging method can help much. Stronger model assumptions
may be needed.

There are comparisons of boosting and bagging: however, in generality, these two
methods are intended for different scenarios and don’t lend themselves readily to com-
parisons. For instance, stumps are a weak classifier, often stable, but with high bias. In
this case, the benefits of boosting might be limited since the class is narrow, but bag-
ging might perform rather well. Larger trees would be amenable to variance reduction
but would have less bias and so might be more amenable to boosting. In general, it is
unclear when to expect improvements or why they occur.

Finally, the methods here are diverse and invite freewheeling applications. One could
bag a boosted classifier or boost a bagged classifier. One is tempted to stack classi-
fiers of diverse forms, say trees, nets, SVMs, and nearest neighbors and then boost the
bagged version, or take a BMA of stacked NNs and SVMs and then boost the result.
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The orgy of possibilities can be quite exhausting. Overall, it seems that, to get im-
provement from ensemble methods, one needs to choose carefully which regression or
classification techniques to employ and how to employ them. This amounts to an extra
layer of variability to be analyzed.

6.1.5 Other Averaging Methods

To complete the overview of averaging strategies that have been developed, it is worth
listing a few of the other ensemble methods not dealt with here and providing a brief
description of the overall class of ensemble predictors.

Juditsky and Nemirovskiii (2000) developed what they call functional aggregation.
Choose f1, ..., fK models and find the linear combination of fks by αks achieving

min
α j

∫ (
f (xxx)−

K

∑
k=1

α j fk(xxx)

)2

dμ(xxx),

in which α j ranges over a set in the L1 unit ball. This is a variation of what stacking
tries to do. The main task is to estimate the αks and control the error. More generally,
one can take fk(xxx) = fk(xxx|θ), where the θ indexes a parameterized collection of func-
tions such as polynomial regression, NNs or trees. In addition, distinct nonparametric
estimators can be combined. Unless K is large, this may be unrealistic as p increases.

Lee et al. (1996) have an optimality criterion like Juditsky and Nemirovskiii (2000)
but derived from information theory. They call their technique agnostic learning and
their setting is more general: They only assume a joint probability for (XXX ,Y ) and seek
to approximate the probabilistic relationship between XXX and Y within a large class of
functions. This technique is intended for NNs and they establish a bound on perfor-
mance. It is primarily in the technique of proof that they introduce averages of models.
Of course, one can regard NN as a model average as well: The input functions to the
terminal node are combined with weights and a sigmoid. An information-theoretic way
to combine models is called data fusion by Luo and Tsitsiklis (1994). Functions from
different sources in a communications network are combined to get one message.

Jones (1992), Jones (2000) used greedy approximation, with a view to PPR and NNs,
to approximate a function in an L2 space by a function in a subspace of L2 by evaluating
it at a linear combination of the variables. The best linear combination at each iteration
of the fit produces a residual to which the procedure is applied again. The resulting
sum of functions evaluated at linear combinations of explanatory variables converges
to the true function in L2 norm at a rate involving n.

Apart from the plethora of ensemble methods primarily for regression, Dietterich
(1999), Section 2, reviews ensemble methods in the context of classification. Given
an ensemble and a data set, there are basically five distinct ways to vary the inputs to
generate ensemble-based predictors. In a sense, this provides a template for generating
models to combine. First, one can reuse the data, possibly just subsets of it, to generate
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more predictors. This works well with unstable but good predictors such as trees or
NNs. Stable predictors such as linear regression or nearest neighbors do not seem to
benefit from this very much. Bagging and boosting are the key techniques for this.

Second, one can manipulate the explanatory variables (or functions) for inclusion in a
predictor. So, for instance, one can form neural nets from various subsets of the input
variables using all the values of the chosen inputs. This may work well when the input
explanatory variables duplicate each other’s information. On the other hand, a third
technique is the opposite of this: One can partition the available outputs differently.
For instance, in a classification context, one can merge classes and ask for good future
classification on the reduced set of classes.

Fourth, one can at various stages introduce randomness. For instance, many neural
network or tree based methods do a random selection of starting points or a random
search that can be modified.

Finally, and possibly most interesting, there are various weighting schemes one can use
for the regression functions or classifiers generated from the ensemble. That is, the way
one combines the predictors one has found can be varied. The Bayes approach chooses
these weights using the posterior, and stacking uses a cross-validation criterion; many
others are possible. In this context, Friedman and Popescu (2005) use an optimality
criterion to combine “base learners”, a generic term for either regression functions or
classifiers assumed to be oversimple. Given a set of base learners fk(xxx), for k = 1, ...,K,
and a loss function �, they propose a LASSO type penalty for regularized regression.
That is, they suggest weights

{αk | k = 1, ..,K}= argmin
{αk}

[
n

∑
i=1

�

(
yi,α0 +

K

∑
k=1

αk fk(xxxi)

)
+λ

K

∑
k=1

|α j|
]

,

where λ is a trade-off between fit and complexity permitting both selection and shrink-
age at the same time. Obviously, other penalty terms can be used.

The kind of combination is intriguing because it’s as if the list of base learners is a sort
of data in its own right: The fks are treated as having been drawn from a population
of possible models. So, there is uncertainty in the selection of the set of base learners
to be combined as well as in the selection of the base learner from the ensemble. In
a model selection problem, this is like including the uncertainty associated with the
selection of the list of models from which one is going to select in addition to the
selection of an individual model conditional on the list. Adaptive schemes that reselect
the list of models from which one will form a predictor amount to using the data to
choose the model list as well as select from it. From this perspective, it is not surprising
that ensemble methods usually beat out selection methods: Ensemble methods include
uncertainty relative to the ensemble as a surrogate for broader model uncertainty.
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6.1.6 Oracle Inequalities

From a predictive standpoint, one of the reasons to use an averaging method is that
the averaging tends to increase the range of predictors that can be constructed. This
means that the effect of averaging is to search a larger collection of predictors than
using any one of the models in the average would permit. The effectiveness of this
search remains to be evaluated. After all, while it is one thing to use a model average
and assign an SE to it by bootstrapping or assign a cumulative risk to a sequence of its
predictions, it is another thing entirely to ask if the enlarged collection of predictors
actually succeeds in finding a better predictor than just using a model on its own.

Aside from BMA, which optimizes a squared error criterion, it is difficult to demon-
strate that a model average is optimal in any predictive sense. Indeed, even for BMA,
it is not in general clear that the averaging will be effective: Dilution may occur, and
BMA can be nonrobust in the sense of underperforming when the true model is not
close enough to the support of the prior.

One way to verify that a class of inference procedures is optimal is to establish an
Oracle inequality; as the term oracle suggests, these are most important in predictive
contexts. The basic idea of an Oracle inequality is to compare the risk of a given pro-
cedure to the risk of an ideal procedure that permits the same inference but uses extra
information that would not be available in practice – except to an all-knowing Oracle.
Since Oracle inequalities are important in many contexts beyond model averaging, it
is worth discussing them in general first.

The simplest case for an Oracle inequality is parametric inference. Suppose the goal
is to estimate an unknown θ using n observations and the class of estimators available
is of the form {θ̂(t)| t ∈ T }, where T is some set. Then, within T there may be an
optimal value topt such that

R(topt ,n,θ) = min
t∈T

Eθ‖θ̂t −θ‖2,

where R is the risk from the squared error loss. The value topt is unknown to us, but an
Oracle would know it. So, the Oracle’s risk is

R(Oracle,n,θ) = R(topt ,n,θ), (6.1.18)

and the question is how close a procedure that must estimate topt can get to the oracle
risk R(Oracle,n,θ). The paradigm case is that θ̂ is a smoother of some sort, say spline
or kernel, and t is the smoothing parameter h or λ . Another case occurs in wavelet
thresholding: Any number of terms in a wavelet expansion might be included; however,
an Oracle would know which ones were important and which ones to ignore. The
thresholding mimics the knowledge of an Oracle in choosing which terms to include.
Note that t may be continuous or not; usually, in model averaging settings T , is finite.

An Oracle inequality is a bound on the risk of a procedure that estimates t in terms of
a factor times (6.1.18), with a bit of slippage. A ideal form of an Oracle inequality for
an estimator θ̂ relative to the class θ(t) of estimators is a statement such as
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Eθ‖θ̂ −θ‖2 ≤ Kn

[
R(Oracle,n,θ)+

1
n

]
. (6.1.19)

That is, up to a bounded coefficient Kn, the estimator θ̂ is behaving as if it were within
1/n slippage of the risk of an Oracle. The term 1/n comes from the fact that the vari-
ance typically decreases at rate O(1/n). Variants on (6.1.19) for different loss functions
can be readily defined.

To return to the function estimation setting, often the form of (6.1.19) is not achievable
if θ is replaced by f . However, a form similar to (6.1.19) can often be established by
using the differences in risks rather than the risks themselves. That is, the bound is on
how much extra risk a procedure incurs over a procedure that uses extra information
and so has the least possible risk. Parallel to (6.1.19), the generic form of this kind of
Oracle inequality is

χSn

(
R( f̂ )−R( fopt)

)
≤ χSnKn (R( ftrue)−R( fopt)+Wn) ,

where Sn is the set where the empirical process defined from the empirical risk con-
verges at a suitable rate, f̂ estimates ftrue or more exactly fopt , the element of the space
closest to ftrue, usually by minimizing some form of regularized empirical risk, and Wn

is a term representing some aspect of estimation error as opposed to approximation er-
ror) (see Van de Geer (2007)), which might involve knowing the ideal value of a tuning
parameter, for instance.

Oracle inequalities have been established for model averages in both the regression
and classification settings. One important result for each case is presented below; there
are many others. The coefficients used to form the averages in the theorems are not
obviously recognizable as any of the model averages discussed so far. However, these
model averages are implementable, may be close to one of the model averages dis-
cussed, and are theoretically well motivated. At a minimum, they suggest that model
averages are typically going to give good results.

6.1.6.1 Adaptive Regression and Model Averaging

Yang’s Oracle inequality constructs a collection of model averages and then averages
them again to produce a final model average that can be analyzed. This means that it
is actually an average of averages that satisfies the Oracle inequality. It is the outer
averaging that is “unwrapped” so that whichever of the inner averages is optimal ends
up getting the most weight and providing the upper bound.

The setting for Yang’s Oracle inequality is the usual signal-plus-noise model, Y =
f (XXX)+σ(xxx)ε , in which the distribution of the error term ε has a mean zero density h.
Let E = {δ j} be an ensemble of regression procedures for use in the model, in which,
using data Zi = {(XXX ,Yk) : k = 1, ..., i}, δ j gives an estimator f̂ j,i of f (xxx). That is, δ j

gives a collection of estimators depending on the input sequence of the data. The index
set for j may be finite or countably infinite. Now, the risk of δ j for estimating f from i
data points is
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R( f̂ j,i, i, f ) = R(δ j, i, f ) = E‖ f − f̂ j,i‖2

under squared error loss. If i = n, this simplifies to R(δ j,n, f ) = E‖ f − f̂ j‖2, in which
f̂ j,n = f̂ j.

The idea behind Yang’s procedure is to assign higher weights to those elements of the
ensemble that have residuals closer to zero. This is done by evaluating h at the residuals
because h is typically unimodal with a strong mode at zero: Residuals with a smaller
absolute value contribute more to the mass assigned to the model that generated them
than residuals with larger absolute values. Moreover, it will be seen that the average
depends on the order of the data points, with later data points (higher index values)
having a higher influence on the average than earlier data points (lower index values).

To specify the average, let N = Nn with 1 ≤ Nn ≤ n. It is easiest to think of n as even
and N = n/2 + 1 since then the lower bounds in the products giving the weights start
at n/2. Let the initial weights for the procedures δ j be Wj,n−N+1 = π j, where the π js
sum to 1. Now consider products over subsets of the data ranging from n−N +1 up to
i−1 for each i between n−N +2 and n. These give the weights

Wi, j =
π jΠ i−1

�=n−N+1h(y�+1− ˆf j,�(xxx�+1)/σ̂ j,�(xxx�+1))

∑∞
j=1π jΠ i−1

�=n−N+1h(y�+1− ˆf j,�(xxx�+1)/σ̂ j,�(xxx�+1))
. (6.1.20)

In (6.1.20), the σ̂ j,� are the estimates of σ based on the indicated data points. It is
seen that ∑ j Wj,i = 1 for each i = n−N +1, ...,n. Now, the inner averages, over j, are
formed from the f̂ j,is for the procedures δ j for fixed is. These are

f̃i =∑
j

Wj,i f̂ j,i(xxx). (6.1.21)

These are aggregated again, this time over sample sizes, to give the outer average

f̄n(xxx) =
1
N

n

∑
i=n−N+1

f̃i(xxx) (6.1.22)

as the final model average.

Clearly, (6.1.22) depends on the order of the data, and data points earlier in the se-
quence are used more than those later in the sequence. Under the IID assumption, the
estimator can be symmetrized by taking the conditional expectation given the data but
ignoring order. In applications, the order can be permuted randomly several times and
a further average taken to approximate this.

The main hypotheses of the next theorem control the terms in the model and the
procedures δ j as follows. (i) Suppose | f | ≤ A < ∞, the variance function satisfies
0 < σ ≤ σ(xxx) ≤ σ < ∞, and the estimators from each δ j also satisfy these bounds,
and (ii) for each pair s0 ∈ (0,1) and T > 0, there is a constant B = B(s0,T ) such that
the error density satisfies

∫
h(u) log

h(u)
(1/s)h((u− t)/s)

du < B((1− s)2 + t2), (6.1.23)



6.1 Ensemble Methods 331

for s ∈ (s0,1/s0) and t ∈ (−T,T ). These assumptions permit the usual special cases:
(B) is satisfied by the normal, Student’s t with degrees of freedom at least 3, and the
double exponential, among other errors. Also, the values of the constants in (A) are
not actually needed to use the procedure; their existence is enough.

Theorem (Yang, 2001): Use E to construct f̄ = f̄n as in (6.1.22), and suppose that (i)
and (ii) are satisfied. Then

R( f̄ , n , f ) (6.1.24)

≤ C1 inf
j

(
1
N

log
1
π j

+
C2

N

n

∑
�=n−N+1

(
E‖σ2− σ̂ j,�‖2 +E‖ f − f̂ j,�‖2)

)

where C1 depends on A and σ and C2 depends on A, σ/σ and h. The inequality (6.1.24)
also holds for the average risks:

1
N

n

∑
i=n−N+1

E‖ f − f̃i‖2 ≤ C1 inf
j

(
1
N

log
1
π j

(6.1.25)

+
C2

N

n

∑
�=n−N+1

(
E‖σ2− σ̂ j,�‖2 +E‖ f − f̂ j,�‖2)

)
.

Proof: See Subsection 6.5.1 of the Notes at the end of the chapter. �

6.1.6.2 Model Averaging for Classification

In binary classification, the pairs (XXX ,Y ) have joint distribution IP and are assumed to
take values in a set X ×{−1,1}. The marginal for XXX is also denoted IP = IPX as
long as no confusion will result. Under squared error loss, the conditional probability
η(xxx) = E(1Y=1|XXX = xxx) gives a classifier f that is zero or one according to whether xxx is
believed to be from class 1 or class 2. The misclassification rate of f is R( f ) = IP(Y 	=
f (XXX)), suggestively written as a risk (which it is under 0-1 loss). It is well known that
the Bayes rule is

min
f

R( f ) = R( f ∗)≡ R∗, i.e., f ∗ = argmin
f

R( f )

where f varies over all measurable functions and f ∗(xxx) = sign(2η(xxx)−1).

Given n IID data points D = {(XXXi,Yi)i=1,...,n}, let f̂ (xxx) = f̂n(xxx) estimate the Bayes
rule classifier. Without loss of generality, assume f̂ only takes values ±1. Then, the
generalization error of f̂ is E(R( f̂ )), where R( f̂ ) = IP(Y 	= f̂ (XXX)|Dn). The excess risk
of f̂ is the amount by which its risk exceeds the minimal Bayes risk. That is, the excess
risk of f̂ is E(R( f̂ )−R∗).

The setting for model averaging in classification supposes K classifiers are available,
say F = { f1, ..., fK}. The task is to find an f̂ that mimics the best fk in F in terms of
having excess risk bounded by the smallest excess risk over the fks. Here, a theorem
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of LeCué (2006) will be shown. It gives an Oracle inequality in a hinge risk sense for
a classifier obtained by averaging the elements of F .

Since Oracle inequalities rest on a concept of risk, it is no surprise that construct-
ing a classifier based on risk makes it easier to prove them. The two losses com-
monly used in classification are the zero-one loss, sometimes just called the mis-
classification loss, and the hinge loss φ(x) = max(0,1− x) seen in the context of
support vector machines. Among the many risk-based ways to construct a classi-
fier, empirical risk minimization using zero-one loss gives a classifier by minimiz-
ing Rn( f ) = (1/n)∑n

i=1 1yi f (xxxi) as a way to minimize the population risk R. This kind
of procedure has numerous good theoretical properties. By contrast, the (population)
hinge risk is, say, A( f ) = Emax(0,1−Y f (xxx)) for any f . The optimal hinge risk is
A∗ = inf f A( f ), and the corresponding Bayes rule f ∗ achieves A∗.

The link between empirical risk minimization under 0-1 loss and the hinge risk is

R( f )−R∗ ≤ A( f )−A∗, (6.1.26)

a fact credited to Zhang (2004), where R( f ) is understood to be the misclassification
error of sign( f ). Consequently, if minimizing hinge loss is easier than using the mis-
classification error directly, it may be enough to provide satisfactory bounds on the
right-hand side of (6.1.26).

Accordingly, LeCué (2006) establishes an Oracle inequality under hinge loss for the
average of a finite collection of classifiers under a low-noise assumption. This is a prop-
erty of the joint distribution IP of (XXX ,Y ) and depends on a value κ ∈ [1,∞). Specifically,
IP satisfies the low-noise assumption MA(κ) if and only if there is a K > 0 so that, for
all f s taking values ±1,

E(| f (XXX)− f ∗(XXX)|)≤C [R( f )−R∗]1/κ . (6.1.27)

The meaning of (6.1.27), also called a margin condition, stems from the following
reasoning. Suppose f is an arbitrary function from which a classifier is derived by
taking the sign of its value. Then,

R( f )−R∗ = IP(Y 	= f (XXX))− IP(Y 	= sign(2η(XXX)−1))
≤ IPXXX ( f (xxx) 	= sign(η(xxx)−1/2)). (6.1.28)

Equality holds in (6.1.28) if η is identically 0 or 1. The left-hand side of (6.1.28) is
the bracketed part of the right-hand side of (6.1.27), and the right hand side of (6.1.28)
is the left hand side of (6.1.27). So, the MA(κ) condition is an effort to reverse the
inequality in (6.1.28). If κ = ∞, then the assumption is vacuous and for κ = 1 it holds
if and only if |2η(xxx)− 1| ≥ 1/C. In other words, (6.1.27) means that the probability
that f gives the wrong sign relative to f ∗ is bounded by a power of a difference of
probabilities that characterizes how f differs from f ∗.

To state Lecue’s theorem for model-averaged classifiers – often called aggregating
classifiers – let F = { f1, ..., fK} be a set of K classifiers, and consider trying to mimic
the best of them in terms of excess risk under the low-noise assumption. First, a convex
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combination must be formed. So, following LeCué (2006), let

f̃ =
K

∑
k=1

wn
k fk, where wn

k =
e∑

n
i=1 Yi fk(XXXi)

∑K
k=1 e∑

n
i=1 Yi fk(XXXi)

. (6.1.29)

Since the fks take values ±1, the exponential weights can be written as

wn
k =

e−nAn( fk)

∑K
k=1 e−nAn( fk)

where An( f ) =
1
n

n

∑
i=1

max(0,1−Yi f (XXXi)). (6.1.30)

Clearly, An is the empirical hinge risk. Indeed, it can be verified that An( fk) = 2Rn( fk)
for k = 1, ...,K, so the weights wn

k can be written in terms of the 0-1 loss-based risk.

A weak form of the Oracle inequality is the following.

Proposition (Lecue, 2006): Let K ≥ 2, and suppose the fks are any IR-valued func-
tions. Given n, the aggregated classifier f̃ defined in (6.1.29) and (6.1.30) satisfies

An( f̃ )≤ min
k=1,...,K

An( fk)+
logM

n
. (6.1.31)

Proof: Since hinge loss is convex, An( f̃ )≤ ∑K
k=1 wn

kAn( fk). Let

k̂ = arg min
k=1,...,K

An( fk).

So, for all k,

An( fk) = An( fk̂)+
1
n
[logwn

k̂
− logwn

k ]

from the definition of the exponential weights. Averaging over the wn
ks (for fixed n)

gives (6.1.31). �
Now the proper Oracle inequality can be given.

Theorem (Lecue, 2006): Suppose F is a set of K classifiers with closed convex hull
C and that IP satisfies the MA(κ) condition (6.1.27) for some κ ≥ 1. Then, for any
a > 0, the aggregate f̃ from (6.1.29) and (6.1.30) satisfies

E(A( f̃n)−A∗)≤ (1+a)min
f∈C

[A( f )−A∗]+C

(
logM

n

)κ/(2κ−1)

, (6.1.32)

where C = C(a) > 0 is a constant.

Proof: See Subsection 6.5.2 of the Notes at the end of the chapter. �
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6.2 Bayes Nonparametrics

Recall that the parametric Bayesian has a p-dimensional parameter spaceΩ and a prior
density w on it. The model-averaging Bayesian generalizes the parametric Bayesian by
using a class of models indexed by, say, j ∈ J, a prior w j within each model on its pa-
rameter spaceΩ j, and a prior across models (i.e., on J) to tie the structure together. The
overall parameter space is ( j,Ω j) for j ∈ J. In turn, the pure nonparametric Bayesian
generalizes the BMA Bayesian by working in the logical endpoint of the Bayesian set-
ting. That is, the nonparametric Bayesian starts with a set X and considers M (X ),
the collection of all probability measures on X , fixing some σ -field for X , usually
the Borel. Thus, M , the collection of all reasonable probabilities on X , is the set on
which a prior must be assigned. If the explanatory variables are assumed random, then
M (X ) contains all the models discussed so far; however, X = IR is the most studied
case because other bigger sets of probabilities remain intractable outside special cases.
That is, M (IR) is the collection of all probabilities on IR and is the most studied.

The key Bayesian step is to define a prior on M (X ). In fact, usually only a prior
probability can be specified since densities do not generally exist. Starting with results
that ensure distributions on M (X ) exist and can be characterized by their marginals
at finitely many points, Ghosh and Ramamoorthi (2003) provide a sophisticated treat-
ment dealing with the formalities in detail. Doob (1953) has important background.
Here, the technicalities are omitted for the sake of focusing on the main quantities.

There are roughly three main classes of priors that have received substantial study. The
first two are the Dirichlet process prior and Polya tree priors. These are for M (IR). The
third, Gaussian processes, includes covariates by assigning probabilities to regression
function values. In all three cases, the most important expressions are the ones that
generate predictions for a new data point.

6.2.1 Dirichlet Process Priors

Recall that the Dirichlet distribution, D, has a k-dimensional parameter (α1, ...,αk) ∈
IRk in which α j ≥ 0 and support Sk = {(p1, ..., pk) | 0≤ p j ≤ 1,∑ j p j = 1}; i.e., the set
of k dimensional probability vectors. The density of a Dirichlet distribution, denoted
D(α1, ...,αk), is

w(p1, ..., pk) =
Γ (∑k

j=1αi)

Π k
j=1Γ (α j)

pα1−1
1 ...p

αk−1−1
k−1

(
1−

k−1

∑
j=1

pi

)αk−1

.

The idea behind the Dirichlet process prior is to assign Dirichlet probabilities to par-
tition elements. Note that the “random variable” the Dirichlet distribution describes is
the probability assigned to a set in a partition, not the set itself.
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To use the Dirichlet distribution to define a prior distribution on the set of distribu-
tions M (X ), start with a base probability, say α on X , and an arbitrary partition
B = {B1, ...,Bk} of X of finitely many, say k, elements. Since α assigns probabilities
α(B j) to the B js in the partition, these can be taken as the values of the parameter.
So, set (α1, ...,αk) = (α(B1), ...,α(Bk)) to obtain, for B, a distribution on the values
of the probabilities of the B js. That is, the Dirichlet process prior assigns Dirichlet
probabilities to the probability vector for B by using

(P(B1), ...,P(Bk))∼ D(α(B1), ...,α(Bk)),

in which the P of a set is the random quantity. The Dirichlet process, DP, is a stochastic
process in the sense that it assigns probabilities to the distribution function derived
probabilities F(t1), F(t2)−F(t1), ...,F(tn)−F(tn−1) for any partition.

The Dirichlet process has some nice features – consistency, conjugacy, and a sort of
asymptotic normality of the posterior, for instance. Here, consistency means that the
posterior concentrates on the true distribution. In addition, the measure α is the mean
of the Dirichlet in the sense that E(P(A)) = α(A) for any set A. The variance is much
like a binomial: Var(P(A)) = α(A)(1−α(A))/2. Sometimes an extra factor γ , called
a concentration, is used, so the Dirichlet is D(γα(B1), ...,γα(Bk)). If so, then the vari-
ance changes to Var(P(A)) = α(A)(1−α(A))/(1 + γ), but the mean is unchanged.
Here, γ = 1 for simplicity.

To see the conjugacy, let α be a distribution on Ω and let P∼ DP(α). Consider draw-
ing IID samples according to P denoted θ1,..., θn from Ω . To find the posterior for
P given the θis, let B1,..., Bk be a partition of Ω and let n j = #({i | θi ∈ B j}) for
j = 1, ...,k. Since the Dirichlet and the multinomial are conjugate,

(P(B1), ...,P(Bk))|θ1, ...,θn ∼ D(α(B1)+n1, ...,α(Bk)+nk).

Because the partition was arbitrary, the posterior for P must be Dirichlet, too. It can
be verified that the posterior Dirichlet has concentration n + 1 and base distribution
(α+∑n

i=1 δθi)/(n+1), where δθi is a unit mass at θi so that n j =∑n
i=1 δθi(B j). That is,

P | θ1, ...,θn ∼ DP

(
n+1,

1
n+1

α+
n

n+1
∑n

i=1 δθi

n

)
.

It is seen that the location is a convex combination of the base distribution and the
empirical distribution. As n increases, the mass of the empirical increases, and if a
concentration γ is used, the weight on the base increases if γ increases.

As noted, it is the predictive structure that is most important. So, it is important to
derive an expression for (Θn+1 | θ1, ...,θn). To find this, consider drawing P∼ DP(α)
and that θi ∼ P IID for i = 1, ...,n. Since

Θn+1 | P,θ1, ...,θn ∼ P

for any set A,
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IP(Θ ∈ A | θ1, ...,θn) = E(P(A) | θ1, ...,θn) =
1

n+1

(
α(A)+

n

∑
i=1

δθi(A)

)
.

Now, marginalizing out α gives

Θn+1 | θ1, ...,θn ∼
(
α+

n

∑
i=1

δθi

)
.

That is, the base distribution of the posterior given θ1, ..., θn is the predictive.

An important property of the DP prior is that it concentrates on discrete probabilities.
This may be appropriate in some applications. However, more typically it means the
support of the DP prior is too small. For instance, if we haveα 	= α ′, then D(α) and
D(α ′) are mutually singular and so give mutually singular posteriors. Thus, small dif-
ferences in the base probability can give big differences in the posteriors. Since the
support of the posterior is the same as the support of the prior, this means that the col-
lection of posteriors {Wα(·|XXXn)} as α varies is too small. Indeed, if α is continuously
deformed to α ′, Wα(·|XXXn) does not continuously deform to Wα(·|XXXn). As a function of
α , Wα(·|XXXn) is discontinuous at each point!

Even so, Dirichlets are popular for Bayesian estimation of densities and in mixture
models. Indeed, there are two other constructions for the DP, called stick-breaking
and the Chinese restaurant process. Although beyond the present interest, these inter-
pretations suggest the usefulness of DPs in many clustering contexts as well.

6.2.2 Polya Tree Priors

Polya trees are another technique for assigning prior probabilities to M (X ). They
are a variation on Dirichlet process priors in two senses. First, Polya trees use the
Beta(α1,α2) density, for α1,α2 ≥ 0 which is a special case of the Dirichlet for p = 2.
Second, Polya trees involve a sequence of partitions, each a refinement of its prede-
cessor. This means that the partitions form a tree under union: If a given partition is a
node, then each way to split a set in the partition into two subsets defines a more refined
partition that is a leaf from the node. Formalizing this is primarily getting accustomed
to the notation.

The Polya tree construction is as follows. Let E j denote all finite strings of 0s and 1s of
length j, and let E∗ = ∪∞j=1E j be all finite binary strings. For each k, let τk = {Bε |ε ∈
Ek} be a partition of IR. This means τ1 has two elements since the only elements of
E1 are ε = 0,1. Likewise, τ2 has four elements since E2 has ε = (ε1,ε2), in which
each εi = 0,1 and similarly for τ3. The intuition is that the first element of ε is ε1,
taking values zero or one, indicating IR− and IR+. The second element of ε is ε2,
again taking values zero or one. If ε1 = 0 indicates IR−, then ε2 indicates one of two
subintervals of IR− that must be chosen. The successive elements of ε indicate further
binary divisions of one of the intervals at the previous stage. It is seen that the partitions
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τk in the sequence must be compatible in the sense that, for any ε ∈ E∗, there must be
a j such that ε ∈ E j and there must be a set Bε ∈ τ j whose refinements B(ε ,0) and B(ε ,1)
form a partition of Bε within (ε,0),(ε,1) ∈ E j+1.

Now suppose a countable sequence of partitions τk is fixed. A distribution must be
assigned to the probabilities of the sets. This rests on setting up an equivalence be-
tween refining partitions and conditioning. Let α = {αε ∈ IR+|ε ∈ E∗} be a net of real
numbers. (A net generalizes a sequence. Here, the αεs form a directed system under
containment on the partitions indexed by ε .) The Polya tree prior distribution PTα on
M (X ) assigns probabilities to the partition elements in each τk by using independent
Beta distributions. That is, the probabilities drawn from PT (α) satisfy

i)∀k ∀ε ∈ ∪k−1
j=1E j : P(Bε ,0|Bε) are independent

in which the values indicated by P are the random variables satisfying

ii)∀k ∀ε ∈ ∪k−1
j=1E j : P(Bε ,0|Bε)∼ Beta(αε ,0,αε ,1).

As with the Dirichlet process, (i) and (ii) specify the distributions for the probabilities
of intervals. That is, for fixed ε ∈ E∗, the distribution of the probability of the set
Bε is now specified. In other words, if Bε = (s, t], then the probability F(t)−F(s)
is specified by the appropriate sequence of conditional densities. If the partitions are
chosen so that each point t ∈ IR is the limit of a sequence of endpoints of intervals
from the τks, then the distributions that never assign zero probability to sets of positive
measure get probability one.

Like the DP prior, Polya tree priors also give consistency in that the posteriors they give
concentrate at the true distribution if it is in their support. More specifically, Polya trees
can, in general, be constructed to concentrate arbitrarily closely about any given dis-
tribution and can be constructed so they assign positive mass to every relative entropy
neighborhood of every finite entropy distribution that has a density. These two results
fail for the DP priors but give more general consistency properties for PT priors.

Also like the DP priors, Polya tree priors are conjugate. It can be verified that if
θ1, ...,θn ∼ P are IID and P∼ PT (α), then

P|θ1, ...,θn ∼ PT (α(θ1, ...,θn)), where ∀ε : αε(θ1, ...,θn) = αε +
n

∑
i=1

δθi(Bε).

Of great importance is the prediction formula for Polya trees. It is more complicated
than for the DP priors, but no harder to derive. It is expressed in terms of the partition
elements. Let nε = #({θi ∈ Bε}). Then,

P(θn+1 ∈ Bε1,...,εk) =
αε1 +∑n

i=1 δθi(Bε1)
α0 +α1 +n

× αε1,ε2 +∑n
i=1 δθi(Bε1,ε2)

αε1,0 +αε1,1 +nε1

× . . .× αε1,...,εk +∑n
i=1 δθi(Bε1,...,εk)

αε1,...,εk−1,0 +αε1,...,εk−1,1 +nε1, ...,εk−1
.
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Polya tree priors have other nice features. In particular, they have a much larger support
than the DP priors. It is a theorem that if λ is a continuous measure, then there is a
PT prior that has support equal to the collection of probabilities that are absolutely
continuous with respect to λ . Indeed, the support of PT (α) is M (X ) if and only if
αε > 0 for all ε ∈ E∗. Thus, the support of a PT prior corresponds to an intuitively
reasonable class of probabilities.

One of the main uses of PT priors is on the error term in regression problems. However,
this and more elaborate mixtures of Polya trees are beyond the present scope.

6.2.3 Gaussian Process Priors

Gaussian processes (GPs) do not assign probabilities to sets in M (X ), the probability
measures on X , but to the values of regression functions. Thus GP priors are more
general than DP or PT priors. Roughly, the function values are treated as the outcomes
of a GP so that finite selections of the function values (at finitely many specified design
points) have a normal density with mean given by the true function. GP priors are
surprisingly general and are closely related to other methods such as splines, as seen
in Chapter 3.

6.2.3.1 Gaussian Processes

To start, a stochastic process 〈Yx〉|x∈I is Gaussian if and only if the joint distribution of
every finite subset of Yxis, i = 1, ...,n, is multivariate normal. Commonly, the index set
I is an interval, x is the explanatory variable, and there is a mean function μ(x) and a
symmetric covariance function r(x,x′). The variance matrix for any collection of Yxis
has entries r(xi,x j) and is assumed to be positive definite. Thus, formally, given any n
and any values x1, ...,xn, a Gaussian process satisfies

(Y (x1), ...,Y (xn))t ∼ N((μ(x1), ...,μ(xn))t , [(r(xi,x j)]i, j=1,...,n).

A theorem, see Doob (1953), ensures EYx = μ(x) and r(x,x′) = EYxYx′ − μ(x)μ(x′).
(The main step in the proof is setting up an application of Kolmogorov’s extension
theorem to ensure that for given μ and r the finite-dimensional marginals coalesce into
a single consistent process.) Together the μ and r play the same role as α does for the
Dirichlet or PT distributions.

Although they have fixed marginal distributions, GPs (surprisingly) approximate a very
wide class of general stochastic processes up to second moments. Indeed, let Ux be a
stochastic process with finite second moments for x ∈ I. Then there is a Gaussian
process 〈Yx〉|x∈I defined on some (possibly different) measure space so that EYx = 0 and
EYxYx′ = EUxUx′ . That is, if concern is only with the first and second moments, there
is no loss of generality in assuming the process is Gaussian. Moreover, if continuous,



6.2 Bayes Nonparametrics 339

or even differentiable, sample paths are desired, then conditions to ensure Yx(ω) and
Yx′(ω) are close when x and x′ must be imposed. In practice, these come down to
choosing a covariance function to make the correlations among the values get larger as
the xis get closer to each other. One common form is r(x,x′) = ρ(|Yx−Yx′ |) for some
function ρ; a popular choice within this class is r(x,x′) = σ2e(x−x′)2/sν2

. Clearly, σ2 is
the maximum covariance, and it can be seen that as x and x′ get closer the values on a
sample path become perfectly correlated. High correlation makes the unknown sample
path (i.e., function) smoother, and low correlation means that neighboring points do
not influence each other, permitting rougher sample paths (i.e., rougher functions).

One of the motivations for using GPs is that they generalize least squares approxima-
tions. In particular, if (Y,X1, ...,Xp) has a multivariate normal distribution with mean
0, then the difference Y −∑p

j=1 a jXj has expectation zero and is uncorrelated with the
Xjs when the a j = E(XjY ). Thus, the conditional (Y |X1, ...,Xp) is normal and

E(Y |X1, ...,Xp) =
p

∑
j=1

a jXj;

see the elliptical assumption used in SIR. Since Y −∑p
j=1 a jXj is independent of any

square-integrable function of X1, ...,Xp, the sum of squares decomposition

E
∣∣Y − f (X1, ...,Xp)

∣∣2 = E

∣∣∣∣∣Y −
p

∑
j=1

a jXj

∣∣∣∣∣
2

+E

∣∣∣∣∣
p

∑
j=1

a jXj− f (X1, ...,Xp)

∣∣∣∣∣
2

is minimized over f by choosing f (x1, ...,xp) =∑p
j=1 a jx j. The optimal linear predictor

will emerge automatically from the normal structure.

Having defined GPs, it is not hard to see how they can be used as priors on a function
space. The first step is often to assume the mean function is zero so that it is primarily
the covariance function that relates one function value at a design point to another
function value at another design point. Now there are two cases, the simpler noise-free
data setting and the more complicated (and useful) noisy data setting.

The noise-free case is standard normal theory, but with new notation. Choose x1,...,
xn and consider unknown values fi = f (xi). Let fff = ( f1, ..., fn)T, xxx = (x1, ...,xn), and
write K(xxx,xxx) to mean the n×n matrix with values r(xi,x j). Now let xnew be a new de-
sign point, and consider estimating fnew = f (xnew). Since the covariance function will
shortly be related to a kernel function, write K(xxx,xnew) = (r(x1,xnew), . . . ,r(xn,xnew)).
Now, the noise-free model is Y (x) = f (x) with a probability structure on the values of
f . Thus, the model is

(
fff

fnew

)
∼ N

((
0
0

)
,

(
K(xxx,xxx) ,K(xxx,xnew)

K(xnew,xxx) ,K(xnew,xnew)

))
. (6.2.1)

Since xnew is a single design point, it is easy to use conventional normal theory to
derive a predictive distribution for a new value:
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fnew | xxx, fff ,xnew (6.2.2)

∼ N(K(xnew,x)K−1(xxx,xxx) fff , K(xnew,xnew)−K(xnew,xxx)K−1(xxx,xxx)K(xxx,xnew)).

Note that (6.2.1) is noise free in the sense that the function values fi are assumed to be
directly observed without error. In fact, they are usually only observed with error, so a
more realistic model is Y = f (x)+ ε , in which Var(ε) = σ2. Now, it is easy to derive
that

Cov(Yxi ,Yx j) = K(xi,x j)+σ2δi, j, (6.2.3)

where δi, j = 0,1 according to whether i = j or i 	= j. Letting YYY = (Y1, . . . ,Yn)T =
(Yx1 , . . . ,Yxn) with realized values yyy = (y1, . . . ,yn)T, (6.2.3) is Cov(YYY ,YYY ) = K(xxx,xxx)+
σ2In in more compact notation. Now, (6.2.1) is replaced by

(
yyy

fnew

)
∼ N

((
0
0

)
,

(
K(xxx,xxx)+σ2In,K(xxx,xnew)

K(xnew,xxx) ,K(xnew,xnew)

))
. (6.2.4)

The usual normal theory manipulations can be applied to (6.2.4) to give

fnew | xxx,yyy,xnew ∼ N(E( fnew | xxx,yyy,xnew),Var( fnew)),

parallel to (6.2.2). Explicit expressions for the mean and variance in (6.2.5) are

E( fnew | xxx,yyy,xnew) = K(xnew,xxx)(K(xxx,xxx)+σ2In)−1yyy,

Var( fnew) = K(xnew,xnew)− (K(xxx,xxx)+σ2In)−1K(xxx,xnew).

It is seen that the data yyy only affect the mean function, which can be written

E( fnew | xxx,yyy,xnew) =
n

∑
i=1

αiK(xi,xnew), (6.2.5)

in which the αis come from the vector ααα = (α1, ...αn)T = (K(xxx,xxx)+σ2In)−1yyy. It is
seen that (6.2.5) is of the same form as the solution to SVMs, or as given by the
representer theorem.

6.2.3.2 GPs and Splines

It has been noted that the results of GP priors are similar or identical to those of using
least squares regression, SVMs or the representer theorem. To extend this parallel, this
section presents four important links between GPs and spline methods.

First, the covariance function r(xxx,xxx′) of a GP can be identified with the RK from
an RKHS as suggested by the notation of the last subsection. Consequently, every
mean-zero GP defines and is defined by an RKHS. This relationship is tighter than it
first appears. Consider a reproducing kernel K. The Mercer-Hilbert-Schmidt theorem
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guarantees there is an orthonormal sequence 〈ψ j〉 of functions with corresponding λ js
decreasing to zero so that

∫
K(xxx,xxx′)ψ j(xxx′)dxxx′ = λ jψ j(xxx); (6.2.6)

see Wahba (1990) and Seeger (2004). This means that the ψ js are eigenfunctions of
the operator induced by K. Then, not only can one write the kernel as

K(xxx,xxx′) =∑
j
λ jψ j(xxx)ψ j(xxx′) (6.2.7)

but the zero-mean GP, say Y (xxx) with covariance r(xxx,xxx′) = k(x,x′), can be written as

Y (xxx) =∑
j

Yjψ j(xxx),

in which the Yjs are independent mean-zero Gaussian variables with E(Y 2
j ) = λ j. In

this representation, the Yjs are like Fourier coefficients: Yj =
∫

Y (xxx)ψ j(xxx)dxxx. It turns
out that one can (with some work) pursue this line of reasoning to construct an RKHS
that is spanned by the sample paths of the GP Y (xxx). This means GPs and RKHSs are
somewhat equivalent.

Second, separate from this, one can relate GPs to the penalty term in the key optimiza-
tion to obtain smoothing splines. In fact, roughness penalties correspond to priors in
general, and the GP process prior is merely a special case. Consider the functional

G( f (xxx)) = G( f (xxx),β ,λ ) =−β
2

n

∑
i=1

(yi− f (xxxi))2− λ
2

∫
[ f (m)(xxx)]2dxxx. (6.2.8)

The first term is the log likelihood for normal noise, and the second term is a roughness
penalty. Now, link spline optimizations to GPs by treating the roughness penalty as the
log of a prior density, specifically a GP prior on the regression function. Then, the two
terms on the right in (8.3.50) sum to the log of the joint probability for the regression
function and the data. The benefit of this Bayesian approach is that smoothing splines
are seen to be posterior modes: Up to a normalizing constant depending on the data, G
is the log of the posterior density. So, maximizing G, which leads to splines, also gives
the mode of the posterior. In addition, when the prior and noise term are both derived
from normals, the spline solution is the posterior mean, as will be seen shortly.

To see these points explicitly, replace the p-dimensional xxx by the unidimensional x.
Then, try to backform a Gaussian prior from the penalty in (8.3.50) by setting

− 1
2

fff (((xxx)))ΛΛΛ(((xxx))) fff (((xxx))) = logΠ( f (x))≈−1
2

∫
[ f (m)(x)]2dx, (6.2.9)

in which fff (((xxx))) = ( f (x1), ..., f (xn))T, and

ΛΛΛ(((xxx))) = ( f (m)(x1), ..., f (m)(xn))T ( f (m)(x1), ..., f (m)(xn)),
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the matrix with entries given by products of evaluations of the dth derivative of f at the
xi and x j. The approximation in (8.3.50) arises because the penalty term in splines is
an integral, but when doing the optimization numerically, one must discretize. It can be
imagined that if the xis are chosen poorly, then the approximation can be poor. This is
especially the case with repeated xis for instance, which can lead toΛ not being of full
rank. Despite these caveats, it is apparent from (8.3.50) that the usual spline penalty is
roughly equivalent to using the mean-zero GP prior Π( f ) with covariance function Λ .
That is, the non-Bayes analog of a GP prior is the squared error spline penalty.

As an observation, recall that in Chapter 3 it was seen that roughness penalties corre-
spond to inner products and thence to Hilbert spaces of functions equipped with those
inner products. Also, as just noted, roughness penalties and priors are closely related.
So, there is an implied relationship between inner products and priors. To date, this
seems largely unexplored.

In the case where xxx is p-dimensional, the situation is similar but messier. To obtain
a form for Π , the covariance function of the GP has to be specified, often in terms
of a norm on the xxxs. This can be done quite loosely, however: The spline penalty is
an integral and the GP has a huge number of sample paths. So, one does not expect to
match these two in any general sense; it is enough to ensure that the particular points on
the sample path of the GP are close to the value of the penalty for the data accumulated.
That is, the finite-dimensional approximation must be good, but the approximation
need not match throughout the domain of the integral in the penalty or on all the entire
sample paths. So, one choice for the covariance function is r(xxxi,xxx j) = e−||xi−x j ||2 ; there
are many others. It is usually enough that r(xxxi,xxx j) be small when xxxi− xxx j are far apart.
Thus, one can get a discretized form of a spline roughness penalty and recognize a
form for Λ as the covariance matrix from a GP that makes the two of them close.
This matching is important and leads to many applications as well as more theory; see
Genton (2001) for merely one example. However, this becomes quite specialized, and
the present goal was only to argue the link between GPs and certain spline penalties.

Third and more abstractly, Seeger (2004), Section 6.1 credits Kimmeldorf and Wahba
(1971) for relating GPs to the Hilbert space structure of spline penalties. Let K be a
positive semidefinite spline kernel corresponding to a differential operator with an m-
dimensional null-space. Let H = H1

⊕
H2, where H1 is the Hilbert space spanned

by the orthonormal basis g1,..., gm of the nulls-pace and H2 is the Hilbert space asso-
ciated with K. Consider the model

Yi = F(xxxi)+ εi =
m

∑
j=1

β jg j(xxxi)+
√

bU(xxxi)+ εi, (6.2.10)

where U(xxx) is a mean-zero GP with covariance function r = K, the εs are independent
N(0,σ2), and the β js are independent N(0,a). Next, let fλ be the minimum of the
regularized risk

1
n

n

∑
i=1

(yi− f (xxxi))2 +λ ||P2 f ||22 (6.2.11)
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in H , where P2 is the projection of H onto H2. Expression (6.2.11) is clearly a
general form of the usual optimization done to find splines. Kimmeldorf and Wahba
(1971) show that fλ is in the span of H1∪{K(·,xxxi)|i = 1, ...,n}, a result nearly equiv-
alent to the representer theorem (in Chapter 5). If F in (6.2.10) is denoted Fa, they also
show that

∀xxx lim
a→∞

E(Fa(xxx)|y1, ...,yn) = fλ (xxx),

and λ = σ2/nb.

Fourth and finally, after all this, one can see that spline estimators are posterior means
under GP priors if the Hilbert spaces are chosen properly. This will be much like the
example in Chapter 3 of constructing the Hilbert space since attention is limited to
the case of polynomial splines for unidimensional x using the integral of the squared
m-derivative as a roughness penalty. That is, the focus is on polynomial smoothing
splines that minimize

1
n

n

∑
i=1

(Yi− f (xi))2 +λ
∫ 1

0
( f (m))2dxxx (6.2.12)

in the space C (m)[0,1]. As seen in Chapter 3, an RKHS and an RK can be motivated
by Taylor expansions.

For f ∈ C (m)[0,1], derivatives from the right give the Taylor expansion at 0,

f (x) =
m−1

∑
j=1

x j

j!
f ( j)(0)+

1
(m−1)!

∫ 1

0
(x− t)m−1 f (m)(t)dt, (6.2.13)

in which the last term is a transformation of the usual integral form of the remainder.
The two terms in (6.2.13) can be regarded as “projections” of f , one onto the space H0

of monomials of degree less than or equal to m−1 and the other onto the orthogonal
complement H1 of H0 in C (m)[0,1]. The problem is that the orthogonal complement
needs an inner product to be defined. So, the task is to identify two RKHSs, H0 and
H1, one for each projection, and an RK on each, and then to verify that the sum of
their inner products is an inner product on C (m)[0,1].

As in Chapter 3, for f0,g0 ∈H0, the first term in (6.2.13) suggests trying

〈 f0,g0〉0 =
m−1

∑
j=1

f ( j)
0 (0)g( j)

0 (0)

as an inner product, and for f1,g1 ∈H1 the second term suggests

〈 f1,g1〉1 =
∫ 1

0
f (m)
1 (x)g(m)

1 (x)dx,

so an inner product on C (m)[0,1] = H0
⊕

H1 for f = f0 + f1 and g = g0 +g1 is

〈 f ,g〉= 〈 f0,g0〉0 + 〈 f1,g1〉1, (6.2.14)
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where the subscript on a function indicates its projection onto Hi.

To get RKHSs, RKs must be assigned to each inner product 〈·, ·〉0 and 〈·, ·〉1. It can be
shown (see Gu (2002), Chapter 2) that

R0(x,y) =
m−1

∑
j=1

x jy j

j! j!
and R1(x,y) =

∫ 1

0

(x− t)m−1(y− t)m−1

(m−1)!(m−1)!
dt (6.2.15)

are RKs on H0 and H1 under 〈·, ·〉0 and 〈·, ·〉1, respectively. So, R(x,y) = R0(x,y)+
R1(x,y) is an RK on C (m)[0,1] under 〈·, ·〉.
Now in the model Y = f (x)+ ε , where ε is N(0,σ2), suppose f (x) = f0(x)+ f1(x),
where fi varies over Hi and each fi is equipped with a GP prior having mean zero and
covariance functions derived from the RKs. That is, set

E( f0(x) f0(y)) = τ2R0(x,y) and E( f1(x) f1(y)) = bR1(x,y). (6.2.16)

Then, one can derive an expression for the posterior mean E( f (x)|Y ). In fact, Gu
(2002), Chapter 2, proves that a spline from (6.2.12) has the same form as E( f (x)|Y ),
where f0 has a finite-dimensional normal distribution on H0 and f1 has a GP prior
with mean zero and covariance function bR1(x,y).

This argument generalizes to penalty terms with arbitrary differential operators show-
ing that smoothing splines remain Bayesian estimates for more general Hilbert spaces
and reproducing kernels (see Gu (2002), Chapter 2). It is less clear how the argument
generalizes to p-dimensional xxxs; for instance, the integral form of the remainder in
(6.2.13) does not appear to hold for p≥ 2.

6.3 The Relevance Vector Machine

The relevance vector machine (RVM) introduced in Tipping (2001), was motivated
by the search for a sparse functional representation of the prediction mechanism in
a Bayesian context. Clearly, for representations that are weighted sums of individual
learners, the function evaluations for the learners can be computationally burdensome
if there are many learners or if the learners are hard to compute. Thus, for the sake
of computational effectiveness as well as the desire to keep predictors simple, it is
important to trim away as many individual learners as possible, provided any increase
in bias is small.

The question becomes whether a sparse solution, in the sense of few learners or
other simplicity criteria, can also provide accurate predictions. It turns out that RVM
achieves both relatively well in many cases. In fact, one of RVMs advantages is that,
unlike using regularization to achieve sparsity, which can be computationally demand-
ing, RVM achieves sparsity by manipulating a Gaussian prior over the weights in the
expansion. Taking advantage of the normality of its main expressions, the RVM frame-
work simplifies and therefore speeds computations while maintaining sparsity.
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6.3.1 RVM Regression: Formal Description

To present the RVM, let D denote the data {(xi,yi), i = 1, ...,n}, with xxxi ∈ IRp and
yi ∈ IR. Using the representer theorem, kernel regression assumes that there exists a
kernel function K(·, ·) such that, for each new design point xxx, the response Y is a
random variable that can be expressed as a weighted sum of the form

Y =
n

∑
j=1

w jK(xxx,xxx j)+ ε, (6.3.1)

in which, without loss of generality, the intercept w0 has been set to zero. For notational
convenience, let www = (w1,w2, · · · ,wn)T and define the n-dimensional vector h(x) =
(K(x,x1),K(x,x2), ...,K(xxx,xxxn))T. Now, (6.3.1) can be rewritten as Y = η(www,xxx) + ε ,
where

η(www,xxx) = wwwTh(xxx). (6.3.2)

The representation in (6.3.1) is in data space and therefore is not a model specification
in the strict classical sense. The vector www is therefore not a vector of parameters in the
classical sense, but rather a vector of weights indicating the contribution of each term
to the expansion. In classical dimension reduction, the dimension of the input space is
reduced with consequent reductions in the dimension of the parameter space. Here, in
RVM (and SVM) the number of data points used in the expansion is reduced which
therefore reduces the dimension of www.

Achieving a sparse representation for RVM regression requires finding a vector www∗ =
(w∗1,w

∗
2, · · · ,w∗k) of dimension k << n and the corresponding function

h∗(xxx) = (K(xxx,xxx∗1),K(xxx,xxx∗2), ...,K(xxx,xxx∗k))
′,

so that
η∗(xxx,www) = www∗Th∗(xxx). (6.3.3)

Equation (6.3.3) corresponds to the sparse design and is based only on k well-chosen
support points xxx∗1,xxx

∗
2, · · · ,xxx∗k , called relevant vectors. Relevant vectors in RVMs are

analogous to support vectors in SVM.

There are a variety of ways to derive (6.3.3) from (6.3.2), each corresponding to a way
to choose the relevant vectors.

In principle, a regularization approach is possible. Given a p-dimensional predictor
variable xxx� = (x1,x2, · · · ,xp), a response variable Y , and the traditional linear model
E(Y |X = x) = α+∑ j β jx j with IID normal noise and squared error loss, the LASSO

estimate (α̂, β̂ ) of the parameters α and β� = (β1,β2, · · · ,βp) is

(α̂, β̂ ) = arg min

⎧⎨
⎩

n

∑
i=1

(
yi−α−∑

j
β jxi j

)2
⎫⎬
⎭ subject to ∑

j
|β j| ≤ λ , (6.3.4)
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where λ must be chosen by an auxiliary technique. In the present context, the regres-
sion function is η(w,x) and the L1 penalty would be used to reduce it to η∗(xxx,www),
thereby selecting which terms go into the expansion.

A simpler approach is truncation using a posterior threshold for a hyperparameter in a
Bayesian context. This approach seeks to circumvent the computational difficulties by
using a Gaussian prior on the weights www to induce closed-form expressions for almost
all the important estimation and prediction equations. To specify the RVM regression
in greater detail, write the matrix form of equation (6.3.1) as

Y = Hwww+ εεε, (6.3.5)

where yyy = (y1,y2, · · · ,yn)T, www = (w1,w2, · · · ,wn)T, εεε = (ε1,ε2, · · · ,εn)T, and

H =

⎡
⎢⎢⎢⎣

K(xxx1,xxx1) K(xxx1,xxx2) · · · K(xxx1,xxxn)
K(xxx2,xxx1) K(xxx2,xxx2) · · · K(xxx2,xxxn)

...
...

...
...

K(xxxn,xxx1) K(xxxn,xxx2) · · · K(xxxn,xxxn)

⎤
⎥⎥⎥⎦ . (6.3.6)

Also, suppose the error term in (6.3.5) is εi
IID∼ N(0,σ2) and the likelihood function for

an IID sample D is normal; i.e.,

p(y|H,www,σ2) = N(y|Hwww,σ2In). (6.3.7)

Now, the parameter vector θ = (www,σ2) is (n + 1)-dimensional, and there are n data
points for estimating it. This underdetermination is a problem because it leads to non-
unique solutions. This problem disappears (technically) if the variance σ2 is known,
but this is unrealistic in practice.

An alternative solution used in Tipping (2001) uses independent zero-mean normal
priors for the coefficients in wi. Thus, set

p(wi|αi) = N(wi|0,α−1
i ), (6.3.8)

so that p(www|α) = Nn(0,D), in which D = Diag(α−1
1 , . . . ,α−1

n ) and α denotes the vector
(α1,α2, . . . ,αn)T. Although a Gaussian prior will not usually give sparsity, it turns
out that using a Gamma hyperprior for each αi yields a Student-t marginal prior for
wi when αi is integrated out, and this leads to sparsity of a sort. Even though each
individual Student t for wi is no candidate for sparsity, their product p(www) =∏n

i=1 p(wi)
has a surface that induces a sparsity pressure on the space of www. More specifically, with

p(αi|a,b) = Gamma(αi|a,b), (6.3.9)

the marginal prior density for wi is

p(wi) =
∫

p(wi|αi)p(αi)dαi =
baΓ (a+ 1

2 )

(2π)
1
2Γ (a)

(b+w2
i /2)−(a+(1/2)). (6.3.10)
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With such a marginal prior for each wi, the prior for the vector www is a product of
independent Student-t distributions over the wis whose density surprisingly exhibits
sparsity. Tipping (2001) uses a two-dimensional case www = (w1,w2)T to show that with
such a prior the probability is concentrated at the origin and along the spines where
one of the weights is zero. Figure 6.1 shows the marginal density p(www) for the two-
dimensional case www = (w1,w2)T. The concentration of the prior on the ridges over the
coordinate axes induces a pressure toward sparsity. Products of univariate priors with
this property are sometimes called porcupine priors.

Fig. 6.1 The two-dimensional marginal prior for www = (w1,w2)T for a = 1 and b = 1.

Now, relevant vectors can be defined. First, suppose a weight wi has corresponding
variance α−1

i tending to zero. Then, by the prior specification of (6.3.8), the distribu-
tion of wi is sharply peaked at zero, and the corresponding vector xxxi is irrelevant. All
the vectors for which the variance α−1

i does not tend to zero are relevant vectors.

In practice, the RVM is easily determined by truncation: Choose a large threshold for
αi, and set α−1

i to zero if αi is greater than the threshold. This means that the relevant
vectors are only those for which the data do not permit the distribution of αi to be too
concentrated at zero. Even though this notion of relevance and the geometry of p(www)
suggests the sparsity of the prior, it remains to be seen how the prior combines with
the likelihood to give a sparse posterior density.

For simplicity, assume that σ2 is known. Therefore, from a Bayesian perspective, the
posterior is

p(www,α|yyy) ∝ p(y|H,www,σ2)p(www|α)p(α|a,b)

where the likelihood under normal noise with variance σ2 is

p(y|H,www,σ2) = (2πσ2)−
n
2 exp

{
− 1

2σ2 ‖y−Hwww‖2
}

,

with

p(www|α) =
n

∏
i=1

p(wi|αi) and p(α|a,b) =
n

∏
i=1

p(αi|a,b).

The marginal posterior p(www|y) is obtained from the joint posterior p(www,α|y) by inte-
gration and specification of the hyperparameters a and b. Ideally, this is done to ensure
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that p(www|y) has the same qualitative form as in p(www) in Fig. 6.1. That is, the effect of
the prior specification is to favor values of α along the axes or at the origin. Notice that
even with σ2 assumed known, the marginal posteriors,

p(www|y) =
∫

p(www,α|y)dα =
p(y|www)p(www)

p(y)

and

p(α|y) =
∫

p(www,α|y)dwww =
p(y|α)p(α)

p(y)
,

cannot be computed in closed form. However, empirical Bayes approximation tech-
niques can be used to obtain estimates of www and α . Alternatively, Markov chain Monte
Carlo techniques can also be used to explore the joint posterior p(www, α|y).

A quick derivation gives that the conditional posterior density for www is

p(www|α,σ2,y) = N(www;μ ,V),

where

V = (HTσ2InH+A)−1 and μ = VHTσ2.Iny.

A more elaborate yet still straightforward derivation shows that the marginal likelihood
p(y|α,σ2) is given by

p(y|α,σ2) = N(y;0,σ2In +HA−1HT),

where A = Diag(α1,α2, . . . ,αn) = D−1.

The two most important quantities, namely α and σ2, are estimated by finding the val-
ues that maximize ln p(y|α,σ2). As shown in Tipping (2001), it turns out that finding

(α̂, σ̂2) = arg max
α,σ2

ln p(y|α,σ2)

reduces to a two-step iterative procedure: Initialize α and σ2, and use them to obtain
the posterior covariance matrix V and the posterior mean μ . Then, let μi be the ith
component of μ and γi = 1−αiVii. The iteration proceeds by setting

α(new)
i =

γi

μ2
i

, (6.3.11)

finding

(σ2)(new) =
‖y−Hμ‖2

n−∑n
i=1 γi

, (6.3.12)

and then recalculating α and σ2 until convergence is reached. Using prior specifica-
tions (6.3.8) and (6.3.9), RVM typically gives a regression function that is more sparse
than SVM does and therefore often gives better predictive performance.
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Statistically, there is some characterization of the relevance vectors. Fokoue and Goel
(2006) suggest the relevant points yielded by RVM regression (or classification) co-
incide with the support points found through the D-optimality criterion. This suggests
that the optimal relevance vectors will often be relatively far apart. This is consistent
with Breiman’s observation that with stacking one gets better prediction if the regres-
sion functions being “stacked” are relatively dissimilar. Indeed, as the kernel achieves a
closer approximation to the function class in which the true function lives, the relevant
vectors seem to converge to the support points of the design.

6.3.2 RVM Classification

RVMs lead to classifiers in two ways. The first, which is not what is usually meant
by RVM classification, just uses RVM regression directly in a logistic classifier. The
second, which is what is commonly meant by RVM classification, couples a different
sort of logistic regression approach with Laplace’s method to achieve sparsity.

The first RVM-type classifier just uses the optimal model from the representer theorem
as in RVM regression to fit a logistic model to the probabilities

IP(Yi = 1|xxxi) =
1

1+ e−h(xxxi)
= g(h(xxxi)),

where g(z) = 1/(1+ e−z) and h(xxxi) is defined via the kernel K as before; i.e.,

h(xxxi) = w0 +
n

∑
j=1

w jK(xxxi,xxx j).

This is the logistic regression classifier of Chapter 5, but with a different regression
function, and can be logically developed as follows: As in the RVM regression, one can
assign priors to the w js by setting p(w j|α j) = N(0,1/α j) in which the αs are hyperpa-
rameters. A Gamma prior on the α js will give a Student’s t distribution marginally for
the w js as before. So, the same sort of sparsity can be obtained. In principle, imposing
a threshold on the αis by another procedure, empirical Bayes (essentially a maximiza-
tion with an ML type estimate), MCMC, or a variant on the earlier iterative procedure
is also possible. In general, defaulting to a product of normals as degrees of freedom
in the ts increase tends to give sparsity. Indeed, most products of independent priors
will lead to sparsity because they give porcupine priors.

The use of porcupine priors forces the distributions of w j to concentrate at zero, and
w js that are close enough to zero can be taken as zero, reducing the number of terms
in h(xxx). The classifier becomes

Ŷ (xxx) =

{
1 P(Y = 1|XXX = xxx) > 1/2

0 P(Y = 1|XXX = xxx)≤ 1/2.
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The xxx js for which αi 	= ∞ or, more generally, with w j 	= 0, are the relevant vectors.

To see the reason a second type of RVM classifier might be useful, note that this first
classifier ignores the fact that the regression function only needs to assume the values
0 and 1. The actual RVM classifier makes use of this restriction – and much more
besides. Indeed, the framework uses not just the representer theorem (which already
gives some sparsity) but also independence priors with hyperparameters (that are not
tied together by having been drawn from the same distribution) to achieve sparsity.

For binary classification, the actual RVM classifier still starts by assuming a logistic
regression model: For (xxxi,yi) with i = 1, . . . ,n, write

p(yyy|www) =
n

∏
i=1

[g(h(xxxi))]yi(1−g(h(xxxi)))1−yi . (6.3.13)

Clearly, the likelihood in (6.3.13) is not normal, so the posterior for the w js will not be
normal, and getting the sparsity by way of forcing some α js large enough to get con-
centration in the distribution of some w js will require a few extra steps. To be specific,
suppose N(0,1/αi) priors continue to be used for the wis and that σ is known; more
generally, a prior can be assigned to σ , too. Now, for n data points, yn = (y1, ...,yn),
and n parameters wn = (w1, ...,wn), the conditional density given the n hyperparame-
ters α = αn = (α1, ...,αn) is

p(yn|αn) =
∫

p(yn|wn)p(wn|αn)dwn. (6.3.14)

Tipping (2001) observes that (6.3.14) can be approximated, under some conditions,
by a constant independent of αn. The technique for seeing this is the Laplace ap-
proximation. Let N(wn∗) be a small neighborhood around the mode of p(wn|yn), and
approximate p(yn|αn) by

∫
N(wn∗)

exp

[
−n

(
1
n

ln
p(yn|wn∗)p(wn∗|αn)/p(yn|αn)
p(yn|wn)p(wn|αn)/p(yn|αn)

)]
dwn (6.3.15)

times p(yn|wn∗)p(wn∗|αn). The exponent in (6.3.15) is a log ratio of posteriors because
Bayes’ rule gives that p(wn|yn) = p(yn|wn)p(wn|α)/p(yn|α). As a function of wn, this
is minimized at wn∗ = wn∗(yn), so the exponent is maximized by wn = wn∗.

This is important because the Laplace approximation rests on the fact that the biggest
contribution to the integral is on small neighborhoods around the maximum of the
integrand, at least as n increases in some uniform sense in the Y ns. It is seen that
the maximum of the integrand is at the mode of the posterior, wn∗. So, a standard
second-order Taylor expansion of p(yn|wn)p(wn|αn) at wn∗ has a vanishing first term
(since it is evaluated at wn∗, for which the first derivative is zero), giving the term
(wn−wn∗)′J(wn−wn∗) in the exponent, in which J is the matrix of second partial
derivatives of ln p(yn|wn)p(wn|αn) with respect to wn. This means that the approxima-
tion to (6.3.15) is independent of the value of αn, at least when the reduction to the
neighborhood N(wn∗) is valid and higher-order terms in the expansion are ignored.
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The convergence of this Laplace approximation has not been established and cannot
hold in general because the number of parameters increases linearly with the number
of data points. However, the RVM classification strategy is to assume the Laplace
approximation works, thereby getting a normal approximation to p(wn|yn,αn) that
can then be treated as a function of the hyperparameters α j only. When this is valid,
the approximation can be optimized over the α js. Thus, in principle, large α js can be
identified and treated as infinite, resulting in distributions for their respective w js being
concentrated at 0, giving sparsity.

To see this optimization, begin with the Laplace approximation. The log density in the
exponent is

ln p(wn|yn,αn) = ln
p(yn|wn)p(wn|αn)

p(yn|αn)
(6.3.16)

=
n

∑
i=1

yi lng(h(xxxi))+(1− yi) lng(h(xxxi))−
1
2
(wn)′Awn +Error,

in which A = Diag(α1,α2, . . . ,αn) and Error is a list of terms that do not depend on
the αis; it is here that the approximation of the denominator in (6.3.16) by the Laplace
argument on (6.3.15) is used. (Note that the approximation depends on wn and J, which
is neglected in the next step; this is the standard argument and, although not formally
justified in general, appears to give a technique that works well in many cases.)

Taking Error as zero and differentiating with respect to the wis (remember h depends
on w) and setting the derivatives equal to zero gives the maximum (provided the second
derivative is negative). A quick derivation gives that g′ = g(1−g), so simplifying gives

∇ ln p(wn|yn,αn) =Φ ′(yn− (gh)n)−Awn, (6.3.17)

in which Φ = (K(xxxi,xxx j)). It is seen that the jth component of the left side is the
derivative with respect to w j and the jth component of the right side is

(K(xxx j,xxx1), ...,K(xxx j,xxxn)) · (yn− (g(h(xxx1)), ...,g(h(xxxn)))−α jw j.

Solving gives (wn)∗= A−1Φ ′(yn− (gh)n).

The second-order derivatives of (6.3.16) with respect to the wis give the variance ma-
trix for the approximating normal from Laplace’s method (after inverting and putting
in a minus sign). The second-order derivatives can be obtained by differentiating
∇ ln p(wn|yn,αn) in (6.3.17). The yn term differentiates to 0, and the wn drops out
since it is linear. Recognizing that differentiating the (gh)n term gives another Φ and
a diagonal matrix B = Diag((gh)(xxx1)(1− (gh)(xxx1)), ...,(gh)(xxxn)(1− (gh)(xxxn))), the
second-order term in the Taylor expansion is of the form

∇∇ ln p(wn|yn,αn) =−(Φ ′BΦ+A).

So, the approximating normal for p(wn|yn,αn) from Laplace’s method is

N((wn)∗,(Φ ′BΦ+A)−1),
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in which the only parameter is αn and the yn has dropped out; the xis remain, but they
are chosen by the experimental setup. Putting these steps together, Laplace’s method
gives an approximation for p(wn|yn,αn) ≈ p(wn|αn) in (6.3.16), which can also be
used in a Laplace’s approximation to

p(yn|αn) =
∫

p(yn|wn)p(wn|αn)dwn,

in place of the conditional density of wn; again this gives a normal approximation. Also
using the Laplace method principle – evaluating at (wn)∗ – gives

p(yn|αn)≈ p(yn|(wn)∗)p((wn)∗|α)(2π)n/2 det(Φ ′BΦ+A)−1.

The right-hand side can be optimized over αn by a maximum likelihood technique.
There are several ways to do this; one of the most popular is differentiating with respect
to each αi, setting the derivative to zero, and solving for αi in terms of w∗i for each i. If
σ is not assumed known, a variant on the two-step iterative procedure due to Tipping
(2001), described in (6.3.11) and (6.3.12), leads to a solution for the αis and σ together.

6.4 Hidden Markov Models – Sequential Classification

To conclude this chapter on Alternative methods, a brief look at a class of models based
on functions of a Markov chain is worthwhile. These are qualitatively different from
the earlier methods because hidden Markov models posit an incompletely seen level
from which observations are extracted. This is important in some application areas
such as speech recognition.

Unlike the earlier methods that supposed a single explanatory vector XXX could be used
to classify Y , suppose now a sequence of observations xxxi and the task is to choose a
sequence of classes yi when the classes are hidden from us. Moreover, the relationship
between the XXXis and Yis is indirect: Y is a state in principle never seen, and there is
one observation xxxi given Yi = yi from p(xxxi|yi) and the states y1,...,yn are themselves
evolving over time with a dependence structure.

The simplest model in this class is called a hidden Markov model. The states yi evolve
according to a discrete time, discrete space Markov chain, and the xxxis arise as functions
of them. It’s as if state yi has a distribution associated to it, say p(·|yi), and when yi

occurs, an outcome from p(·|yi) is generated. The conditional distributions p(·|yi),
where yi ∈ {1, ...,K} for K classes, or states as they are now called, are not necessarily
constrained in any way (lthough often it is convenient to assume they are distinct and
that the observed xs assume one of M < ∞ values). Sometimes this is represented
compactly by defining a Markov chain on the sequence Yi and taking only Xi = f (Yi)
as observed. In this case, it’s as if the conditional distribution for Xi is degenerate
at f (yi). This is not abuse of notation because the distribution is conditional on yi.
However, without the conditioning, there is still randomness not generally represented
by a deterministic function f .
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An example may help. Suppose you are a psychiatrist with a practice near a major
university. Among your practice are three patients: a graduate student, a junior faculty
member, and a secretary all from the same department. Exactly one of these three sees
you each month, reporting feelings of anxiety and persecution; because of confidential-
ity constraints, they cannot tell you who is primarily responsible for their desperation.
Each of these people corresponds to a value an observed Xi might assume, so M = 3.

After some years, you realize there is an inner sanctum of senior professors in the
department who take turns oppressing their underlings. In a notably random process,
each month one senior professor takes it upon him or herself to immiserate a graduate
student, a junior colleague, or the secretary. Thus, the number of hidden states is the
number of senior professors in the inner cabal. If there are four senior professors, then
K = 4. Given a senior professor in month i, say yi, the victim xi is chosen with proba-
bility p(xi|yi) determined by the whims of the senior professor. The Markov structure
would correspond to the way the senior cabal take turns; none of them would want
to do all the dirty work or get into a predictable pattern lest the anxiety of the lower
orders diminish.

The task of the psychiatrist given the sequence of patient visits would be to figure out
K, p(x|y), the transition matrix for the sequence of yis, and maybe the sequence y1,...,
yn from the sequence x1,..., xn.

To return to the formal mathematical structure, let Y1,...,Yt be a K state stationary
Markov chain with states a1,...,aK , initial distribution π(·), and a K ×K transition
matrix T with entries

τi, j = P(Y2 = a j|Y1 = ai). (6.4.1)

(This definition extends to other time steps by stationarity.) Now let Xi be another se-
quence of random variables, each assuming one of M values, b1,...,bM . The Xs depend
on the Y s by the way their probabilities are defined. So, let B be a K×L matrix with
entries

bl,m = P(X1 = bm|Y1 = al). (6.4.2)

Thus, the future chain value and the current observation both depend on Y1. By using
the Markov property (6.4.1) and the distribution property (6.4.2), given Yt = yt there
is a distribution on the bms from which is drawn the outcome xxxt seen at time t. The
model is fully specified probabilistically: If the ais, bis, T , B, M, K, and π are known,
then the probability of any sequence of states or observations can be found.

However, when there are several candidate models, the more important question is
which of the candidates matches the sequence of observations better. One way to infer
this is to use the model that makes the observed sequence most likely. In practice,
however, while the ais and bis, and hence the K and M, can often be surmised from
modeling, both T and B usually need to be estimated from training data and π chosen
in some sensible way (or the Markov chain must evolve long enough that the initial
distribution matters very little).
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The sequential classification problem is often called the decoding problem. In this case,
the goal is not to find a model that maximizes the probability of observed outcomes
but to infer the sequence of states that gave rise to the sequence of outcomes. This, too,
assumes the ais, bis, T , B, and π are known. So, given that a sequence of outcomes X1 =
xi1 ,...,Xn = xin is available, the task is to infer the corresponding states Y1 = a j1 ,...,Yn =
a jn that gave rise to them. This is usually done by the Viterbi algorithm.

Naively, one could start with time t = 1 and ask what ai1 is most likely given that xi1
was seen. One would seek

j1 = arg max
i

IP(Y1 = ai|X1 = xi1),

and then repeat the optimization for time t = 2 and so on. This will give an answer, but
often that answer will be bad because the observations are poor or it will correspond
to transitions for which ti, j = 0. The Viterbi algorithm resolves these problems by
imagining a K× t lattice of states over time 1, ..., t. States in neighboring columns are
related by the Markov transitions, and the task is to find the route from column 1 to
column t that has the maximum probability given the observations. The core idea is to
correct the naive algorithm by including the ti, j and bl,m in the optimization.

There are several other problems commonly addressed with this structure. One is to
estimate any or all of K, M, T , or B given the Xs and Y s. Sometimes called the learning
problem, this is usually done by a maximum likelihood approach. One way uses the
Baum-Welch algorithm, sometimes called the forward-backward algorithm; the for-
ward algorithm is used to solve the evaluation problem of finding the probability that
a sequence of observations was generated in a particular model. This can also be done
through a gradient descent approach. Another problem is, given the Xs, the Y s, and
two HMMs, which one fits the data better? While some ways to address this problem
are available, it is not clear that this problem has been completely resolved. See Cappe
et al. (2005) for a relatively recent treatment of the area.

6.5 Notes

6.5.1 Proof of Yang’s Oracle Inequality

This is a detailed sketch; for full details, see Yang (2001). Write

p f ,σ (xxx,y) =
1

σ(xxx)
h

(
y− f (xxx)
σ(xxx)

)

for the joint density of (XXX ,Y ) under f and σ2. For ease of notation, let superscripts
denote ranges of values as required. Thus, z j

i = {(xxx�,y�)|� = i, . . . , j} and, for the case
i = 1, write z j

1 = z j.

Now, for each i = n−N +1, ...,n, let
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qi(xxx,y;zn−N+2) =
∑ j≥1π j

(
Π i−1

�=n−N+1 p f̂ j,�,σ̂ j,�
(xxx�+1,y�+1)

)
p f̂ j,i,σ̂ j,i

(xxx,y)

∑ j≥1π j

(
Π i−1

�=n−N+1 p f̂ j,�,σ̂ j,�
(xxx�+1,y�+1)

) ,

the weighted average of the p f̂ j,i,σ̂ j,i
(xxx,y)s over the procedures indexed by j.

The error distribution has mean zero given xxx, but the distributions from qi(xxx,y;Zn−N+2)
have mean ∑ j Wj,i f̂ j,i(xxx) (in Y ). Taking the average over the qi(xxx,y;zn−N+2)s gives

ĝn(y|xxx) =
1
N

n

∑
i=n−N+1

qi(xxx,y,Zi), (6.5.1)

which is seen to be a convex combination of densities in y of the form h((y−b)/a) and
scales that depend on the data but not the underlying distribution IPX . In fact, ĝn is an
estimator for the conditional density of (Y |XXX = xxx) and satisfies Eĝn(Y |XXX = xxx) = f̄n(xxx).

Now consider a predictive setting in which there are n pairs of data (Yi,XXXi) for i =
1, ...,n and the goal is to predict (Y,XXX) = (Yn+1,XXXn+1). Denoting i0 = n−N +1, simple
manipulations give

n

∑
�=i0

E D (p f ,σ‖q�) (6.5.2)

=
∫
Π n

�=i0
p f ,σ (xxx�+1,y�+1) log

(
Π n

�=io
p f ,σ (xxx�+1,y�+1)

g(n)(zn+1
i0+1)

)
d(μ× IPX )n+1

i0+1,

in which D is the relative entropy and D( f‖g) =
∫

f log( f /g)dμ for densities f and g
with respect to μ . Also, in (6.5.2), g(n) is

g(n)(zn+1
i0+1) = ∑

j≥1
π jg j(zn+1

i0+1) and g j(zn+1
i0+1) =Π n

�=i0
p f̂ j,i,σ̂ j,i

(xxx,y).

Note that p f̂ j,i,σ̂ j,i
(xxx) is a density estimator that could be denoted p̂ j,i(xxx,y;x�) because

the � data points get used to form the estimator that is evaluated for (xxx,y).

Since g(n) is a convex combination and log is an increasing function, an upper bound
results from looking only at the jth term in g(n). The integral in (6.5.2) is bounded by
log(1/π j) plus

∫
Π n

�=i0
p f ,σ (xxx�+1,y�+1) log

(
Π n

�=io
p f ,σ (xxx�+1,y�+1)

g j(zn+1
i0+1)

)
d(μ× IPX )n+1

i0+1. (6.5.3)

Manipulations similar to that giving (6.5.2) for the convex combination of g js give
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n

∑
�=i0

ED(p f ,σ‖p̂ j,�)

=
∫
Π n

�=i0
p f ,σ (xxx�+1,y�+1) log

(
Π n

�=io
p f ,σ (xxx�+1,y�+1)

g j(zn+1
i0+1)

)
d(μ×PX )n+1

i0+1

for the individual g js. These individual summands D(p f ,σ‖p̂ j,�) can be written as

∫ (∫
1

σ(xxx)
h

(
y− f (xxx)
σ(xxx)

)
log

1/(σ(xxx))h((y− f (xxx)/σ(xxx)))
1/(σ̂ j,�(xxx))h((y− f̂ j,�(xxx)/σ j,�(xxx)))

μ(dy)

)
d(μ× IP)

=
∫ ∫

h(y) log
h(y)

(σ(xxx)/σ̂ j,�(xxx))h((σ(xxx)/σ̂ j,�(xxx))y+( f (xxx)− f̂ j,�(xxx))/ ˆσ j,�(xxx))
d(μ×IP)

≤ B

⎛
⎝∫

(
σ̂ j,�(xxx)
σ(xxx)

−1

)2

IP(dxxx)+
∫ (

f (xxx)− f̂ j,�(xxx)
σ(xxx)

)2

IP(dxxx)

⎞
⎠

≤ B
σ2

(∫
(σ(xxx)− σ̂ j,�(xxx))2IP(dxxx)+

∫
( f (xxx)− f̂ j,�(xxx))2IP(dxxx)

)
.

In this sequence of expressions, the first is definition, the second follows from a linear
transformation, the third follows from assumption (ii), and the fourth from (i) on the
variances.

Taken together, this gives

n

∑
i=i0

ED(p f ,σ‖q�)≤ log
1
π j

+
B
σ2

n

∑
�=i0

(
E‖σ2− σ̂2

j,�‖2 +E‖ f − f̂ j,�‖2) . (6.5.4)

The bound that is most central to the desired result is the fact that the convexity of the
relative entropy in its second argument gives

ED(p f ,σ‖ĝn)≤
1
N

n

∑
�=i0

ED(p f ,σ‖q�).

Using this, (6.5.4), and minimizing over j gives that ED(p f ,σ‖ĝn) is bounded above
by

inf
j

[
1
N

log
1
π j

+
B

Nσ2

n

∑
�=i0

E‖σ2− σ̂2
j,�‖2 +

B
Nσ2

n

∑
�=i0

E‖ f − f̂ j,�‖2

]
. (6.5.5)

The strategy now is to show that the left side of (6.5.4) upper bounds the squared error
of interest; that way the right-hand side (which is the desired upper bound) will follow.
There are two steps: First get a lower bound for the left side of (6.5.4) in terms of the
Hellinger distance and then verify that the Hellinger distance upper bounds the risk.
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Now, since the squared Hellinger distance d2
H is bounded by the relative entropy D,

(6.5.5) gives that Ed2
H(p f ,σ , ĝn) also has the right-hand side of (6.5.5) as an upper

bound. This is the first step.

For the second step, note that, for each xxx,

f̄n(xxx) = EĝnY =
∫

yĝn(y|xxx)μ(dy) estimates f (xxx) =
∫

yp f (xxx),σ(xxx)(xxx,y)μ(dy).

So, ( f (xxx)−EĝnY )2 equals the square of

∫
y
[√

p f (xxx),σ(xxx)(xxx,y)+
√

ĝn(y|xxx)
][√

p f (xxx),σ(xxx)(xxx,y)−
√

ĝn(y|xxx)
]
μ(dy).(6.5.6)

Using Cauchy-Schwarz and recognizing the appearance of d2
H(p f (xxx),σ(xxx)(xxx, ·), ĝn(·,xxx))

gives that (6.5.6) is bounded above by

2

(
f 2(xxx)+σ2(xxx)+

∫
y2ĝn(y|xxx)μ(dy)

)
×d2

H(p f (xxx),σ(xxx)(xxx, ·), ĝn(·,xxx)), (6.5.7)

in which the constant factor is bounded by 2(A2 +σ2). Integrating (6.5.7) over xxx gives
∫

( f (xxx)−EĝnY )2IPX (dxxx)≤ 2(A2 + σ̄2)
∫

d2
H(p f (xxx),σ(xxx)(xxx, ·), ĝn(·,xxx))IPX (dxxx).

Thus, finally,

E

∫
( f (xxx)− f̄n(xxx))2IPX (dxxx) ≤ 2(A2 + σ̄2)Ed2

H(p f ,σ , ĝn)

≤ 2(A2 + σ̄2) inf
j

[
1
N

log
1
π j

+
B

Nσ2

n

∑
�=i0

E‖σ2− σ̂2
j,�‖2

+
B

Nσ2

n

∑
�=i0

E‖ f − f̂ j,�‖2

]
,

establishing the theorem. �

6.5.2 Proof of Lecue’s Oracle Inequality

Let a > 0. By the Proposition in Section 1.6.2, for any f ∈F ,

A( f̃n)−A∗ = (1+a)(An( f̃n)−An( f ∗))+A( f̃n)−A∗ − (1+a)(An( f̃n)−An( f ∗))

≤ (1+a)(An( f )−An( f ∗))+(1+a)
logM

n
+ A( f̃n)−A∗ − (1+a)(An( f̃n)−An( f ∗)). (6.5.8)
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Taking expectations on both sides of (6.5.8) gives

E[A( f̃n)−A∗] ≤ (1+a) min
f∈F

(A( f )−A∗)+(1+a)
logM

n

+ E
(
A( f̃n)−A∗ − (1+a)(An( f̃n)−An( f ∗))

)
. (6.5.9)

The remainder of the proof is to control the last expectation in (6.5.9).

Observe that the linearity of the hinge loss on [−1,1] gives

An( f̃n)−A∗ − (1+a)(An( f̃n)−An( f ∗))
≤ max

f∈F
[An( f )−A∗ − (1+a)(An( f )−An( f ∗))] . (6.5.10)

Also, recall Bernstein’s inequality that if |Xj| ≤M, then

IP

(
n

∑
i=1

Zi > t

)
≤ e

− t2/2

∑EZ2
i +Mt/3 (6.5.11)

for any t > 0.

Now,

IP (An( f̃n)−A∗ − (1+a)(An( f̃n)−An( f ∗))≥ δ )
≤ ∑

f∈F

IP(An( f )−A∗ − (1+a)(An( f )−An( f ∗))≥ δ )

≤ ∑
f∈F

IP

(
An( f )−A∗ − (An( f )−An( f ∗))≥ δ +a(A( f )−A∗)

1+a

)

≤ ∑
f∈F

exp

(
− n(δ +a(A( f )−A∗)2)

2(1+a)2(A( f )−A∗)1/κ +(2/3)(1+a)(δ +a(A( f )−A∗))

)
,

(6.5.12)

in which (6.5.10), some manipulations, and (6.5.11) were used. Note that in the appli-
cation of Bernstein’s inequality, Zi = Emax(0,1−Y f (Xi))−Emax(0,1−Y f ∗(Xi))−
(max(0,1−Y f (Xi))−max(0,1−Y f ∗(Xi))), and the identity An = 2Rn is used. Re-
ducing the difference of two maxima to the left-hand side of (6.1.27) by recognizing
the occurrences of probabilities where f and f ∗ are different gives (6.5.12).

The main part of the upper bound in (6.5.12) admits the bound for all f ∈F ,

(δ +a(A( f )−A∗)2)
2(1+a)2(A( f )−A∗)1/κ +(2/3)(1+a)(δ +a(A( f )−A∗))

≥Cδ 2−1/κ ,(6.5.13)

where C = C(a), not necessarily the same from occurrence to occurrence.

Taken together, this gives a bound for use in (6.5.9):

IP(An( f̃n)−A∗ − (1+a)(An( f̃n)−An( f ∗))≥ δ )≤ Ke−nCδ 2−1/κ
. (6.5.14)
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To finish the proof, recall that integration by parts gives

∫ ∞

a
ebtαdt ≤ e−baα

αbaα −1
.

So, for any u > 0, the inequality EZ =
∫ ∞

0 P(Z ≥ t)dt can be applied to the positive
and negative parts of the random variable in (6.5.14) to give

E(An( f̃n)−A∗ − (1+a)(An( f̃n)−An( f ∗)))≤ 2u+M
e−nCu2−1/κ

nCu1−1/κ . (6.5.15)

Now, some final finagling gives the theorem. Let X = Me−X have the solution X(M).
Then log(M/2) ≤ X(M) ≤ logM, and it is enough to choose u such that X(M) =
nCu2−1/κ . �

6.6 Exercises

Exercise 6.1. Consider a data set D = {(yi,xxxi), i = 1, ...,n} and suppose φn(xxx) is a
predictor formed from D . Fix a distribution P on D and resample independently from
D . For each bootstrap sample there will be a φ̂n(xxx). Aggregate the φ̂ns by taking an
average, say, and call the result φ(xxx,D). For any predictor φ write

E(φ) = EP(Y −φ(xxx))2

for its pointwise (in xxx) error. Thus,

E(φ(xxx,D) = EP(Y −φ(xxx,D))2

is the pointwise error of φ(xxx,D and

E(φA) = EP(Y −φA(xxx,D)))2,

where
φA(xxx,D) = EDφ(xxx,D)

is the average bootstrap predictor.

Show that E(φA)≤ E(φ(xxx,D).

Exercise 6.2 (Stacking terms). Consider a data set D = {(yi,xxxi), i = 1, ...,n} gener-
ated independently from a model Y = f (xxx)+ε where ε is mean-zero with variance σ2.
Suppose f is modeled as a linear combination of terms B j(xxx) assumed to be uncorre-
lated. That is, let

J

∑
j=1

a jB j(xxx)
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be the regression function. One estimate of f is

f̂ (xxx) =
J

∑
j=1

β̂ jB j(xxx),

in which the â js are estimated by least squares; i.e.,

{β̂1, ..., β̂J}= arg min
{β1,...,βJ}

n

∑
i=1

(
yi−

J

∑
j=1

β jB j(xxx)

)2

.

1. Show that the bias is

E
(

f̂ (xxx)− f (xxx)
)2 =

Jσ2

n
.

2. What does this result say about “stacking” the functions B j? Can you generalize
this to stacking other functions, sums of B js for instance?

Exercise 6.3 (Boosting by hand). Consider a toy data set in the plane with four data
points that are not linearly separable. One of the simplest consists of the square data
Y = 1 when xxx = (1,0),(−1,0) and Y = −1 when xxx = (0,−1),(0,1). Note that these
are the midpoints of the sides of a square centered at the origin and parallel to the axes.

1. Choose a simple weak classifier such as a decision stump, i.e., a tree with exactly
two leaves, representing a single split. Improve your decision stump as a classifier
on the square data by using T = 4 iterations of the boosting procedure. For each
t = 1,2,3,4, compute εt , αt , Ct , and Dt(i) for i = 1,2,3,4. For each time step, draw
your weak classifier.

2. What is the training error of boosting?

3. Why does boosting do better than a single decision stump for this data.

Exercise 6.4 (Relative entropy and updating in boosting). Recall that the boosting
weight updates are

Dt+1(i) =
Dt(i)e−αt yiht (xi)

Ct
,

where

Ct =
n

∑
i=1

Dt(i)e−αt yiht (xi)

is the normalization. It is seen that Dt+1 and is a “tilted” distribution, i.e., multiplied
by an exponential and normalized. This form suggests that one way that Dt+1 could
have been derived is to minimize a relative entropy subject to constraints. The relative
entropy between two successive boosting weights is

RE(Dt+1‖Dt) =
n

∑
i=1

Dt+1(i) ln
Dt+1(i)
Dt(i)
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and represents the redundancy of basing a code on Dt when Dt+1 is the true distribu-
tion. Show that given Dt , Dt+1 achieves a solution to

minimize RE(Dt+1‖Dt)

subject to ∀ i Dt+1(i)≥ 0,
n

∑
i=1

Dt+1(i) = 1,

∑n
i=1 Dt+1(i)yiht(xi) = 0.

(6.6.1)

(Notice that the last constraint is like insisting on a sort of orthogonality between ht

and Dt+1 implying that a weak learner should avoid choosing an iterate too close to
ht .)

Exercise 6.5 (Training error analysis under boosting). Let ht be a weak classifier at
step t with weight αt , denote the final classifier by

H(xxx) = sign( f (xxx)), where f (xxx) =
T

∑
t=1

αtht(xxx),

and recall the training error of ht is εt = ∑n
i=1 Dt(i)1ht (xxxi) 	=yi

. (See Section 6.1.4 or the
previous Exercise for more notation.)

The point of this exercise is to develop a bound on the training error.

1. Show that the final classifier has training error that can be bounded by an exponen-
tial loss; i.e.,

n

∑
i=1

1H(xxxi) 	=yi
≤

n

∑
i=1

e− f (xxxi)yi ,

where yi is the true class of xxxi.

2. Show that
1
n

n

∑
i=1

e− f (xxxi)yi =ΠT
t=1Ct .

(Remember e∑i gi =Πiegi , D1(i) = 1/n, and ∑i Dt+1(i) = 1.)

3. Item 2 suggests that one way to make the training error small is minimize its bound.
That is, make sure Ct is as small as possible at each step t. Indeed, items 1 and 2
together give that εtraining ≤ΠT

t=1Ct . Show that Ct can be written as

Ct = (1− εt)e−αt + εt e
αt .

(Hint: Consider the sums over correctly and incorrectly classified examples sepa-
rately.)

4. Now show that, Ct is minimized by

αt =
1
2

ln

(
1− εt

εt

)
.
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5. For this value of αt , show that Ct = 2
√
εt(1− εt).

6. Finally, let γt = 1/2− εt . Show

εtraining ≤ΠtCt ≤ e−2∑t γ2
t .

(Note the importance of this conclusion: If γt ≥ γ for some γ > 0, then the error
decreases exponentially.)

7. Show that εt ≤ .5 and that when εt = .5 the training error need not go to zero. (Hint:
Note that, in this case, the Dt(i)s are constant as functions of t.)

Exercise 6.6. Kernel methods are flexible, in part because when a decision boundary
search is lifted form a low-dimensional space to a higher-dimensional space, many
more decision boundaries are possible. Whichever one is chosen must still be com-
pressed back down into the original lower-dimensional data space. RVMs and SVMs
are qualitatively different processes for doing this lifting and compressing. Here is one
way to compare their properties, computationally.

1. First, let K(xxx,yyy) = (xxx ·yyy+1)2 be the quadratic kernel. Verify that when xxx = (x1,x2)
the effect of this K is to lift xxx into a five dimensional space by the feature map

Φ(xxx) = (x2
1x2

2,
√

2x1x2,
√

2x1,
√

2x2,1).

2. What is the corresponding Φ if K(xxx,yyy) = (xxx · yyy+1)3?

3. Generate a binary classification data set with two explanatory variables that cannot
be linearly separated but can be separated by an SVM and an RVM. Start by using
a polynomial kernel of degree 2. Where are the support points and relevant points
situated in a scatterplot of the data? (Usually, support vectors are on the margin be-
tween classes whereas relevant vectors are in high density regions of the scatterplot
as if they were a typical member of a class.)

4. What does this tell you about the stability of RVM and SVM solutions? For in-
stance, if a few points were changed, how much would the classifier be affected? Is
there a sensible way to associate a measure of stability to a decision boundary?

Exercise 6.7 (Regularization and Gaussian processes). Consider a data set D =
{(xxxi,yi) ∈ IRp+1, i = 1,2, · · · ,n} generated independently from the model

Y = f (xxx)+ ε,

with ε IID∼ N(0,σ2) but that no function class for f is available. To make the problem
feasible, write

yyy = fff + εεε,

where fff = ( f (xxx1), f (xxx2), · · · , f (xxxn))� = ( f1, f2, · · · , fn)�, yyy = (y1,y2, · · · ,yn)�, and
εεε = (ε1,ε2, · · · ,εn)�. Also, assume fff and εεε are independent and that fff ∼ N(000,bΣΣΣ) for
some strictly positive definite matrix ΣΣΣ .
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1. Let λ = σ2/b. Show that

E( fff |yyy) = ΣΣΣ(ΣΣΣ +λ I)−1yyy. (6.6.2)

Hint: Note that ( fff�yyy�)� is normal with mean 000 and covariance matrix that can

be written as

(
A C

C� B

)
, where A = Var( fff ), B = Var(yyy), and C = Cov( fff ,yyy). stan-

dard results giving the conditional distributions from multivariate normal random
variables give that E[ fff |yyy] = CB−1yyy.

2. Deduce that the posterior mean f̂ff n = E( fff |yyy) can be represented as a linear smoother.

3. Consider classical ridge regression; i.e., find fff to minimize the regularized risk

Rλ ( fff ) = ‖yyy− fff‖2 +λ fff�ΣΣΣ−1 fff .

a. Show that Rλ ( fff ) is minimized by

fff λ = (I+λΣΣΣ−1)−1yyy.

b. Show that fff λ can be written in the form of (6.6.2).

c. Show that the posterior mean of fff given yyy is the ridge regression estimate of fff
when the penalty is fff�ΣΣΣ−1 fff .

Exercise 6.8. Using the setting and results of Exercise 6.7, do the following.

1. Verify that the risk functional Rλ ( fff ) in item 3 of 6.7 can be written as

Rλ ( fff ) =
1
n

n

∑
i=1

(yi− f (xxxi))2 +λ‖ fff‖2
HK

,

where HK is a reproducing Kernel Hilbert space and ‖ f‖2
HK

is the squared norm of
f in HK for some kernel function K(·, ·).

2. Identify a Gaussian process prior for which ‖ f‖2
HK

reduces to fff�ΣΣΣ−1 fff .

3. How does the kernel K appear in the representation of the estimator f̂ = E[ fff |yyy]?
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Computational Comparisons

Up to this point, a great variety of methods for regression and classification have
been presented. Recall that, for regression there were the Early methods such as bin
smoothers and running line smoothers, Classical methods such as kernel, spline, and
nearest-neighbor methods, New Wave methods such as additive models, projection
pursuit, neural networks, trees, and MARS, and Alternative methods such as ensem-
bles, relevance vector machines, and Bayesian nonparametrics. In the classification
setting, apart from treating a classification problem as a regression problem with the
function assuming only values zero and one, the main techniques seen here are linear
discriminant analysis, tree-based classifiers, support vector machines, and relevance
vector machines. All of these methods are in addition to various versions of linear
models assumed to be familiar.

The obvious question is when to use each method. After all, though some examples
of these techniques have been presented, a more thorough comparison remains to be
done. A priori, it is clear that no method will always be the best; the “No Free Lunch”
section at the end of this chapter formalizes this. However, it is reasonable to argue that
each method will have a set of functions, a type of data, and a range of sample sizes for
which it is optimal – a sort of catchment region for each procedure. Ideally, one could
partition a space of regression problems into catchment regions, depending on which
methods were under consideration, and determine which catchment region seemed
most appropriate for each method. This ideal solution would amount to a selection
principle for nonparametric methods. Unfortunately, it is unclear how to do this, not
least because the catchment regions are unknown.

There are three ways to characterize the catchment regions for methods. (i) One can,
in principle, prove theorems that partition the class of problems into catchment regions
on which one method is better than the others under one or another criterion. (ii) One
can, systematically, do simulation experiments, using a variety of data types, models,
sample sizes, and criteria in which the methods are compared. (iii) The methods can be
used on a wide collection of real data of diverse types, and the performance of methods
can be assessed. Again, the conclusions would depend on the criterion of comparison.
Cross-validation would give different results from predictive mean integrated squared
error, for instance. The use of real data can highlight limitations of methods and
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provide assessments of their robustness. An extra point often ignored is that real data
are often far more complex than simulated data. Indeed, methods that work well for
simulated data may not give reasonable results for highly complex data.

The first approach promises to be ideal, if it can be done, since it will give the greatest
certainty. The cost is that it may be difficult to use with real data. On the other hand, the
last two approaches may not elucidate the features of a data set that make it amenable
to a particular method. The benefit of using data, simulated or real, is that it may
facilitate deciding which method is best for a new data set. This is possible only if it
can be argued that the new data have enough in common with the old data that the
methods should perform comparably. Obviously, this is difficult to do convincingly; it
would amount to knowing what features of the method were important and that the new
data had them, which leads back to the theoretical approach that may be infeasible.

Here, the focus will be on simulated data since the point is to understand the method
itself; this is easier when there really is a true distribution that generated the data. Real
data can be vastly more difficult, and a theoretical treatment seems distant.

The next section uses various techniques presented to address some simple classifica-
tion tasks; the second section does the same, but for regression tasks. In most cases,
the R code is given so the energetic reader can redo the computations easily – and test
out variations on them. The third section completes the discussion started at the end
of Section 7.2 by reporting on one particular study that compares fully ten regression
methods. After having seen all this, it will be important to summarize what the overall
picture seems to say – and what it does not.

7.1 Computational Results: Classification

The effectiveness of techniques depends on how well they accomplish a large range
of tasks. Here, only two tasks will be examined. The first uses Fisher’s iris data – a
standard data set used extensively in the literature as a benchmark for classification
techniques. The second task uses a more interesting test case of two-dimensional sim-
ulated data just called Ripley’s data.

7.1.1 Comparison on Fisher’s Iris Data

As a reminder, Fisher’s iris data are made up of 150 observations belonging to three
different classes, with each class supposed to have 50 observations. Each sample has
four attributes relating to petal and sepal widths and lengths; one class is linearly sepa-
rable from the other two but those two are not linearly separable from each other. Let’s
compare the performances of three of the main techniques: recursive partitioning, neu-
ral nets, and SVMs. (Nearest neighbors, for instance, is not included here because the
focus of this text is on methods that scale up to high dimensions relatively easily.) It is
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seen that these three techniques represent completely different function classes – step
functions, compositions of sigmoids with linear functions, and margins from optimiza-
tion criteria. Accordingly, one may be led to conjecture that their performances would
be quite different. Curiously, this intuition is contradicted; it is not clear why.

First, we present the results. The contributed R package rpart gives a version of recur-
sive partitioning. Here is the R code:

library(rpart)
sub <- c(sample(1:50, 25), sample(51:100, 25),
sample(101:150, 25))
fit <- rpart(Species ˜ ., data=iris, subset=sub)
table(predict(fit, iris[-sub,], type="class"),
iris[-sub, "Species"])

The data are randomly split into a training set with 75 observations and a test set with
75 observations. The application of rpart to the iris data produces the confusion matrix
in Table 7.1 from its predictions. The confusion matrix gives the actual and predicted
classifications done by a classification system so that classifiers can be evaluated. In
the 2×2 case, there are a true and false positive rate and a true and false negative rate.
More generally, the proportion correct is called the accuracy. For Fisher’s iris data,
recursive partitioning has an accuracy of 72/75, or 96%.

setosa versicolor virginica
setosa 25 0 0
versicolor 0 25 3
virginica 0 0 22

Table 7.1 Confusion matrix for rpart and Fisher’s iris data. There are exactly three misclassifications,
out of 75, of virginica as versicolor.

The contributed R package nnet gives (see Table 7.2) a version of recursive partition-
ing. Since neural nets are rough (i.e., the surface formed by a squared error fit criterion
as a function of the architecture and coefficients in a large class of neural nets has many
peaks and valleys, often with very complicated topography) it is rare to fit neural nets
as is. Typically, they are regularized. That is, a penalty term with a decay coefficient
is added. In nnet, a squared error fit criterion is regularized by λ times a squared er-
ror penalty on the coefficients in the net. (Note that this is a variance–bias trade-off,
conceptually separate from a random search as in simulated annealing, for instance,
which can be used with neural networks to avoid finding a solution that gets trapped in
a local optimum far from the global optimum.)

As with rpart, nnet trains a neural net procedure on 75 randomly selected observa-
tions. For a single hidden layer, the default value λ = 5× e−4 gives 19 nodes in the
hidden layer. Alternatively, the number of nodes in the hidden layer could have been
chosen by cross-validation or by any other procedure that achieves a good trade-off
between the bias of too few nodes and the excess variance from too many nodes. Now,
the confusion matrix produced by the test points is:
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setosa versicolor virginica
setosa 21 0 0
versicolor 0 25 0
virginica 4 0 25

Table 7.2 Confusion matrix for nnet and Fisher’s iris data. There are exactly four misclassifications,
out of 75, of setosa as virginica.

For Fisher’s iris data, neural nets have an accuracy of 71/75, or 94.67%.

The contributed R package e1071 gives (see Table 7.3) an implementation of support
vector machines. Again, the data are split into a training set of 75 randomly selected
observations, with the remaining 75 set aside for testing. The kernel used for the SVM
in this case is Gaussian with a bandwidth of 0.25. On the 75 training points, SVM
selects 36 support vectors and produces the following confusion matrix:

setosa versicolor virginica
setosa 25 0 0
versicolor 0 24 0
virginica 0 1 25

Table 7.3 Confusion matrix for e1071 and Fisher’s iris data. There is exactly one misclassification,
out of 75, of versicolor as virginica.

Note that, in general, SVMs will not fit a training set perfectly. The optimization finds
the best margin but is not usually flexible enough to match all test cases perfectly.
This can be seen as a liability or as an effort to summarize the variation in the data
efficiently, if imperfectly.

The confusion matrix on the remaining 75 test points is given in Table 7.4.

setosa versicolor virginica
setosa 24 0 0
versicolor 1 24 2
virginica 0 1 23

Table 7.4 Confusion matrix for e1071 and Fisher’s iris data. There are exactly four misclassifica-
tions, out of 75, of setosa as versicolor, of versicolor as virginica and two of virginica as versicolor.

For Fisher’s iris data, SVMs have an accuracy of 71/75, or 94.67%.

The curious fact is that all three methods perform well, with almost the same accuracy.
This can have several interpretations. First, it is possible that the three methods really
are comparable on this data set. Indeed, it is possible that the classification task is
actually rather easy, so that routine tuning of the three methods can readily perform
well. Second, it is possible that one of the methods is much better or much worse than
the other two and this is being masked by the relatively coarse tuning and application
here. If the best (although unknown) method were applied carefully (e.g., with a well-
chosen tuning parameter or kernel or other variant on the defaults used here), then it
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would be revealed as better than at least one of the two others. Third, it is possible
that many standard methods have been applied to many standard data sets such as
Fisher’s iris data, and most packages will therefore do rather well since they have been
developed on benchmark data sets. Without careful work, it would be impossible to
discriminate among these possibilities.

Ensemble methods, which can scale up quite effectively, are not examined compu-
tationally here because they are often complex, as they are not individual functions.
Ensemble-based procedures are typically better for prediction than individual regres-
sors or classifiers. This is partially because they are the result of a more involved op-
timization and partially because ensemble-based procedures take model uncertainty
into account. In fact, R computing packages for boosting, random forests, and BART
(among other techniques) are readily available to complete the comparison of proce-
dures this section only initiates for the reader.

7.1.2 Comparison on Ripley’s Data

As a second comparison of some of the classification methods here, consider the well-
known 2D Ripley data set. This consists of two classes, where the data for each class
were generated by a mixture of two normal distributions. The training set has 250
observations, with 125 from each of the two classes. The test set has 1000 observations,
with 500 from each class. The training set is contained in the file synth.tr. The test set
is in the file synth.te. Both are easy to find on the web. Each of the 350 rows of data has
three entries: a point in the plane and a code of 0 or 1 for the class. The two classes are
strongly overlapping, so the performance of any classifier is limited. That is, Ripley’s
data are not linearly separable in the space in which they are represented as can be seen
in Fig. 7.1.

Again, the performance of recursive partitioning, NNs, and SVMs can be compared. A
fourth classifier, RVMs, is also included because it seems to be extremely effective for
achieving sparsity. Note that the use of real data is generally a poor initial evaluation
of the effectiveness of a technique. It is only on simulated data, or other data where
the correct answer is known, that one can determine whether a technique has come
close to uncovering the correct answer. Attempting to use a real but ill-understood
phenomenon to understand a new and not understood technique can all too easily be
a case of obscurum per obscurius – explaining the obscure by the more obscure. It is
only after a technique is at least provisionally understood that it makes sense to use
the technique to say something about real-world data generators – or to let real-world
generators that are well understood say something new about the technique.
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7.1.2.1 Recursive Partitioning

Again, using the R package rpart and defaulting to its standard inputs will give a sense
of how recursive partitioning works. For instance, the splitting rule is Gini, and ten-
fold cross-validation is used to find an optimal tree. Thus, within each cross-validation
run, minimal cost-complexity pruning is used to find the optimal tree for that run. Note
that even though a specific tree generated from one-tenth of the data is chosen from all
the cross-validation candidates, all of the data are used in providing the collection of
trees being compared as well as in the validation. The R code is:

library(rpart)
data(synth.tr)
data(synth.te)
t.tr <- class.ind( c(rep("0", 125), rep("1", 125)) )
t.te <- class.ind( c(rep("0", 500), rep("1", 500)) )
rpart.rip.fit <- rpart(t.tr ˜ xs + ys, data=synth.tr)
test.cl <- function(true, pred)
true <- max.col(true)
cres <- max.col(pred)
table(true, cres)
test.cl(t.tr, predict(rpart.rip.fit, synth.tr[,-3]))
test.cl(t.te, predict(rpart.rip.fit, synth.te[,-3]))

The confusion matrices are in Table 7.5. The training error from the sample of 250 is
seen to be 22/250 = 8.8% from the left-hand table. The test error from the sample of
1000 is seen to be 100/1000 = 10%. As expected, the training error (or fitted error)
that results from applying the optimal tree to the data that generated it is a little better
than the test error (or generalization error, or out-of-sample error) that results from
applying the optimal tree to new data not used in forming it.

class 1 class 2
class 1 120 5
class 2 17 107

class 1 class 2
class 1 472 28
class 2 72 428

Table 7.5 Confusion matrices for rpart and Ripley’s 2D data. The training set is used on the right,
the test set on the left.

An important point is that trees are a very rich class and therefore have a tendency to
be unstable in the sense that small changes in the procedure or data that generated a
tree can lead to sharply different trees. Another way to say this is that if there were
a standard error one could associate to a tree, it would be larger than for many other
model classes that are smaller or in which estimation is more robust.
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7.1.2.2 Neural Networks

As with the iris data, using the R package nnet and defaulting to its standard inputs will
give a sense for how neural nets perform. The nnet package iteratively minimizes the
squared error criterion, possibly including a penalty term, using a technique similar to,
but more sophisticated than, standard backpropagation. The optimization is called the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method after its creators. It is regarded as
one of the best techniques for solving nonlinear optimization problems (in the absence
of constraints).

Like backpropagation, the BFGS method is derived from Newton’s method. Both are
“hill-climbing” procedures that seek the point where the gradient of a function is 0.
Recall that Newton’s method locally approximates the function by a quadratic on a
region around the optimum, using the first and second derivatives to find the stationary
point. The BFGS method uses a quasi-Newton approach. The Hessian matrix of second
derivatives of the objective function does not need to be computed; instead it is updated
by using gradient vectors. The details of the procedure are beyond the present scope;
they are numerical analysis.

In practice, nnet only applies to single hidden layer networks. It defaults to the logistic
function as a sigmoid and to 100 iterations of the procedure for finding a solution.
Another default is that the factor λ on a squared error penalty term is set to zero.
However, as with the iris data, the standard value λ = e−4 is used here. There seems
to be some insensitivity to the choice of λ in Ripley’s data, but there are also many
cases where there is high sensitivity, too, in which case λ should be chosen more
carefully, possibly by CV or by any one of numerous other search techniques that have
been developed. It can be argued that nonzero values of λ give solutions that are prior
driven since the squared error penalty term may be seen as a normal prior on a normal
likelihood with its exponent given by the squared error loss term. However, the penalty
term helps ensure that the solution gives a good fit on a rough surface, which is more
important unless the value of λ used is unreasonably large.

The R code is:

library(MASS)
library(nnet)
data(synth.tr)
data(synth.te) t.tr <- class.ind( c(rep("0", 125),
rep("1",125)) )
rpart.rip.fit <- rpart(t.tr ˜ xs + ys,
data=synth.tr)
test.cl <- function(true, pred)
true <- max.col(true)
cres <- max.col(pred)
table(true, cres)
nnet.rip.fit <- nnet(t.tr ˜ xs + ys, size=16,
decay=5e-4, data=synth.tr)
test.cl(t.tr, predict(nnet.rip.fit, synth.tr[,-3]))
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t.te <- class.ind( c(rep("0", 500), rep("1", 500)) )
test.cl(t.te, predict(nnet.rip.fit, synth.te[,-3]))

To use nnet effectively, it is standard to run the program on the same data for a variety
of choices of the number of nodes in the hidden layer. Here, the range from 10 to 20
was used – with some hindsight from a series of test runs. For each number of nodes,
a fitted error can be found or CV can be used. The result is that 16 hidden nodes gives
the best trade-off between high bias when the number of hidden nodes is too small and
high variance when the number of hidden nodes is too large. The result is the typical
V-shape associated with bias–variance trade-off. With nnet, this error is calculated
internally.

Of some concern in the present is that if no initial value for the parameter vector is
given, then nnet chooses an initialization at random. Thus, in general, running the
same routine on the same data without changing any component in the function call
generates different solutions. This is not surprising since neural nets suffer from multi-
ple local optima because they are very rough and strongly nonlinear. It is plausible that
the differences between solutions result from the underlying minimizer getting trapped
in local minima. This instability can be reduced by pooling the predictions from multi-
ple runs, possibly by majority vote, to get improved prediction; essentially this makes
NNs into an ensemble method.

In Tables 7.6 and 7.7, are two runs of the nnet routine on Ripley’s 2D classification
data set. Each row corresponds to one run; on the left is the confusion matrix based
on the original 250 observations from the sample, and on the right is the confusion
matrix generated from predicting the class memberships of the 1000 out-of-sample
observations. It is seen that the confusion matrices from the two runs are meaningfully
different.

class 1 class 2
class 1 115 10
class 2 12 113

class 1 class 2
class 1 460 40
class 2 76 424

Table 7.6 Confusion matrices for one run of nnet on Ripley’s 2D data. The training set is used on
the left, the test set on the right.

class 1 class 2
class 1 119 6
class 2 13 112

class 1 class 2
class 1 460 40
class 2 88 412

Table 7.7 Confusion matrices for a second run of nnet on Ripley’s 2D data. The training set is used
on the left, the test set on the right.

On average, therefore, the training error is (1/2)(22 + 19)/250 = 8.2%, while the
test error remains around (1/2)(116 + 128)/1000 = 12.2%. Recall that the training
error produced by recursive partitioning was 8.8%, just a little higher than for NNs.
The test error of trees, however, was much smaller at 10%, compared with 12.2% for
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neural networks. This is surprising, as one would expect more overfitting from trees
than from neural nets (since trees are far more flexible for identifying regions) and
therefore a better generalization error from neural nets than from trees.

Note that, for Ripley’s data, both neural nets and trees give slightly worse performances
than they did for the iris data. This may be because Ripley’s classification problem is
harder even though its dimension is lower. The nonseparability of classes limits the
effectiveness of any technique.

7.1.2.3 SVMs

As with the Iris data, using the R package e1071 and defaulting to its standard in-
puts will give a sense for how SVMs perform. Recall that the central mathematical
idea in SVM optimization is the conversion of the geometric problem to a quadratic
optimization problem, possibly with a kernel. Many quadratic optimizers exist; any
optimization package that solves linearly constrained convex quadratic problems can
be used. The svm command uses a procedure based on an interior point method for
nonlinear programming (see Vanderbei and Shanno (1999)) a concise summary is in
homepages.cwi.nl/˜sem/Lunteren/vanderbei1.ps.

The svm command is also good for regression using the ε-insensitive loss (see below),
sometimes called C-classification to emphasize the cost C appearing in the optimiza-
tion problem. In svm, the default value is C = 1 in the Lagrangian. In addition, the
default bandwidth in the RBF kernel is 1/p, where p is the dimension of xxx. For Rip-
ley’s data, this is 1/2; for the iris data, it was 1/4. The default error criterion for the
optimization is .001. Finally, the λ is chosen internally as a tuning parameter. It could
be done using a CV technique but in fact is done by a routine called sigest within the
kernlab package. sigest uses a technique based on looking at quantiles of the norms
of differences between the explanatory variables. In practice, any quantile between the
10th and 90th is believed to work satisfactorily.

Here, svm was used on Ripley’s data with radial basis function kernels (other kernels
are possible). The test error was 9%, a little better than for trees or neural nets, probably
because of the sparsity. The decision boundary for SVMs, along with the data set, can
be seen in the top panel in Fig. 7.1. The two classes are denoted by pluses (top part
of the panel) and “x”s (mostly in the lower part); when they are on a black line, it
means that the data point was a support vector for its class. The decision boundary is
the lighter streak running from .8 up to the top of the frame and then turning down to
give the lighter boundary meeting the bottom f the frame near .45. Although unusual
in two dimensions, this is not surprising because the point of kernel methods is to get
linearity in the transformed space. Once this is transformed back to the original space,
the appearance can be highly nonlinear.

There are 103 support vectors; this is a large number relative to the 250 vectors in the
training set, so the SVM solution is not sparse at all. In terms of test error, SVMs do a
little better than neural nets and trees. Note that some of the support vectors are quite
far from the two-dimensional boundary. In the transformed space, this distance may be
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Fig. 7.1 Top: SVM on Ripley’s data. The points in the two classes are indicated by plus and x. Solid
dots indicate support points and it is seen that the decision boundary passes through many of them.
Note that in contrast to the SVM classification in the lower panel, the curves are much more undulating
and complicated. This is so because they are projected down into two dimensions from a much higher
dimensional space. (Although svm is the easiest package to use, the top panel was generated from
another package which gives more esthetic black-and-white graphics.) Bottom: RVM fit on Ripley’s
data. The points on the lower portion are mostly class 1 and the points on the upper portion are mostly
class 2. Relevance vectors are indicated with small circles. The curves above and below the decision
boundary indicate where the probability of membership in a class was between .25 and .75; each point
is in its class of higher probability.
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much smaller because nonlinear, nonseparable SVMs often do a good job of isolating
regions. This occurs because a large, diverse collection of functions are permitted to
define a decision boundary.

7.1.2.4 RVMs

A Matlab implementation of SparseBayes V1.0 is available from Tipping’s webpage

http://research.microsoft.com/mlp/RVM/default.htm

and using its standard inputs will give a sense of how RVMs perform. Despite their
differences, it is reasonable to compare SVMs and RVMs because both generate solu-
tions that depend on selecting data points to give sparsity. The key difference is that
SVMs are a maximum marginal distance criterion over a collection of functions that
represent decision boundaries, while RVMs (for classification) come from Bayesian
logistic regression and a series of normal approximations, so the prior forces sparsity.

The implementation of RVMs used Laplace’s method for asymptotic normality. In
particular, the differentiation with respect to the αis to maximize the likelihood for yn

with the wis integrated out is called a Type II maximum likelihood since it pertains
to the hyperparameters rather than to the parameters themselves. The hyperparameters
are thresholded as in the two-step iterative procedure.

In Fig. 7.1, a radial basis function kernel is used on the 2D Ripley data. The two
classes are denoted by light and dark dots. There are four relevant vectors, indicated
by circles around the dots. The decision boundary is the middle curve. The upper
and lower curves result from connecting points that have high enough probabilities
of being in their respective classes. That is, the upper margin connects the points that
have probability at least .75 of being class 2. This is similar to, but different from,
saying one-quarter of the data are above the upper curve and one-quarter below the
lower curve, leaving 50% between them.

Like SVMs, RVMs give a closed-form expression for the decision boundary in terms
of some data points and the kernel but in terms of the four relevant vectors rather than
the 103 support vectors. Thus, as is typical, RVMs give more sparsity than SVMs and
in this example RVMs also give a smaller test error, 8.6% versus 9% for SVMs. Also,
as is seen in this example, the relevant vectors tend to be close to where typical points
from classes would be in contrast to SVMs, where the support vectors track, indeed
define, the boundary. Indeed, it is tempting to identify the four relevant vectors with
the means of the four normals used to generate Ripley’s data.

The good performance of RVM’s for the Ripley data, better than the other three meth-
ods, is probably typical for this class of examples, but of course will not necessarily
extend to others. Recall that RVM is a succession of approximations from the way
it handles the logistic model to the Laplace approximation that it uses to turn non-
normal conditional likelihoods into approximate normal quantities for analytic and
computational tractability. Thus, the structure of Ripley’s data, mixtures of normals,
may make the normal approximation perform better than the originally hypothesized
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logistic model. Indeed, if the data to be classified comprise groups that are approxi-
mately normal or mixtures of groups that are approximately normal, then the normal
approximation may make the model fit the data better. This would lead RVMs to have
better performance than would otherwise be the case.

7.2 Computational Results: Regression

In this section, the performance of six of the methods presented in Chapters 4, 5, and
6 are assessed on two functions. The first, called Vapnik’s sinc function is

yV =
sinx

x
on [−5π,5π].

Its appearance can be seen in any of the graphs in the next section. Despite its mathe-
matical form, it is a smooth real-valued function of a single real variable. It is a “nice”
function in that it doesn’t have discontinuities, corners, or even high curvature. It is
symmetric with one global maximum at 0 and smaller local maxima and minima of
decreasing amplitude as x moves away from 0.

The second function, called Friedman’s function is

yF = 10sin(πx1x2)+20(x3−5)2 +10x4 +5x5 on [0,1]5.

It is a real-valued function of five variables. When used as a test case, often extra
variables are simulated so that the regression task involves finding the correct variables
as well as finding the correct functional form for the correct variables. Being a surface
in five dimensions, it is difficult to describe the shape of this function. However, it is a
smooth function, and its intersections with the coordinate planes are harmless, as can
be seen in figures from the subsection on GAMs.

The six regression methods to be applied to these functions are trees, neural nets,
SVMs, RVMs, GAMs and Gaussian processes. This covers all the major classes, apart
from spline based methods, examples of which were seen at the end of Chapter 3. Note
that the comparisons given here, like the earlier ones for classification, are based on
defaults. Thus, the conclusions might change if a more sophisticated application of the
methods were used. Moreover, the two functions considered here are both relatively
nice and simple. They do not represent functions typical of applications, which will of-
ten be more complicated. As a consequence, methods intended for much more difficult
functions may not be well suited to YV and YF . Indeed, there is evidence that complexity
concepts are germane to regression: More complex methods (e.g., trees) may perform
better on refractory functions than simpler methods do, while simpler methods (e.g.,
Gaussian processes) may perform better on simpler problems than more complicated
methods do.
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7.2.1 Vapnik’s sinc Function

To get data representative of the Vapnik function, choose 1000 equally spaced points x
in the interval [−5π,5π]. For each of these points, generate a YV value from

YV =
sinx

x
+ ε,

where ε is N(0,0.22). Next, randomly draw n = 100 points from the 1000 values of
x. These xis with their corresponding yV,is, for i = 1, ...,100, form the data to be used
for training a model. The remaining 900 points are set aside for estimation of the test
error. The R-code for defining the function is:

f <- function(x)
r <- sqrt(apply($xˆ2$,1,sum))
r <- x
z <- sin(r)/r
z[is.na(z)] <- 1
return(z),

and the R code for generating the data is:

m <- 1000
n <- 100
pop <- seq(-5*pi,5*pi, length=m)
train <- sample(m,n)
x <- sort(pop[train])
w <- sort(pop[-train])
noise <- rnorm(length(x), mean=0, sd = 0.2)
y <- f(x) + noise
v <- f(w) + rnorm(length(w), mean=0, sd = 0.2)

The six techniques are evaluated on the basis of training error and test error, as well
as the root mean square error for these. Also, the estimated functions are plotted along
with the data and the actual function so the fit can be seen. For trees and neural nets the
R packages rpart and nnet continue to be used. For generalized additive models, the
package gamair is used. For the remaining three regression techniques, SVM, RVM,
and Gaussian process priors for regression (GPs) the contributed R package kernlab
is used. It provides ready-to-use R functions for many supervised (and unsupervised)
learning techniques.

As with classification, the use of real data to determine how well a regression technique
performs is generally not possible unless a fair amount is already known about the data.
It may be possible to compare techniques with each other in a predictive sense on a
particular data set, but the conclusions will not necessarily generalize. Here, the task
is to understand the basics of the techniques, so the examples involve simulated data.
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7.2.1.1 Regression Trees on sinc

For regression trees, the rpart default is to ANOVA splitting, meaning that the impu-
rity criterion is the reduction in the sum of squares as a consequence of a binary split
at a node. Other splitting criteria are possible but are often used for more specialized
purposes, like survival trees. The cost-complexity function is also based on squared
error, and tenfold cross-validation is used, as in the classification setting. The R code
is the following:

sinct <- data.frame(w,v)
sinc <- data.frame(x,y)
rpart.sinc <- rpart(y˜x,data=sinc)
rpart.sinc.fit <- predict(rpart.sinc,sinc)
rpart.sinc.tst <- predict(rpart.sinc, sinct)
sqrt(mean((v-rpart.sinc.tst$)ˆ2$))
plot(x, y)
lines(x, f(x), col = 2)
lines(x, rpart.sinc.fit, col = 4)

The fitted or training error is∑100
i=1(yi− ŷi)2/100 = .0586; the corresponding expression

for the test error on the holdout data is much larger at .2285. Thus, the RMSE = .478. A
better evaluation would be to compute the test error for a large number of independent
data sets and take the average. Each data set would generate a graph as in Fig. 7.2,
which shows the plot of the fitted curve, the data, and sinc. (In fact, one could take the
average of such curves to give predictions.) It is common for fitted errors to be smaller
than generalization errors because of the variance bias tradeoff: Usually, the variance
for the fitted and predicted values will be much the same, but the bias for the predicted
will be much larger than for the fitted. In most of the examples given here, this will
typically be observed. The only way to avoid this would be to tolerate more bias in the
fitted values, but there is no guarantee there will be a corresponding reduction in the
bias of the predictions.

Looking closely at the figure, it is seen that there are seven leaves – one for each value
of the step function; the value of the fitted function at a point is roughly the average of
the data points in the bin it represents. That is, the value about .8 on [−2,2] is roughly
the average of the six data points above .8 and the six or seven data points below .8. The
fitted function tracks the five biggest modes of the sinc function but flatlines beyond
±10 and so misses the finer structure. Of course, trees are discontinuous and sinc is
smooth, so even though there are limiting senses in which trees can approximate any
function, the approximation can be poor for any reasonable number of leaves if the
leaves divide one region finely but leave other regions summarized by too few leaves.
In addition, the class of trees is very large, and multiple trees can provide roughly
equally good fits to a given data set.
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Fig. 7.2 Recursive partitioning model fit on the sinc function.

7.2.1.2 NNs on sinc

As with classification, the R package nnet permits selection of a NN model on the
basis of the number of nodes in a single hidden layer (the size) and the magnitude
of the weight or decay on the penalty term used for regularization. While NNs have
impressive theoretical properties, in practice they can be exquisitely sensitive to the
data and optimization routine. This makes them somewhat unstable unless the analyst
is very experienced. One consequence of this is that the test error is not as reliable an
indicator for fit as one might want: The entire curve can be biased up but have small
test error or can have some points where fit is extremely good interspersed with points
where it is poor, giving an extremely rough approximation. Indeed, often “connecting
the dots” from estimating at the design points gives a curve that is quite different in
appearance from the true model. It is usually necessary to examine a residual plot and
look at the estimated function to see if it looks reasonable.

To explore the neural net fits, consider using two, three, four or five nodes and three
values of λ , say 5, 2.5, and 1.25. The R code to generate the fits is:

library(nnet)
nn.model <- nnet(t(x), t(y), size=3, linout = FALSE,
entropy = FALSE, softmax = FALSE, censored = FALSE,
skip = FALSE, rang = 0.7, decay = 0.05, maxit = 100,
Hess = FALSE, trace = TRUE, MaxNWts = 1000,
abstol = 1.0e-4, reltol = 1.0e-8)
nn.pred <- predict(nn.model,t(x))
plot(x, y) lines(x, f(x), col = 2) lines(t(x), nn.pred,
col = 4)
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The actual coefficients can also be obtained, but usually these are not very informative
due to lack of interpretability. The test and training errors can be compiled into tables
for the 12 cases. The test errors are

2 3 4 5
5 .1291 .1671 .1223 .1467

2.5 .1107 .1819 .1904 .0990
1.25 .1634 .1337 .1021 .0948

and the training errors are

2 3 4 5
5 .0515 .4664 .0401 .0784

2.5 .0308 .0247 .0175 .1028
1.25 .1634 .0092 .0048 .1944

Taken together, these tables suggest the best fit has three or four nodes, but the predic-
tively best nets have five nodes (or more). In fact, NNs with five nodes have a fairly
large number of parameters relative to the sample size n = 100. (Using six nodes leads
to bizarre fits, sometimes even flat lines.) So, for the sake of sparsity, it’s better to look
further at three or four nodes; predictively, it is well known that more parameters will
often give better predictions because of better fit, but only if there are enough data to
estimate them. In addition, the fit seems to be better with smaller values of λ , say less
than 1.25. The small value for λ = 2.5 and two nodes is a little isolated from the other
small values and may be an anomaly.

Before examining the new cases, this first collection of errors suggests, it’s good to
look at the actual fits of the 12 neural nets generated (see Figs. 7.3–7.6). It can be seen
that two or five nodes give poor fit: Neural nets with two nodes seem unable to match
the central mode of sinc well and five nodes leads to biased-looking curves.
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Fig. 7.3 Neural network fits for the sinc function for h = 2 nodes in the single hidden layer and decay
λ = 5,2.5,1.25. These curves have a hard time fitting the central mode.
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Fig. 7.4 Neural network fits for the sinc function for h = 3 nodes in the single hidden layer and decay
λ = 5,2.5,1.25. These curves fit the central mode but are quite rough in the tails.
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Fig. 7.5 Neural network fits for the sinc function for h = 4 nodes in the single hidden layer and decay
λ = 5,2.5,1.25. These curves fit the central mode but are even rougher in the tails.
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Fig. 7.6 Neural network fits for the sinc function for h = 5 nodes in the single hidden layer and decay
λ = 5,2.5,1.25. These curves are so unstable that they have high variability and high bias; they do
not capture any features of sinc accurately.
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Given this, consider four further plots for three or four nodes and values .5 and 5×10−4

for the decay. The corresponding table for the test errors is

3 4
.5 .2951 .2499

.0005 .2054 .2511

and for the training errors is

3 4
.5 .0012 .0010

.0005 3.29×10−9 1.49×10−9

The corresponding fits are seen in Figs. 7.7 and 7.8.
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Fig. 7.7 Neural network fits for the sinc function for h = 3 nodes in the single hidden layer and decay
λ = .5,10×10−4.

These plots roughly suggest that the better the neural net fits the central mode, the
more unstable it appears to the left and right of the main mode. There is a continual
tendency for the fitted curve to be systematically below the sinc curve around the main
mode. Overall, it looks as though four nodes with .5 decay provides as good a fit as
will be achieved, although three nodes with a larger decay also looks reasonable.

7.2.1.3 SVMs on sinc

Recall that SVMs were developed in Chapter 5. kernlab is an R package authored
by Alexandros Karatzoglou, Alex Smola, and Kurt Hornik to implement some of the
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Fig. 7.8 Neural network fits for the sinc function for h = 4 nodes in the single hidden layer and decay
λ = .5,10×10−4.

most popular kernel methods used in statistical machine learning. The version of kern-
lab used here was published in the Journal of Statistical Software, (Vol. 11, Issue 9,
2004). Of relevance here, kernlab covers the RVM (only regression), the SVM (re-
gression and classification), and Gaussian processes. kernlab also covers a variety of
other kernel-based techniques, such as kernel PCA and kernel canonical correlation,
as well as providing some quadratic programming routines and Cholesky decomposi-
tions. Like all R packages, it can be downloaded straight from the R project site, and
readily used by invoking library(kernlab). A good way to start is to download Karat-
zoglou et al. (2004) or get the manual from within R itself. Typing help(ksvm) from
the R prompt (command line) provides details on how kernlab implements SVMs
including kernel choice, estimating tuning parameters, the default value of some con-
stants, and so forth. This help also lists references to the main research articles used in
implementing the package.

For the SVM estimation, the function ksvm is used. In the present case, the R code for
using a radial basis function kernel is:

library(kernlab)
ksvm.model $\leftarrow$ ksvm(x, y, scaled = TRUE,
kernel ="rbfdot", kpar = "automatic", type="eps-svr",
epsilon = 0.1, cross = 3, fit = TRUE, tol = 0.001)
ksvm.fit <- predict(ksvm.model, x)
ksvm.tst <- predict(ksvm.model, w)
x11()
plot(x,y, lty = 0, main = "SVM estimation")
lines(x, f(x), lty = 1)
lines(x,ksvm.fit, lty = 2)
legend("topright", c("data", "true", "SVM fit"),
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lty = c(0, 1, 2), pch = c(0, 1, 2), merge = TRUE)
[this computes training and test errors]
ksvm.tr.err <- sqrt(mean((y-ksvm.fit$)ˆ2$))
ksvm.ts.err <- sqrt(mean((v-ksvm.tst$)ˆ2$))

The earlier discussion on the defaults in svm for classification continues to apply here.
In addition, the default for ε-insensitive loss regression in SVM is ε = .1 and for the
cost is C = 1.

Now, the estimation yields the fit shown on the right in Fig. 7.9. On the left, the same
commands are used, but for the Laplace kernel. The training and testing errors are
shown in the table below; as in other cases, they are square rooted so the error is the
RMSE. The output from these computations gives that there are 93 support vectors
with the Laplace kernel and a few less, 89, with the RBF kernel.

RBF Laplace
Train .1930 .1021
Test .2293 .2601

The errors shown in the table are typical in that the test error on the holdout set is larger
than the fitted error for each kernel. Note that the RBF kernel has a larger fitted error
than the Laplace but a smaller test error than the Laplace. This suggests that the cusp
in the Laplace kernel helps pile mass on the data points but that this strategy does not
generalize as well as letting the mass spread out a little more the way the RBF kernel
may do. As can be seen in the figure, the Laplace kernel gives a choppier appearance,
which fits well in regions of high curvature but not so well in regions of low curvature.
Otherwise, the fitted curves are similar because both Laplace and RBF are unimodal.

Kernels that are polynomial in the inner product may not do as well as kernels that
are more general unimodal functions of the inner product unless the components of
the function are conveniently expressed in terms of inner products; e.g., polynomials
in 〈xn,xnew〉. Thus, RBF or other unimodal kernels may summarize the components of
general functions better. Indeed, as expected, spline and polynomial kernels with the
sinc function data yielded poor results: The fitted curve was essentially a straight line
with a slight positive slope, nothing like the sinc function.

Although not shown here, the support vectors tend to track the curve; in fact, SVM
regression was designed for good generalization error. An important fact about SVMs
in general is Cover’s theorem (see Cover (1965)) which states that any data set becomes
arbitrarily separable as the dimension of the space in which it is embedded grows. That
is, one can always find a space with high enough dimension to separate points linearly.
The limitation is that it may be hard to find Φ and it may have poor generalization
error. In classification, it is clear that the support points track the boundary; indeed
define the boundary, however, in SVM regression, it is hard to state an analog of this.
It is not clear how the support points situate themselves relative to the curve in general.
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Fig. 7.9 SVM fit on data drawn from a noisy sinc function. The RBF kernel was used to generate the
left panel and the Laplace kernel was used on the right.

7.2.1.4 RVMs on sinc

Recall, RVMs were developed in Chapter 6. To assess the performance of the RVM
method on sinc, the same package, kernlab, is used, this time through its function
rvm. The R-code is:

library(kernlab)
rvm.model <- rvm(x, y, type = "regression",
kernel = "rbfdot", kpar = "automatic", alpha = 5, var
= 0.1, iterations = 100, verbosity = 0, tol =
.Machine\$double.eps, minmaxdiff = 1e-3, cross = 0,
fit =TRUE)
rvm.fit <- predict(rvm.model, x)
rvm.tst <- predict(rvm.model, w)
x11() <- plot(x,y, lty = 0, main = "RVM estimation")
lines(x, f(x), lty = 1)
lines(x,rvm.fit, lty = 2)
legend("topright", c("data", "true", "RVM fit"), lty = c(0, 1, 2),
pch = c(0, 1, 2), merge = TRUE)
[compute the training and test errors]
rvm.tr.err <- sqrt(mean((y-rvm.fit$)ˆ2$))
rvm.ts.err <- sqrt(mean((v-rvm.tst$)ˆ2$))

Here, kpar indicates the parameters (if any) in the kernel; the defaults for the RBF are
used above. Also, alpha indicates the initial vector of regression coefficients, var indi-
cates the initial noise variance, and iterations, verbosity, tol, and minmaxiff indicate
properties of the numerical convergence. (cross = 0 means that CV is not used.)
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The fits provided by RVM for the RBF, Laplace, and spline kernels are given in Fig.
7.10. The corresponding training (estimation) and test (out-of-sample) errors for these
cases are in the table below.

RBF Laplace Spline
Train .2108 .1703 .200
Test .2098 .2100 .3500

Surprisingly, the test error for the RBF is smaller than its training error. This is likely
just an anomaly since the two are very close. The Laplace and RBF kernels are roughly
comparable, but the spline kernel has an unusually large test error, indicating that while
it can fit the data it doesn’t readily permit generalization, possibly because a function
like x logx is increasing for x > 1 and so is much like using a linear or polynomial
kernel, whereas RBF and Laplace kernels are unimodal
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Fig. 7.10 Relevance vector machine fits on data drawn from a noisy sinc function using, from left to
right, the RBF, Laplace, and spline kernels.

The computations also show that there are 32 relevant vectors for the spline kernel,
seven for the RBF, and eight for the Laplace. This is much lower than the number of
support vectors for SVMs, but RVMs were designed mainly for sparsity, as opposed
to generalization error. In classification contexts, the relevant points often appear to be
prototypical points so that data points often cluster around them. It is not clear what
the analogous interpretation for RVM regression is.

Note that the regression functions used for predictions from both the SVM and RVM
regression procedures are of the form

f (xxx) =
n

∑
i=1

αiK(xxxi,xxx),

where most of the αis are zero. The terms with αi 	= 0 correspond to the xxxis that are
support vectors or relevant vectors. That is, the prediction of a new value is based on
how far xxxnew is from certain carefully chosen data points already obtained. Typically, it
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is the support or relevant vectors farthest from xxxnew that contribute most to the function
value at xxxnew since K(xxxi,xxx) is largest for them. This is counterintuitive since most
nonparametric methods try to approximate function values at new design points by
the function values at the design points closest to them. However, this seems to be a
general property of kernel methods emerging from the representer theorem (see Zhu
and Hastie (2001)) where kernel logistic regression is developed and a regularized
classification scheme based on logistic regression is presented, leading to the “import
vector machine”.

7.2.1.5 Gaussian Processes on sinc

Recall that GPs were discussed in Chapter 6 under Bayesian nonparametrics. Because
of the recent interest in GPs as a technique for regression, it is interesting to see how
they compare with the other frequentist techniques here. Within the kernlab package,
the function gausspr can be used to obtain a Gaussian process fit for the sinc function.

GPs are specified by a mean and a covariance function. The mean is a function of
xxx (which is often the zero function), and the covariance is a function r(xxx,xxx′), which
expresses the expected covariance between the value of the function f at the points
xxx and xxx′. The actual function f (xxx) in any data-modeling problem is assumed to be a
single sample from this Gaussian distribution. Various rs can be chosen; here they are
taken to be kernels so that r(xxx,xxx′) = K(xxx,xxx′) and the RBF kernel is the default.

In the model Y = f (xxxi)+ εi, where the εis are assumed N(0,σ2), the posterior distri-
bution is

p(yn| f (xxx1), ..., f (xxxn)) = [Π n
i=1 p(yi− f (xxxi))]×

e(1/2)fK−1f√
(2π)n det(K)

,

where K = (K(xxxi,xxx j))i, j=1,...,n, f = ( f (xxxi), ..., f (xxxn)), and p(·) indicates the density of
εi. Writing f = Kα and taking the log gives

ln p(α|yn) =− 1
2σ2 ‖y

n−Kα‖2− 1
2
α ′Kα+ const,

so maximizing the log over α leads to the posterior mode α̂ = (K + σ2)−1yn and
therefore leads to fitted values and predictions from

y(xxxnew) = (K(xxxnew,xxx1), ...,K(xxxnew,xxxn))′α̂.

Essentially, this is like taking n observations and treating the n + 1 as a random vari-
able, getting its conditional distribution given all the other variables, and taking the
conditional mean. Thus, the posterior given the first n observations becomes the prior
for predicting the n+1.

The R code for implementing this is:

library{kernlab}
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gpr.sinc $\leftarrow$ gausspr(x, y)
gpr.sinc.fit <- predict(gpr.sinc, x)
gpr.sinc.tst <- predict(gpr.sinc, w)
x11()
plot(x,y,lty = 0,main ="Gaussian process estimation")
lines(x, f(x), lty = 1)
lines(x,gpr.sinc.fit, lty = 4, col=4)
legend("topright", c("data", "true", "GP fit"),
lty = c(0, 1, 2), pch = c(0, 1, 2), merge = TRUE)
[Compute the training and test error] \newline
(gpr.tr.err <- sqrt(mean((y-gpr.sinc.fit$)ˆ2$)))
(gpr.ts.err <- sqrt(mean((v-gpr.sinc.tst$)ˆ2$)))

The fit is shown in Fig. 7.11; the RMS training (estimation) and test (out-of-sample)
errors are .1967 and .2164 for the left panel and .17 (train) and .207 (test) for the right
panel, respectively. Doing this twice for a new set of identically generated data gives
an indication of how stable the results would be. In this case, the similarity is very
high in terms of RMSE, but the fit on the right is clearly better in that it matches the
secondary modes. These comparisons are even more important for higher-dimensional
problems, which are harder to visualize, as will be seen with the Friedman function. In
the present case, the RBF kernel is particularly well suited to the normal noise in the
data and another kernel is not likely to perform as well.
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Fig. 7.11 Gaussian process prior fit on data drawn from a noisy sinc function. The left panel has
predictive error .2164 and the right has .207.
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7.2.1.6 Generalized Additive Models on sinc

Unlike some other methods, the generalized additive model fit is smooth right away.
The R package used here, gamair, provides a simple routine for fitting GAMs with a
variety of choices for the random component (Gaussian, binomial, Poisson, etc.). Next,
we present a fit obtained for the sinc function, under Gaussian noise.

The gam command fits the specified GAM to the data. Each term is estimated using
regression splines; in the penalized case, the smoothing parameters are selected by
GCV or by an unbiased risk estimator akin to the AIC. This uses a combination of
Newton’s method in multiple dimensions and steepest descent to adjust a set of relative
smoothing parameters iteratively. For univariate terms in the GAM, cubic regression
splines are used. (In the two-dimensional case, thin-plate splines are used.) Below, the
choice of Gaussian means that the identity link function is called; others are possible.
The notation y∼ s(x) means that the target function is approximated by a single smooth
based on x that gives the predicted values. The R code is:

library(gamair)
library(mgcv)
[This is the library that actually has the GAM code]
gam.sinc.model <- gam(y˜s(x), family=gaussian)
oldx <- data.frame(x)
newx <- data.frame(w)
gam.sinc.fit <- predict.gam(gam.sinc.model,oldx)
[This provides the fit]
gam.sinc.tst <- predict.gam(gam.sinc.model,newx)
[This provides the test]
(tr.err <- mean((y-gam.sinc.fit$)ˆ2$))
(ts.err <- mean((v-gam.sinc.tst$)ˆ2$))
plot(gam.sinc.model,pages=1,residuals=TRUE,
all.terms=TRUE, shade=TRUE, shade.col=2)

For the sinc function data, the training error is .0481 and the test error is .1093, which
is relatively good compared with the other methods. However, the one-dimensional
case is not a severe test: A GAM devolves to a spline smoother which is good in
simple settings. The output here is graphed in Fig. 7.12; the shaded portion indicates a
95% confidence interval for each of the function values at the design points, connected
so as to look like a region rather than a collection of intervals at the xis. The curve itself
runs along the center of the shaded region.

7.2.2 Friedman’s Function

The Friedman #1 function has been used extensively to assess the performance of re-
gression techniques. All the predictors (explanatory variables) xi are drawn from a
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Fig. 7.12 Generalized additive model fit on the sinc function.

uniform distribution in [0,1], so the input space is the unit hypercube in five dimen-
sions. The noise term is a mean-zero normal with SD = 1. All the training errors here
are based on a single run for each method on a sample of size n = 200. The test errors
are empirical averages based on r = 100 runs each on a new sample of size 200 drawn
from the data generator used in training.

7.2.2.1 Test and Training Errors

The six methods used for the sinc function were applied using the same defaults and
packages to the Friedman function. First, the training and test errors are recorded in
the table below. The standard deviation of the test errors is in brackets on the last row
of the table.

Trees NN GP SVM RVM GAM
Training Error 2.4229 0.8314 1.5325 1.5026 1.1023 1.3558

Test Error 6.6751 1.3384 6.6124 6.7931 7.0259 6.7073
(0.2741) (0.0678) (0.2775) (0.2804) (0.2871) (0.3042)

In the results given in this table, the RBF kernel was used for both SVM and RVM, with
automatic determination of the bandwidth parameter. In this case, the SVM method
retained 149 support vectors while the RVM method only kept 33 relevant vectors a
substantial difference. For neural networks, the optimal model seemed to result from
using nine nodes in the single hidden layer with a decay of 5× 10−4. For trees, the
package rpart selected a model with 16 leaves and, as before, the tree model assigned
the mean to the points in the leaf rather than fitting a more complicated model. In this
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case, the tree model did quite well: It was quite sparse and, given the splitting rule as
before, had few parameters. Knowing the support often counts more than knowing the
functional form, especially in smaller sample sizes or higher dimensions.

Recall that, as seen for the results for the sinc function, each of the methods has a tun-
ing parameter that must be selected. These selections are done internally to the pack-
ages to ensure a trade-off between variance and bias that is well motivated, even if its
performance is not always ideal or comparable from method to method. NNs, GAMs,
RVM and SVM all have tuning parameters representing the strength of a penalty term;
GAMs because of the penalty on the splines. Trees have tuning parameters related to
the cost-complexity function. In GPs, the kernel itself tunes the posterior because it
defines the dependence structure.

It is difficult to assess how well any of the methods fit the data. Indeed, with p ≥ 3
explanatory variables, only 2D slices intersecting the hypersurface in p+1 dimensions
can be easily visualized to give an assessment of fit; the problem is that there are so
many of them that it is hard to search the whole p-dimensional domain effectively.

Nevertheless, in this example, the computations show that NNs do best among the six
methods in a predictive sense. This is reasonable given the richness and smoothness
of the model class. In particular, NNs escape the Curse of Dimensionality, at least
in a limited sense, and NNs can readily approximate any continuous function, so the
theoretical properties of NNs match what one wants for a good approximation to the
Friedman #1 function. The counterintuitive part in their good performance is that they
are so rough, as seen earlier with the sinc function. It may be that the roughness is
harder to detect as the dimension increases because distances between points tend to
get bigger. That is, increasing the dimension may give the impression of smoothing out
some roughness because of the extra “space” that the errors do not detect because there
are no data there. In other words, the assessments of error may not be very sensitive in
the regions where the roughness and consequent poor performance may be lurking. Of
course, these statements are necessarily tentative because choosing a different target
function may give very different results and, however good a method is, a poor imple-
mentation of it may have misleadingly poor performance. It is well known that many
methods’ performances are exquisitely sensitive to the choice of tuning parameters,
and it is clear that some methods will be better for some function classes than other
methods are.

7.2.2.2 GAMs

The performance of GAMs on the Friedman function is noteworthy because it did
better than three of the methods that use much larger function spaces. The function
space that GAMs use to approximate the Friedman function is actually quite limited:
Unlike the other methods, no GAM function approximation can converge to the Fried-
man function since it does not have an additive form. The bias will always be bounded
away from zero and may be large away from the coordinate axes. Thus it is of partic-
ular interest to examine it a bit further. In particular, because of the additive structure,
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it is natural to compare the GAM function approximation with the Friedman function
on the coordinate axes.

Here is the R code and some output:

Family: gaussian Link function: identity

Formula: y ˜ s(x1) + s(x2) + s(x3) + s(x4) + s(x5)
Parametric coefficients:

Estimate Std. Err. t-value Pr(>|t|)
(Intercept)14.6756 0.1133 129.5 <2e-16 ***
Approximate significance of smooth terms:

edf Est.rank F p-value
s(x1) 2.989 6 41.43 <2e-16 ***
s(x2) 2.788 6 66.31 <2e-16 ***
s(x3) 3.302 7 25.68 <2e-16 ***
s(x4) 1.000 1 579.23 <2e-16 ***
s(x5) 4.098 9 16.39 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
R-sq.(adj) = 0.902 Deviance explained = 90.9%
GCV score = 2.7776 Scale est. = 2.5669 n = 200

It is seen that all five terms are worth including in the model. This can be visually
confirmed by looking at planes through the axes of the six-dimensional space in which
the Friedman function represents a five-dimensional hypersurface. These five planes
are depicted in Fig. 7.13. It is seen that the smooths track the function values rather
well in these planes, suggesting that bigger discrepancies between the function and its
estimate (if they exist) may be far from the coordinate axes. Searching these regions
becomes increasingly difficult as the dimension increases. Note that the data points
have also been projected into the coordinate planes, and the apparent spread is much
larger than the bands around the estimate of the function, consistent with the possibility
that regions of poor fit are far from the coordinate planes.

For Friedman’s function, GAMs could be improved by doing some model selection,
possibly leading to the inclusion of terms that are based on univariate functions of the
input xis, such as x1x2, rather than just using the raw xis alone. A residual analysis
could be used to detect the bias that would suggest missing terms in a GAM. Another
way to think of this is that GAMs use a smaller function space than trees, GPs or SVMs
and this reduces the variance so much that the increase in bias does not increase the
overall error above that of trees, GPs or SVMs.

7.2.3 Conclusions

Estimating a whole function is already a difficult problem because it’s as if each func-
tion value f (xxx) is a parameter so there are as many parameters as there are xxxs. The



7.2 Computational Results: Regression 393

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

x1

s
(x

1
,3

.3
4
)

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

x2
s
(x

2
,3

.3
6
)

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

x3

s
(x

3
,3

.5
5
)

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

x4

s
(x

4
,7

.3
1
)

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

x5

s
(x

5
,1

)

Fig. 7.13 Fit of each term in the GAM estimate for the Friedman function in its coordinate plane. It
is seen that the smooths track the target function reasonably closely.
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problem is easier when a function is smooth because nearby values can be used to
approximate each other so that pooling data locally helps give decent estimates. Even
in the one-dimensional case, however, there are difficulties: A function like sinc has
multiple modes of decreasing size, so the ability of any method to resolve them given
a fixed n is limited.

The six methods used here have test errors for sinc as follows: .2285 (trees), .2054
(neural nets), .2293 (SVM regression), .2098 (RVM regression), .207 (GPs), and .1093
(GAMs). Clearly GAMs are best in this sense, but this is not in general representative
of its performance because the GAM package used here defaults to a spline smoother
in one dimension. All this shows is that, for some simple problems, splines may do
remarkably well. Aside from GAMs, the techniques are all broadly comparable from
a predictive standpoint.

However, as can be seen from the figures, some obviously give a better fit than others.
GPs gave better fits than RVMs which flatlined away from the dominant mode (or
got choppy), or SVMs which got a little unstable away from the dominant mode. The
neural net fits looked the most different from the true function on account of their high
fluctuations. While trees caught all the modes, they gave dubious fits because of their
discontinuities; better than neural nets but arguably worse than the others, except for
the fact that they caught all the gross structure (including the secondary modes) that
some methods missed. For functions such as sinc, this suggests that GPs may be the
best; arguably the effect of a prior provides the right degree of smoothing and sparsity
for fit and prediction.

For the Friedman function, the situation is murkier. The increase in dimension changes
a lot because of the Curse of Dimensionality. The three big features that practitioners
confront as dimension increases are (i) that there are many more directions away from
each point, (ii) the number of points in a grid increases exponentially in the dimensions
(a grid in two dimensions with k points per side has k2 points, but in ten dimensions
this is k10), and (iii) the data are patchy in the sense that there is so much more space
that it is as if there are patches of space with data that can be modeled and vast areas
where there are no data so nothing can be said. The Friedman function as used here
has five input dimensions, so although the Curse comes into play, it is still relatively
mild compared with other settings.

In this sense, NNs may be doing well because their apparent roughness smooths out
as dimension increases because there is so much more space in which they can wiggle
and gyrate. The extra sparsity of RVM over SVM (fewer relevant vectors than support
vectors) may be introducing bias, and the other methods seem to be roughly compara-
ble. Using the optimal number of leaves or support vectors does about as well as the
additive approximation of GAMs or the smoothing in GPs.

An important common feature of all the methods that escape the Curse to a greater
or lesser extent is that they all lead to a small set of representatives that can encapsu-
late something like a patch of data in the high-dimensional space. NNs do this with
nodes and trees do this with leaves. Support vectors and relevant vectors are analo-
gous to nodes or leaves because they, too, summarize the data into representatives of
the solution. GPs rest on the use of a kernel, like SVMs or RVMs, and although they
do not obviously have a small set of representatives, the support vectors or relevant
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vectors probably provide the most important terms in the GP regression function. Fi-
nally, GAMs by their definition reduce the complexity of a multivariate function to a
collection of univariate functions. Unless the dimension is very high (say in the hun-
dreds or thousands), this, too, de facto provides a small set of representatives.

The methods here also typically invoke some kind of tuning parameter to control the
bias–variance trade-off. Reducing to representatives clearly achieves some sparsity and
helps to reduce the variance, thereby giving better prediction. The bias, however, is
seen mostly in the fit, and good fit suggests that the representatives a method uses to
express a solution are good enough that other sources of error are greater. Of course, as
dimension increases, the bias–variance relationship changes character as the variance
term becomes more and more important to control in regions where predictions are
made from little data. This is partially because fixed sample sizes become relatively
smaller as dimension increases. In these cases, more sophisticated techniques are re-
quired than just New Wave regression. These techniques often involve regularization,
and will be seen in Chapter 10; this was already seen with penalty functions in splines,
the penalty on neural nets, and the cost-complexity pruning in trees, and was implicit
in the optimization that led to SVMs or RVMs.

More generally, in passing from a binary classification problem to a univariate sinc re-
gression problem, to the five variable Friedman function regression problem, some pat-
terns emerge. First, kernel-based techniques such as SVM and RVM are often superior
to other techniques because they are almost insensitive to passage from one dimension
to higher dimensions. Actually, GPs can be regarded as a kernel-based technique be-
cause kernels are covariance functions. Not surprisingly, GPs with typically occurring
kernels tend to be much smoother than NNs which are usually the roughest; although
NNs are continuous, unlike trees, they are usually the wiggliest.

Trees are clearly good for classification but in general not so good for function approx-
imation in regression because they are not smooth. However, as seen above, they often
predict well even though they are somewhat unstable due to their high variance (in the
presence of low, asymptotically zero, bias). This is why random forests are important
as a smoothing technique to stabilize individual trees.

GAMs, of course, are a little clumsy because choosing the link function is somewhat
arbitrary and the dimension of the problem represents something like a complexity pa-
rameter (since extra univariate functions can be included to improve the model) rather
than a modeling feature. Moreover, GAMs span a much reduced class of functions, so
nonadditive functions cannot be approximated arbitrarily well; i.e., there is unavoid-
able bias. Of course, this may not be too bad for some predictive purposes.

The effect of dimensions greater than three is always a problem because they become
increasingly hard to visualize. The root difficulty is how to choose the right sense of
distance as the dimension increases. That is, problems in lower versus higher dimen-
sion are essentially the same qualitatively but bigger quantitatively in higher dimen-
sions. This is so because there’s more space to explain with a consistent notion of
distance in high dimensions so that diverse regions are contrasted fairly.

Like choosing a good kernel, choosing a distance is much at one with model selection.
Since we always project down from higher to lower dimensions, the task is to find
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the right measurement of similarity between points in the input or feature space on
which the projection is performed. The right measure of distance affects regression
because a whole function is being broken down into local functions on patches. This
means that the distance properties between the function and its approximation, and the
comparisons of the discrepancy on one region to the discrepancy on another region,
must be fair – not an easy task. Even bandwidth selection is difficult in general because
it is the way the distance measures are scaled to get the local measure of distance right
on each patch; the curvature of the function affects the way the local distance should be
measured. The same type of problem occurs in classification with many values because
each local patch in regression is like a class in a multiclass classification. In the binary
case, the problem is simpler, but getting the sense of distance right between the regions
on which the two classes occur is the root of the challenge.

7.2.3.1 RVM versus SVM?

It has been suggested that GAMs performed best for sinc and neural nets performed
best for Friedman’s function. The inference from all these comparisons is a counter-
factual: Unless you know the function you are approximating, you don’t really know
which technique to use, but of course you are using the technique because you don’t
know the true function. In truth, it is not quite so bad because skilled practitioners
develop a sixth sense for when one technique should be preferred over another. How-
ever, it’s still pretty bad because that sort of sixth sense is hard to develop and even
harder to formalize or explain. For instance, some engineers argue that neural nets are
best when combining multitype data. This cannot be true for all multitype data sets but
may well have validity for some commonly occurring large classes of multitype data.
Likewise, some people argue that. when sparsity is of greatest importance, RVMs are
best because they typically give the sparsest solutions. However, as with all Bayesian
procedures, there is little control of the bias, so for complicated functions it is easy to
imagine that the sparsity will not help and some other technique will work better.

For a more direct comparison, consider RVM and SVM. In the same way as trees and
NNs are similar in that they are local, RVM and SVM are similar in that they are
quadratic optimizations based on a kernel that summarizes a function space. (GPs are
representative of Bayesian techniques; GAMs are representative of additive methods
that include projection pursuit.) Also, it is helpful to compare SVM and RVM because
they are relatively not as well understood as most of the other methods here.

Tipping (2001) provides part of such a comparison. He argues that RVM typically
performs better than SVM for regression, while SVM tends to outperform RVM for
classification. This should not come as a big surprise because the SVM was derived
from the need to construct accurate classification rules; the adaptation of the SVM
paradigm to regression only came later. In fact, the ε-insensitive loss is already an
approximation. On the other hand, the RVM starts with a penalized squared error loss,
making RVM natural for regression. However, when it comes to classification, the
RVM is clearly a succession of semijustified approximations.
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This leads to the No Free Lunch Principle: Methods perform well if the conditions of
their derivation are met, with no method capable of covering all possible conditions.
More strongly put, each good method has a domain on which it may be best, and
different methods have different domains so the task is to characterize those domains
and then figure out which domain a given problem’s solution is likely to be in. This of
course, is extraordinarily difficult in its own right.

In the present chapter, RVM performed better than SVM for the sinc function and for
Ripley’s data, while SVM did better with Friedman’s function. Despite this outperfor-
mance of SVM by RVM in Ripley’s toy classification problem, the relative superiority
of SVM over RVM in classification is evidenced by the following real life-data sets:

• The Titanic survivors data has p = 3 attributes measured on n = 150 people, with
the response being binary (survived, did not survive). In this data set, SVM yields a
test error of 22.1%, while RVM produced a test error of 23%.

• The Wisconsin Breast Cancer data set is now a benchmark data set in machine
learning, with p = 9 attributes measured on n = 400 people. The test error for SVM
in this case is 26.9%, which is lower than the 29.9% test error yielded by RVM.

• The USPS handwritten digit data set has now circulated to almost every machine
learning researcher’s computer. With p = 256 attributes and n = 7291 observations,
this is clearly a relatively large dataset, with the added difficulty that there are ten
classes rather than two as earlier. For these data, SVM produces a test error of 4.4%,
while RVM comes up with a 5.1% test error.

It is important to note that no method wins all the time. Each method seems to be
best sometimes, and the trick is to know when. There seems to be an art to practical
machine learning.

7.3 Systematic Simulation Study

In an effort to characterize which methods can be expected to work well on different
domains in a function space, systematic simulations are invaluable. There are many
such studies comparing classification methods with each other and comparing regres-
sion methods with each other.

One that is more extensive than the others is in Banks et al. (2003). These authors
compare ten regression methods. Eight are LOESS, additive models (AM), projection
pursuit regression (PPR), neural networks (NN), ACE, AVAS, recursive partitioning
regression (RPR), and MARS. The other two are multiple linear regression (MLR) and
stepwise linear regression (SLR). The ten methods are applied to five target functions,
each with three choices of dimension (p = 2,6,12), at three sample sizes (n = 2pk for
k = 4,10,25), and three (normal) noise levels (σ = .02, .1, .5). In addition, for each
level of p, three cases in which some of the variables entered with coefficient zero
were used. This tested the tendency of the procedures to generate spurious structure.
The fractions of zero-coefficient variables were all, half, and none. Only five functions
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were used: a linear function, a multivariate normal density with correlations all 0 or all
.8, a mixture of two correlation-zero multivariate normal densities, and the product of
the variables. In all cases, only the permitted variables appeared in the target function.

It is evident that even though this study is small compared with the general problem of
function estimation in many dimensions, it necessitates a huge amount of computing
– apart from having access to suitable implementations of the ten methods. The error
criterion was MISE, as defined in Chapter 2, and the simulation procedure was fairly
standard. (Generate the random sample of xxxs uniformly in the cube, generate normal
errors, choose a function to evaluate to generate the Yi = f (xxxi)+ εis, use each of the
ten methods on the xxxi,yi)s, and estimate the MISE also by simulation, repeating the
steps enough times to get reliable results.)

The results of the Banks et al. (2003) computations are an enormous number of tables
listing each case – the setting (choice of true function, σ , n, p, and so forth), the
regression method, and the MISE. It is important to remember that MISE values are
simulated, so that slightly different values may be equivalent.

An ideal summarization would be to treat the analysis as a regression problem with
Y = MISE and explanatory variables corresponding to the method, target function,
dimension, sample size, proportion of irrelevant variables, and noise. However, metas-
tatistics (i.e., treating the results of statistical analyses of statistical methods as the
data for another statistical analysis) is a form of self-referentiality that is too cutely
post-modern. Moreover, it can be quite difficult and may not yield the kind of heuris-
tics practitioners want. Herewith follows a comparative discussion that may be more
helpful in guiding applications.

First, it is seen that the range of functions for which the methods were tested is likely
the most oversimplified. This is unavoidable. Second, Banks et al. (2003) suggest the
noise level was not as important as the levels of other factors for the ranges they consid-
ered. Other authors have found high sensitivity to noise levels, sometimes dependent
on the class of functions used or the true function assumed.

Third, the nonparametric regression techniques segregate into 6 classes, each worth
several comments. The following is a precis of Banks et al. (2003).

(1) MLR, SLR, and AM form one class, and they seem to perform roughly similarly.
They are never terrible, but rarely the best. It is easy to find functions for which SLR
and MLR are better than AM and the reverse because AM permits general functions of
the xis. SLR is usually somewhat better when there are spurious variables, but less so
as the number of spurious variables increases and the nonlinearities become more pro-
nounced. This class of methods did poorly with the product function, possibly because
of the curvature or possibly because a simple nonlinear transformation (log) turns the
product into a sum that is easily modeled.

(2) Because their algorithms are so similar, one expects ACE and AVAS to be similar.
Broadly, they are. Both methods were in the midrange of performance as the number of
variables and fraction of spurious variables was varied. The more interesting instances
are where they differ, which depended strongly on the function taken as true. ACE
is decisively better than AVAS for the product function, and AVAS is better for the
constant function. Both ACE and AVAS are the best methods for the product function
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(as expected – the log transformation produces a linear relationship) but among the
worst for the constant function and the mixture of Gaussians.

(3) MARS, surprisingly, did not do well in higher dimensions, especially when all vari-
ables were used and especially for the linear function. It had a tendency to overdetect
variables and structure and therefore make more errors. For lower dimensions, MARS
did adequately over the different functions.

(4) RPR was typically poor in low dimensions but sometimes extremely good in high
dimensions, especially when all variables were used. The ability of RPR to do variable
selection (i.e., avoid spurious variables) was poor. Unsurprisingly, RPR was poor for
the linear function: This is typical for functions in which there is little relationship
between any two variables.

(5) PPR and NN are theoretically similar methods, but PPR outperformed NN in all
cases except the correlated Gaussian. (This may stem from the CASCOR implemen-
tation of neural nets.) PPR was often among the best when the target function was the
Gaussian, correlated Gaussian, or mixture of Gaussians, but among the worst with the
product and constant functions. PPRs variable selection was also generally good. By
contrast, NN was generally poor, except for the correlated Gaussian when p = 2,6 and
all variables were used and when p = 6 and half the variables were used. Clearly, a re-
sponse such as a correlated Gaussian that can be approximated well by a small number
of sigmoidal functions with orientations determined by the data is where NNs should
work well. In practice, NN methods may be successful because the response function
has a sigmoidal shape in many applications.

(6) LOESS did well in low dimensions with the Gaussian, correlated Gaussian, and
mixture of Gaussians. It was not as successful with the other target functions, espe-
cially the constant function. Often, it was not bad in higher dimensions, though its
relative performance tended to deteriorate.

Fourth, a separate approach to comparison looks at how each method fares with respect
to other factors.

(1) In terms of behavior with increasing dimensions, LOESS deteriorated in relative
performance but also in the sense that computational time increases rapidly with p.
In the CASCOR implementation of NNs used, computing demands were also high
because of the cross-validated selection of the hidden nodes. (Alternative NN meth-
ods fix these a priori, making fewer computational demands, but this is equivalent to
imposing strong, though complex, assumptions.) LOESS, NN, and sometimes AVAS
proved infeasible in high dimensions. With the computing system and implementa-
tions they used, these authors reported that, typically, fitting a single high-dimensional
data set with either LOESS or NN took more than two hours. AVAS was faster, but the
combination of high dimension and large sample size also required substantial time.

(2) In terms of functions, or the classes they may be taken to represent, the results
displayed few regularities. For the linear function, MLR and SLR were consistently
strong, as expected. For the constant function, MARS was good when p = 2, SLR was
good when p = 6, and RPR was good when p = 12. Few other regularities could be
discerned from the available results.
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(3) In terms of variable selection, two strategies were used by the ten methods: global
variable selection, as practiced by SLR, ACE, AVAS, and PPR, and local variable
reduction, as practiced by LOESS, MARS, and RPR. Generally, local selection does
better in high dimensions, but performance depends on the target function.

Obviously, these conclusions are tentative and incomplete – a wide variety of methods
and implementations of them have not been included. The remarks here can only serve
as guidelines in a few settings.

7.4 No Free Lunch

In a series of papers starting in the early 1990s, David Wolpert alarmed (and possi-
bly annoyed) the computational learning community. His results are summarized in
Wolpert (2001). The central point is that the class of models for which a given learning
technique is good is limited: No one technique will work well for all problems. More
formally, a technique that is good when the true model is f1 may be poor compared
with another technique when the true model is f2. For instance, for a very complex but
low-dimensional model, nearest neighbors might give the best solution in an expected
squared error sense when data are limited whereas SVMs might be better at expressing
the behavior of simpler models with moderate sample sizes in another sense of good-
ness of fit, especially when there are few outliers or inliers (since the SVM boundary
is determined by only a few points).

To game theorists or statisticians, this kind of statement is a de facto folk theorem.
Indeed, in most statistical investigations, it is essential to compare several techniques
because it is not clear a priori how well each will do. For instance, the No Free Lunch
Principle leads to the conjecture that mixing over diverse predictive strategies, when
the strategies have roughly disjoint domains of optimality, and updating the weights
in response to an error criterion is asymptotically as good as knowing which domain
contains the true function. The collection of models on which a model selection prin-
ciple (MSP) performs better than others is its catchment area; the idea is to identify the
catchment area by weighting the prediction each MSP gives by how well it performs.
Thus, the nonexistence of a universally good method is a justification for ensemble
methods. Naturally, advocates of specific approaches find this vexatious and counterar-
gue that any ensemble method is just another method susceptible to the same problem:
The ensemble method will have its catchment area, perhaps larger than for a specific
technique but limited nonetheless.

Here, the reasoning behind the No Free Lunch Theorems is presented not because they
are controversial (they are not), nor because the proofs are compelling (the mathemat-
ics is abstract and needs development). Rather, the use of an extension to the Bayes
paradigm is intriguing and with development promises more insight. Also, it provides
a view for statisticians into the structure that computational learners take as natural
because the phrasing of the No Free Lunch Principle is in terms of conventional statis-
tical settings. Moreover, the dramatization of the No Free Lunch Principle in a decision
context is rather nice.
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Essentially, the extended Bayes formulation includes an extra model, and model class,
different from the models in the model class assumed to have the true model in it. The
extra model, or indeed class of models, represents the formation of an estimate in the
ignorance of a true model f and its model class F . This is very realistic.

Start with a quadruple denoted Q = (d, f ,C,g). The data are d, a collection of pairs
(x1,y1),...,(xn,yn). The true model is f , a relation between X and Y . The cost function,
C, is an evaluation of the loss of using the estimate g from a set G for f in a set F
when d is available. To give a Bayesian structure, assume priors on F are assigned,
generically denoted Qi. Also represent the estimate g as arising from a model, but write
only ρ(g|d), a posterior for g, in which the model ρ(d|g), the prior ν(g), and perforce
the mixture of them are unspecified. The model ρ varies over a class Ω , which is also
not specified further. The relationship between the class of “learners” Ω and the class
of possible true models F is the central feature of the generalization.

The cost C is
C( f ,g,d) =∑

x
π(x)(1−δ ( f (x),g(x))),

in which g is formed from data d by using of some ρ and ν , f ∈ F , and π is a
weighting on the space of explanatory variables indicating how important it is that f
and g agree at a given point; here, δ is the Kronecker delta.

Now, there is a probability space for the random variables F , G, and D that have real-
izations g, f , and d. It is seen that, as a random variable, C = C(F,G,D). Formally, it
must be imposed that the densities satisfy p(g| f ,d) = p(g|d); i.e., the formation of the
estimate g of f does not depend on f . This is the familiar requirement that the estima-
tor must not depend on the estimand. The complicating issue is that g actually has a
distribution inherited from d, possibly different from one assumed to be in Ω . That is,
the true distribution of G, separate from the class of learners available, is not defined
yet. The resolution seems to be that g actually has the correct posterior ρc(g|d) and
that d has some distribution f from F that is not otherwise known. Marginally, it’s as
if G actually has the mixture distribution

∫
ρc(g,d) f (d(x,y))Qi(d f ) even though only

ρ(g|d) is available.

Assume that all the quantities are discrete for convenience. Then,

E(C|d) =∑
f

[
∑
g

(C(g, f ,d)ρ(g|d))

]
P( f |d);

see Wolpert (2001). This is a sort of posterior risk, averaged over distributions in F
and Ω . It can also be seen as a weighted L2 inner product between P(g|d) and P( f |d).
Note that the conditional P( f |d) is like the correct posterior distribution, and the model
implicit in P(d| f ) is only known to be in F . The conditional ρ(g|d) is the learner’s
posterior using Ω .

Write
E1 =

∫
C( f ,g,d)w1(g|d)dg E2 =

∫
C( f ,g,d)w2(g|d)dg,
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in which w1 and w2 are two posteriors for g, i.e., “learners” for f . That is, w1 and w2

represent two different inference methods for forming estimates g. In the parametric
Bayes context, this is like having two different models, priors, and data sets, corre-
sponding to two different experiments, for estimating the same unknown parameter,
which may not follow either of the models used in the two posteriors.

Clearly, if f were known, one would prefer the experiment that gives min(E1,E2).
However, f varies over F . So, it is reasonable to assume there exist distributions Q1

and Q2 on F such that
∫

C( f ,g,d)w1(g|d)dgQ1( f )d f =
∫

C( f ,g,d)w2(g|d)dgQ2( f )d f .

That is, whichever of E1 and E2 is smaller will depend on which f ∈ F is true. All one
needs to do is choose Q1 to put high mass on f s with large C( f ,g) and Q2 to put high
mass on f s with small C( f ,g), or the reverse. More dramatically, if one experimenter
learns f by method w1, then there will be true models for which the risk performance
obtained is worse than an experimenter who uses w2 and conversely.

Essentially, Wolpert (2001) is enlarging the problem to include model uncertainty or
misspecification in the estimand f as well as uncertainty in the model used to form the
estimator by distinguishing between the two models, their classes, and the assessments
of variability on them. Indeed, the two model classes may be quite different: The model
class for learning,Ω , might be purposefully simpler than the actually valid model class
F . On this level, the generalization is truly compelling.

7.5 Exercises

Exercise 7.1. Consider the blocky function of Donoho and Johnstone given in Matlab
code as follows:

pos = [ .1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81 ];
hgt = [ 4 -5 3 -4 5 -4.2 2.1 4.3 -3.1 2.1
-4.2 ];
sig = zeros(size (t) );
for j=1:length(pos) ;
sig = sig + (1 + sign(t - pos(j)) ) . * (hgt(j)/2);
end f= sig + 10

1. Use your favorite recursive partitioning package (rpart is one possibility) to gener-
ate a bagged regression tree estimate for blocky.

2. Use your favorite NN package (nnet is one possibility) to generate a bagged NN
estimate for blocky. You might want to include selection of the number of nodes by
using CV.



7.5 Exercises 403

3. Now, form a third estimate of blocky by stacking the bagged tree and bagged NN
estimators.

4. Which of the three estimates does best for blocky? Can you argue why this method
is best based on generic properties of blocky?

5. Suppose you were to estimate a tree and a NN for blocky, then stack them and then
repeat this, effectively, bagging the stacked tree and NN. Would this be different
that the result of item 3 in which the stacking was done after the bagging?

6. Would you speculate that further layers of aggregation (e.g., bagging the result of
item 2) would be much help? As you increase the levels of averaging, what effects
would you expect?

Exercise 7.2. Pick a collection of functions to play the role of Vapnik’s sinc function.
Two possible choices are the Mexican hat wavelet

YM =
1√

2πσ3

(
1− t2

σ2

)
e
−t2

2σ2 + ε

on [−5,5], which is the normalized second derivative of a normal density, and the tooth
function

YT = x+(9/(2π42)1/2)e−42(2x−1)2
+ ε

on [0,1]. Using uniformly spaced points (to start) generate data with a N(0,σ2) noise
term for σ = .2, or nearby values.

1. Use a curvilinear regression model to fit either of the functions and obtain the usual
residual plots to evaluate a reasonable polynomial regression function. You can try
the same procedure with other basis functions.

2. Next, generate the SVM regression fit for your function, finding the testing and
training errors and the appropriate residual plots. (Choose a radial basis function
kernel or a polynomial kernel.)

3. Do the same for RVM regression.

4. Now, implement some of the methods used in this chapter (trees, neural nets, Gas-
sian processes, and so forth.)

5. If you have done variable selection before, do standard variable selection techniques
such as Mallows’ Cp, AIC or BIC perform well if used in the procedures of items
1-4? (Variable selection methods will be presented in Chapter 10.)

6. What statements, if any, can you make about the comparative performance of meth-
ods (with and without variable selection) for these two functions? Is there any way
to examine the residual plot from a fit using one model class to surmise that another
model class should be chosen?

Exercise 7.3 (Comparing BMA and stacking).

In this exercise the point is to find conditions under which stacking linear models or
Bayes averaging over linear models gives better predictive performance.
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1. Compare stacking to Bayes Model averaging assuming fixed σ , with standard nor-
mal priors on all parameters in a linear regression model with the Xks generated by
a normal as well. Verify that when the true model is on the model list, Bayes usually
gives better predictions; i.e., has smaller predictive error.

2. Continue in the setting of item 1, but now suppose the true model is not on the
model list. Verify that when the true model is sufficiently different from the models
in the list that stacking generally gives better predictions.

3. Verify that the prior in a Bayesian technique can be regarded as penalty term so that
item 1 may be reasonable. How do you explain item 2?

4. Change the error term in items 1 and 2 to a Cauchy. Verify that now the Bayes model
average typically outperforms the stacking average in a prediction sense, whether
or not the true function is on the model list.

Note that this procedure can be done for any model class – trees, neural nets, GAMs
and so forth – not just linear regression models. However, it is not known (yet) whether
the conclusions continue to hold.

Exercise 7.4. Here is a way to combine classification techniques on different domains
of a feature space.

1. Consider building a composite classifier. Start with a tree-based classifier, but in-
stead of using Gini or some other measure of impurity, to decide whether or not
to split, use a kernel based classifier (such as SVM) that gives an explicit decision
boundary. Then, treat each side of the decision boundary as a daughter node from
the root. Do this again on each node until the resulting daughter nodes are pure,
i.e., all from one class. Now, repeat this several times with a variety of kernels
to generate a collection of trees. Use a majority vote on the trees to classify new
points. Compare this with a classical tree-based classifier and with either SVM for
classification or RVM for classification on simulated data; e.g., Ripley’s data.

2. By simulating classification data, from a mixture distribution for instance, deter-
mine how much bagging, boosting, or stacking the result help.

3. Repeat this procedure, but use a neural net classifier to define the decision boundary
at each node. What if you cycled through the various classification procedures as the
tree deepened? (For instance, use SVM at the first split, neural nets at the second,
some other technique at the third, and so forth.)



Chapter 8

Unsupervised Learning: Clustering

In contrast to supervised learning, unsupervised learning fits a model to observations
assuming there is no dependent random variable, output, or response. That is, a set of
input observations is gathered and treated as a set of random variables and analyzed as
is. None of the observations is treated differently from the others. An informal way to
say this is that there is no Y . For this reason, sometimes classification data that includes
the Y as the class is called labeled data but clustering data is called unlabeled. Then, it’s
as if the task of clustering is to surmise what variable Y should have been measured
(but wasn’t). Another way to think of this is to assume that there are n independent
data vectors (X1, ...,Xp,Y ) but that all the Yis are missing, and in fact someone has
even hidden the definition of Y .

A question that must be addressed immediately is: Is there any information in the XXXis
that is useful in the absence of Y ? The answer is: Yes. Lots. In particular, if n is large
enough, the distribution of XXX can be estimated well. In this case, the Y might corre-
spond to classes identified with modes of the marginal distribution. The modes may
just be the structure of a single complicated distribution for XXX or they might indicate
that the distribution of XXX is the mixture of many distributions, each representing a class
and giving a mode. In this case, the task of clustering is to distinguish which compo-
nent of the mixture a given xxxi represents. At a minimum, the information in the XXXis
indicates where the density of any reasonable Y must be relatively high.

An extreme case of this is to imagine a collection of xxxis concentrated on three circles
in the plane centered at the origin with radii one, two, and three. It would be natural
to assume three clusters, one for each circle. However, if more xxxis accumulated and all
of them were either within the circle of radius 1 or between the two circles of radii 2
and 3, a very different structure on Y would be inferred – classes 2 and 3 would merge,
leaving two clusters.

Having used the term clustering, it is important to give it a definition, however im-
precise. Briefly, clustering is the collection of procedures used to describe methods
for grouping unlabeled data, the XXXis, into subsets that are believed to reflect the un-
derlying structure of the data generator. The techniques for clustering are many and
diverse, partially because clustering cuts across so many domains of application and
partially because clustering is a sort of preprocessing often needed before applying any
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model-based inferential technique. Consequently, only a fraction of techniques can be
presented here.

Clustering

Bayesian

Partitional

Hierarchical

Divisive Agglomerative Decision based Nonparametric

Centroid Model Based Graph theoretic Spectral

Fig. 8.1 The collection of clustering techniques can itself be clustered into three groups – hierarchical,
partitional, and Bayesian – and then subdivided. Note that the leaves are not exclusively defined. For
instance, there are techniques that are primarily spectral (i.e., based on the spectrum of a matrix of
distances, and hence noted here as partitional) but yield a hierarchical clustering. However, most
spectral techniques developed so far are partitional rather than hierarchical.

Figure 8.1 shows a taxonomy of clustering techniques. The three main classes of clus-
tering techniques are hierarchical, partitional, and Bayesian. It is true that Bayesian
techniques are often either hierarchical or partitional; however, their character is often
so different from what is typically understood by those terms that it is better to put
them in a separate class. Moreover, techniques do not in general fit into one leaf of the
tree uniquely, as will be seen below. The tree in Fig. 8.1 just indicates one reasonable
and typical structure for the techniques. The leaves indicate the topics to be presented.

The idea of a hierarchical technique is that it generates a nested sequence of cluster-
ings. So, usually one must choose a threshold value indicating how far along in the
procedure to go to find the best clustering in the sequence. The nesting can be decreas-
ing or increasing. If it’s decreasing, usually it’s started by treating each data point as a
singleton cluster. These procedures are called agglomerative since clusters are merged.
If it’s increasing, usually it’s started by treating the whole data set as one big cluster
that is decomposed into smaller ones. These procedures are called divisive since clus-
ters are split. It will be seen that a graph-theoretic technique called minimal spanning
trees yields a nested sequence of clusters and can be regarded as hierarchical, even
though it will be treated here as a graph-theoretic technique.

Hierarchical methods also typically require a dissimilarity, which is a measure of dis-
tance on individual data points that lifts to a measure of distance on groups of data
points. This does not particularly distinguish hierarchical clustering techniques be-
cause partitional clustering techniques often require a distance that functions like a
dissimilarity. However, the way a dissimilarity is used is somewhat more consistent
and central across hierarchical techniques as a class.

By contrast, nonhierarchical methods such as partitional methods usually require that
the number of clusters K and an initial clustering be specified as an input to the pro-
cedure, which then tries to improve the initial assignment of data points. The initial
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clustering takes the place of a dissimilarity and threshold value in hierarchical pro-
cedures. It is true that hierarchical methods require an initial clustering; however, it
is trivial: n clusters or one cluster. Algorithmically, the difference between hierarchi-
cal and partitional methods is that with hierarchical algorithms clusters are found us-
ing previously established clusterings, while partitioning methods try to determine all
clusters optimally in one shot.

Bayesian clustering techniques are different from the first two classes because they
try to generate a posterior distribution over the collection of all partitions of the data,
with or without specifying K; the mode of this posterior is the optimal clustering.
Bayesian techniques are closer to hierarchical techniques than partitional techniques
because often there is an ordering on the partitions. All of these techniques require
the specification of a prior and usually come down to some kind of hypothesis test
interpretation.

Two problems that can arise in any technique are clumping and dissection. Clumping
is the case where a single object fits into two or more clusters that are therefore al-
lowed to overlap. An instance of this is document retrieval: The same word can have
two different meanings, so a text cannot be readily fit into exactly one cluster. Over-
lapping clusters will not be examined here, but awareness of the problem is important.
Likewise, the concept of dissection will not be studied here, apart from noting that it
is the case where there is a single population that does not contain meaningful clusters
but the goal is still to cluster the data for some other purpose. For instance, there may
be no meaningful way to find clusters in a homogeneous city, but a post office may still
partition the city into administrative regions so letter carriers can be more efficient.

Other terms often associated with clustering are important to note. A clustering proce-
dure is monothetic if it looks at the components of the xxxis one at a time to generate an
overall clustering. Polythetic techniques, which are more common, consider the entire
vector xxxi. In the regression context, trees are monothetic because splits can be on a
single variable, whereas projection pursuit is polythetic because it uses all the compo-
nents of xxxi at the same time. A clustering is hard if it unambiguously puts each xxxi in a
single cluster. Fuzzy clusterings allow partial membership: A point may belong 70%
to one cluster and 30% to another. Fuzzy clustering comes up naturally in evaluating
the stability of a clustering.

The single most common clustering technique used is probably K-means, which is a
centroid based technique invented by MacQueen (1967). It rests on assigning points
to whichever centroid is closest to them, recomputing the centroid, and repeating the
procedure, hoping the clustering converges. This uses a dissimilarity and so can be
regarded as hierarchical; however, K-means also starts with an initial assignment of
the clustering, which it refines. One can argue that the dissimilarity is only used as a
distance on the xxxis, so the initial clustering is more important to the procedure.

Hierarchical agglomerative clustering developed in the biological sciences and as a
class is the most widely used. Mixture model methods, which originate in work by
Wolfe (1963), Wolfe (1965), Wolfe (1967), Wolfe (1970) have recently enjoyed more
attention (see Fraley and Raftery (2002)). The key procedure here is called the E-M
algorithm, of which there are many variants. In general, methods based on mixture
models make the strongest assumptions about the data being a random sample from a
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population; these are also the methods that best support inference unless the posterior
from a Bayes procedure is used for inference beyond just choosing a clustering. In
addition, there are numerous other clustering procedures that have been developed but
do not really fit well into any of the classes of Fig. 8.1. These include information-
theoretic clustering, among others, but these are not discussed here.

It is important to remember that unsupervised learning is often just one step in a prob-
lem. For instance, one could cluster data into groups, do some kind of variable selection
within each group, and then use Bayesian methods to generate conditional probabili-
ties for one of the random variables given the others. Note that the last step actually
becomes supervised because one of the Xs, or a function of them, has been found to
be a good choice for Y . As another instance, bioinformaticians often cluster their data
using some of the explanatory variables, then do principal components analysis on the
explanatory variables for each group, then select the top two or three principal com-
ponents to include in a model for the response, and finally use shrinkage methods on
the coefficients in the principal components to eliminate the smaller terms for the sake
of sparsity. The first steps are seen to be unsupervised; they set up the actual analysis,
which is supervised because it uses the response.

To fix notation, consider a collection of data xxxi, for i = 1, ...,n, that can be treated as IID
outcomes of a variable XXX . The goal is to find a class of sets C = {C1, . . . ,CK} such that
each xi is in one set Ck and the union of the Cks is the whole sample xn = (xxx1, ...,xxxn).
The key interpretative point is that the elements within a Ck are much more similar
to each other than to any element from a different Ck′ . The natural comparison, if
possible, is between a known clustering, which is essentially classification data, and
whatever clustering a clustering procedure outputs. The difference is an assessment of
how little information the algorithm loses relative to perfect information. Even though
this is not formalized, it does represent a standard for comparison that could be readily
formalized. It is an analog of the concept of goodness of fit.

Here, centroid-based methods are presented first because they are based on K-means.
Then, hierarchical methods are presented because they are the next most popular. After
that, there are a plethora of other partitional methods, followed by Bayesian techniques
and a discussion of cluster validity.

8.1 Centroid-Based Clustering

The centroid of a cluster can be thought of as the pure type the cluster represents,
whether that object actually exists or is just a mathematical construct. It may corre-
spond to a particular data point in the cluster as in K-medoids or to a point in the convex
hull of the cluster, such as the cluster mean. Given an initial clustering, centroid-based
methods find the centroids of the clusters, reassign the data points to new clusters
defined by proximity to the centroids, and then repeat the procedure. The similarity
between two clusters is the similarity between their respective centroids. Thus, the key
choices to be made, aside from an initial clustering, are the distance to be used, the
centroids to be used, and how many iterations of the procedure to use.
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Most of these procedures are variants on K-means clustering, which is worth present-
ing in detail since it readily captures the geometric intuition. Then the use of other
measures of location or distances becomes straightforward.

8.1.1 K-Means Clustering

Intuitively, the K-means clustering approach is the following. The analyst picks the
number of clusters K and makes initial guesses about the cluster centers. The procedure
starts at those K centers, and each center absorbs nearby points, based on distance;
often the distances are found using a covariance matrix to define a norm. Then, based
on the absorbed cases, new cluster centers, usually the mean, are found. The procedure
is then repeated: The new centers are allowed to absorb nearby points based on a norm,
new centers are found, and so on.

Usually this is done using the Mahalanobis distance from each point xxxi to the current
K centers,

d(xxxi, x̄xxk) = [(xxxi− x̄xxk)′S−1(xxxi− x̄xxk)]1/2,

where x̄xxk is the center of the current cluster k and S is the within-cluster covariance
matrix defined by S = (s j,�) for j,k = 1, ..., p as

s j,� =
1

n−1

n

∑
i=1

(xi, j− x̄ j)(xi,�− x̄�).

Smart computer scientists can do K-means clustering (or approximately this) very
quickly, sometimes involving the pooled within-cluster covariance matrix W = (w j,�),
where, for j, � = 1, ..., p,

w j,� =
1
K

K

∑
k=1

nk

∑
i=1

di,k(xi, j− x̄k, j)(xi,�− x̄k,�),

in which nk is the number of points in cluster k, x̄k,� is the mean of the �th variable in
cluster k, and di,k = 1 if observation i is in cluster k and 0 otherwise. In practice, K-
means clustering is often the only clustering procedure that is computationally feasible
for large p, small n data sets.

The K-means procedure works because the cluster centers change from iteration to
iteration, hopefully converging to the correct cluster centers, if K is correct. If the
centers move too much, or for too many iterations, the clusters may be unstable. In
fact, there is no guarantee that a unique solution for K-means clustering exists: If K is
correct and two starting points fall within the same true cluster, then it can be hard to
discover new clusters since the two points will often get closer together and only K−1
clusters will be found. This means that it is very important to know K, even though it
can be hard to determine. Unfortunately, specifying some values seems to be necessary
for all clustering procedures. To use K-means, one can do a univariate search over k:
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Try many values of k, and pick the one at the knee of some lack-of-fit curve; e.g., the
ratio of the average within-cluster to between-cluster sum of squares.

To explain the K-means procedure more formally and see how it is similar (or not) to
other procedures, define what’s called a dissimilarity measure. In essence, this is a gen-
eralization of a metric: Any metric is a dissimilarity; not all dissimilarities are metrics.
The idea is that a dissimilarity expresses how different two points are: A dissimilarity
measure should be high when two xxxis differ in many entries and be low otherwise.
Likewise, a similarity measure should be low when many entries are equal or close.

One way to construct a dissimilarity is componentwise. Let d j be a dissimilarity
acting on the jth coordinate of xxx for j = 1, ..., p. Now, for xxx and xxx′, the vector
(d1(x1,x′1),...,dp(x′p,x

′
p)) is the coordinatewise difference between them. This lifts to

a dissimilarity d on the entire vectors by defining d(xxx′,xxx) = ∑p
j=1 w jd j(x′j,x j). Now,

xxx1,..., xxxn leads to the n×n matrix of the dissimilarities D = (d(xxxi,xxx j)) for i, j = 1, ...,n.
Sometimes the dissimilarity matrix D is called a proximity matrix. In general, the d js
are zero when their entries are the same, so the main diagonal of D is all zeros. The
weights wi need not be identical but are often set to 1 for convenience. There are dis-
similarities d on xxxis that are neither metrics nor derived from coordinatewise distances.
For instance, a dissimilarity can be derived from measures of association between xxx
and xxx′ such as d(xxx,xxx′) = Corr(xxx,xxx′).

Thus, for K-means, the eponymous case uses squared error and calculates the sample
mean within clusters. So, for x = (x1, ...,xp) and xxx′ = (x′1, ...,x

′
p), set all the d js to be

squared error so that d(xxx′,xxx) is the Euclidean distance ‖·‖. Write mk for k = 1, ...,K for
the (vector) means of the unknown classes Ck under cluster assignment C . Now define
the membership function C, which assigns data points to clusters, so C(i) = k⇔ xxxi ∈
Ck under the clustering C . The ideal K-means solution is CK−means = (C∗1 , ...,C∗Kopt

),
satisfying

CK−means = arg

(
min

K
min

m1,...,mK

K

∑
k=1

∑
i:C(i)=k

||xxxi−mk||2
)

, (8.1.1)

where C(i) is the membership function of the clustering with centers m1, ...,mK under
the Euclidean distance.

The optimization over the number of clusters is done, in principle, for each possible K
to find the minimizing value. However, in practice, one finds the value only for several
values of K; the one with the smallest error is used as “true”. (This can be done with
the R function kmeans(); often one selects the initial values of the cluster means mi

at random from the closed convex hull of the data.) It may take several tries to get the
minimal distance because one can get caught in a local minimum, so it is prudent to
use the minimum of (say) ten guesses as the global minimum.

To see where (8.1.1) came from, recall that under Euclidean distance the mean achieves
the minimum error. In the one-dimensional case, this is

x̄ = argmin
μ

p

∑
i=1

(xi−μ)2.
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Now, recall the ANOVA decomposition of the total variability into a sum of the
between-cell variability and within-cell variability and apply it to clusters. By analogy
with the ANOVA case, define the total variability of a clustering C with membership
function C under a dissimilarity d as

T =
n

∑
i=1

n

∑
i′=1

d(xxxi,xxxi′)

=
K

∑
k1,k2=1

∑
C(i)=k1

∑
C(i′)=k2

d(xxxi,xxxi′)

= ∑
C(i) 	=C(i′)

d(xxxi,xxxi′)+ ∑
C(i)=C(i′)

d(xxxi,xxxi′)

=
K

∑
k=1

∑
C(i)=k

∑
C(i′) 	=k

d(xxxi,xxxi′)+
K

∑
k=1

∑
C(i)=k

∑
C(i′)=k

d(xxxi,xxxi′)

= B(C )+W (C ). (8.1.2)

The last expressions in (8.1.2) are the between-cell and within-cell variabilities of C .
So, for fixed T (independent of the clustering), minimizing W (C ) should lead to the
clustering, for a given K, that is tightest about its cluster means. Equivalently, maxi-
mizing B(C ) should lead to the clustering, for a given K, that has cluster centers as far
apart as possible.

Hastie et al. (2001) observe that the within-cluster variability for a given K and set of
centers mk is

W (C) =
K

∑
k=1

∑
C(i)=k

∑
C(i′)=k

||xxxi− xxxi′ ||2

= 2
K

∑
k=1

∑
C(i)=k

||xxxi− x̄xxk||2 (8.1.3)

by adding and subtracting the cluster means in each cluster.

So, setting mk = arg minm∑C(i)=k ||xxxi−m||= x̄xxk in (8.1.1) will find the clustering with
the smallest value of W (C ). Putting this clustering into the objective function in (8.1.1)
and reminimizing will give a new clustering, giving a new set of mks and so on. This
is sometimes called an iterative descent algorithm since the objective function W (C )
is typically decreasing.

In general, this is most appropriate for normal data, and one would prefer to use the
Mahalanobis distance because that way the shapes of the neighborhoods will better
reflect the mode structure of the true underlying density.
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8.1.2 Variants

There are numerous variations on the K-means theme, usually based on changing the
dissimilarity or centering. The common feature is calculating a set of summary statis-
tics for locations and maybe a variance matrix. Two of these are given here.

8.1.2.1 K-medians

In this case, the squared error is replaced by the absolute error, and the mean is re-
placed with a median-like object arising from the optimization (because there is some
ambiguity about how to define a median in two or more dimensions). The defining
feature is that the cluster centers in this case minimize the overall L1 distance to each
point. The covariance matrix is often ignored because it doesn’t scale absolute error
neighborhoods the way it scales squared error neighborhoods.

The objective function is

K

∑
k=1

∑
C(i)=k

|xxxi−mk|. (8.1.4)

As before, K is chosen and the vectors mk are found iteratively from an initial clus-
tering. There is some evidence that this procedure is more resistant to outliers or
strong non-normality than regular K-means. However, like all centroid-based meth-
ods, it works best when the clusters are convex.

8.1.2.2 K-medoids

The K-medoid algorithm, like the K-means, tries to minimize a squared error criterion
but rather than taking a mean as the cluster center chooses one of the data points. The
medoid of a cluster is the element of the cluster whose average dissimilarity to all the
objects in the cluster is minimal. It is the prototypical data point of the cluster because
it is the most centrally located.

Again, K and an initial clustering must be given, and the basic procedure is similar
to that of K-means or K-medians but iteratively replaces each of the medoids by one
of the nonmedoid points to search for a smaller error. That is, after selection of the K
medoid points, each data point is associated with its closest medoid. Then a nonmedoid
data point is selected at random and used to replace one of the medoids to see if the
error is reduced. If so, the two points are interchanged. If not, another nonmedoid point
is tested. This is repeated until there is no change in the medoid. Obviously, this does
not scale up well to large data sets; however, it is more robust to noise and outliers than
K-means.
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8.1.2.3 Ward’s Minimum Variance Method

Actually, Ward’s minimum variance method is a form of hierarchical agglomerative
clustering, but it is based on the same analysis of the clustering problem as K-means.
Motivated by (8.1.3), consider the two sorts of error sums of squares for an initial
clustering C given by

ESS(C ,k) = ∑
C(i)=k

‖xxxi− x̄xxk‖2 and ESS(C ) =
K

∑
k=1

∑
C(i)=k

‖xxxi− x̄xxk‖2. (8.1.5)

There are
(K

2

)
possible pairs of clusters. For each pair (k1,k2), find ESS(C (k1,k2),

where C (k1,k2) is the clustering derived from C by merging the k1th and k2th clusters.
Clearly, ESS(C (k1,k2)) > ESS(C ) for each (k1,k2), so find the pair (k1,k2) giving the
smallest increase over ESS(C ). Then repeat the process for the clustering C (k1,k2)
to merge two more clusters and so forth. An analogous procedure could be used for
medians and L1, or medoids.

This procedure tends to join small clusters first and is biased toward producing clusters
with roughly the same shape and roughly the same size. This doesn’t scale up to large
n or large p very well, is sensitive to outliers, and most importantly is rigid in that
once a merger is made, it is locked in and never reconsidered. On the other hand,
usually Ward’s method gives clusters that appear well defined, which may explain its
popularity. Of course, using ‖xxxi− x̄xxk‖4, or even ‖xxxi− x̄xxk‖6 would seem to do better – but
this is fallacious. The better approach is to use

√
ESS so that one is not misled by the

nonlinearity of the square. A separate point is that Ward’s method does not necessarily
find the clustering that minimizes ESS, unlike K-means; it is limited to merging initial
clusters, not seeking entirely new ones, so if the initial clusters are suboptimal, Ward’s
method will typically exacerbate this.

8.2 Hierarchical Clustering

As noted before, hierarchical clustering techniques give a nested sequence of clus-
terings. So, the process of merging or dividing clusters can be represented as a tree,
usually called a dendrogram in the clustering context, where the branching is based on
inclusion. The process of generating a dendrogram is usually based on evaluations of
distances between points or sets of points at each stage of the clustering procedure. So,
hierarchical clustering procedures tend to be rigid in the sense that once a merge or
split has been done it cannot be undone. Of course, this is not necessary; in principle
one could write algorithms that include a depth-first search to carry out a procedure
without locking in earlier choices.

Hierarchical clustering procedures are either agglomerative or divisive. Agglomera-
tive clustering means that, starting with all the data points as singleton sets, clusters
are merged under a dissimilarity criterion until the entire data set is a trivial cluster.
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Divisive clustering means the reverse: The starting point takes the entire data set as
a cluster and successively splits it until at the end the trivial clustering of n singleton
sets results. In both cases, a threshold for how much merging or splitting is to be done
must be chosen. There are a great variety of ways to choose the merges and splits and
while a split may divide a cluster into more than two subsets and a merge may unite
more than two clusters, it is conventional to limit all merges to two input clusters and
all splits to two output clusters.

8.2.1 Agglomerative Hierarchical Clustering

At root, hierarchical agglomerative clustering merges sets according to fixed rules. The
basic template for hierarchical agglomerative clustering is:

Start with a sample xxxi, i = 1, ...,n, regarded as n singleton clusters, and a dissimi-
larity d defined for all pairs of disjoint, nonvoid subsets of the sample. If desired,
a fixed number of clusters to form can be chosen. Otherwise, the procedure can be
allowed to iterate n−1 times.

� At the first step, join the two singletons xxxi and xxx j that have the minimum dissim-
ilarity d(xxxi,xxx j) among all possible pairs of data points.

� At the second step, there are n−1 clusters C1,1, ...,C1,n−1. Find

( j∗, j′∗) = argmin
j 	= j′

d(C1, j,C1, j′), (8.2.1)

and merge clusters C1, j∗ and C1, j′∗ . Now there are n−2 clusters, say C2,1, ...,C2,n−2.

� Continue until the n points have been agglomerated into the desired number of
clusters or into a single cluster of size n.

Alternatively, choose an error criterion. Find the errors for clusterings with different
numbers of clusters. Choose the largest number of clusters for which the drop in
error from permitting one more cluster is small.

The two main inputs to this template are the stopping rule and the dissimilarity d,
which is taken up in the next subsection.

The stopping rule basically is a way to decide where to draw a horizontal line in the
dendrogram. Even if the procedure runs n− 1 iterations, the choice of when to stop
merging must be made to specify a particular clustering. The last step in the template
is called finding the knee (or elbow). This is an informal way to choose the number
of clusters when it is not preassigned. Consider a graph of the number of clusters K
versus an error criterion for clustering; the most common error criterion is the ESS in
(8.1.5), regarded as a function of K.

In practice, as K increases, the less information there is per extra cluster because there
is a finite amount of information in the data. Intuitively, when K is small, there is a
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high amount of information per cluster because the information in the data is being
summarized by a small number of cluster centers. As K increases, however, the infor-
mation in the data accurately captured by using extra clusters decreases. This means
there is a K beyond which permitting one more cluster reduces the error by such a
small amount that the extra cluster is not worth including. In these cases, a graph of K
versus the error criterion usually has a dent, or a corner, indicating a sudden dropoff of
information per extra cluster, indicating a point of diminishing returns. This is called
the knee or elbow of the curve and is usually found just by looking at the graph. Even
so, there are ambiguous cases, and it can be hard to decide when to stop agglomerating
and declare the clustering.

The result of a hierarchical agglomerative cluster analysis is often displayed as a tree
and is called a dendrogram; see Fig. 8.2. The lengths of the edges in the binary tree
shows the order in which cases or sets were joined together and the magnitude of the
distance between them. If three clusters were to be found, the natural place to draw
the horizontal line would be just above where {xxx2} is merged with {xxx5,xxx3}, so that the
three clusters are {xxx1}, {xxx4}, and {xxx2,xxx3,xxx5}.

X1 X4 X2 X5 X3

Fig. 8.2 In this hierarchical agglomerative clustering procedure on five points, xxx5 and xxx3 are joined
first and then xxx1 and xxx4 are joined. Then xxx2 is merged with the first pair, and finally the two sets of
two and three elements are merged. Depending on where one draws a horizontal line, one can get one,
two, three, four or five clusters.

8.2.1.1 Choice of d

Note that in (8.2.1) the optimization depends on d. In fact, the choice of d determines
the set of clusterings from which a final clustering can be chosen. Different choices of d
favor different classes of clusterings much like different choices of stop-splitting rules
favor qualitatively different classes of trees in recursive partitioning. So, it is important
to list the most frequently used dissimilarities along with some of their properties.
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Let A and B be two disjoint subsets of {xxx1, ...,xxxn}. To use the agglomerative clus-
tering template from the last subsection, it is enough to define d(A ,B) in general
for various choices of d. Since the goal is to merge sets of points successively, the d
are often called linkages because they control the lengths of line segments joining, or
linking, points xxxi to each other. Four of the most common dissimilarities are:

� Nearest-neighbor or single linkage: A metric d on IRp is minimized to define a
dissimilarity on sets, also denoted d, given by

d(A ,B) = min
a∈A ,b∈B

d(a,b).

� Complete linkage: Here a metric d is maximized to define a dissimilarity on sets
given by

d(A ,B) = max
a∈A ,b∈B

d(a,b).

� Centroid linkage: The idea is to merge at iteration k + 1 those clusters whose cen-
troids at stage k were closest. That is,

d(A ,B) = d(ā, b̄)

where ā is a centroid for A and b̄ is a centroid for B.

� Average linkage: In this case, the metric distances between points in A and B are
averaged:

d(A ,B) =
1

#(A )#(B) ∑
i∈A , j∈B

d(xxxi,xxx j).

(This is the reverse of centroid linkage, where the distance between the averages is
used.)

Single-linkage clustering is essentially a nearest-neighbor criterion: Two points, or
clusters, are linked if they are or have each others closest data point; only one link is
required to join them. The extension of the single link connection between points to
sets ensures there will always be a path with shortest lengths connecting all the points
in a cluster. Thus, single-linkage clustering also admits a graph-theoretic interpretation.
While this has many good properties, it has some deficiencies: Two clusters of any
shape that are well separated apart from a few points on a line between them will be
joined if the points between them are close enough to each other. This is called the
chaining problem, and it is very serious in many data sets. The tendency toward such
barbell-shaped regions can be quite strong because single-linkage clustering tends to
form a few big clusters early in the hierarchy. Worse, in the presence of outliers, it
can join two sets of points when most of the points are distant. Odd-shaped regions do
occur naturally, so it’s unclear in general whether such properties are features or bugs.
Indeed, if one anticipates regions that are separated, irregular or not, single-linkage
clustering can be a good way to find them. Often single-linkage clustering runs in
O(n2) time (range O(n logn)−O(n5)) for fixed p.
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Complete linkage means that all points in the two clusters are joined by lines of length
less than the upper bound on the maximum. This means that all the linkages between
points are within the distance at which the cluster was formed. Compared with single
linkage, complete linkage tends to form many smaller, tighter clusters. So, complete-
linkage dendrograms often have more structure to them and can therefore be more
informative than single-linkage dendrograms. Also, because of the maximum, com-
plete linkage is sensitive to outliers of the clusters themselves. Arguably, like support
vector machines, complete linkage is often driven by a small set of points that may be
outliers or inliers and not particularly representative of the data set. This may also lead
to non-robustness of the clustering in that small changes in the data can result in big
changes to the clustering. Often complete-linkage clustering runs in O(n3) for fixed p,
possibly less for sparse similarity matrices.

Centroid linkage calculates the distance between means of clusters. This average can
be a good trade-off between the extremes of single and complete linkage. The limita-
tion is that the distances at which clusters are formed are averages and do not corre-
spond to any actual links between data points. A downside is that this linkage is not
monotonic: If d j is the dissimilarity level for a given iteration j, it may be higher or
lower than d j+1; a reversal of the ordering is called an inversion. In contrast, single
linkage and complete linkage are monotonic in that the dissimilarity is always increas-
ing. So, the clusters from centroid linkage can be more difficult to interpret.

Average linkage is another compromise between single and complete linkage that is
more demanding computationally because of the summation. The chaining problem is
far less common for this method as compared with single linkage, and the effect of
outliers is reduced by the averaging. So, often the result is more, looser clusters than in
single linkage but fewer, tighter clusters than in complete linkage. For these reasons,
average linkage is fairly popular in applications; AGNES, or agglomerative nesting, is
one commonly used package. Average linkage often runs in O(n2) for fixed p.

Many other dissimilarities have been used. Ding and He (2002) propose setting

d(A ,B) = d(A ,B)/d(A ,A )d(B,B)

for a dissimilarity d and suggested a good choice for d based on graph-theoretic con-
siderations. Note that when the self-similarities d(A ,A ) or d(B,B) are small, the
dissimilarity between A and B is large. So the tendency will be to merge loose clus-
ters together when the dissimilarity between them is not too large. A related case is
Ward’s method, which essentially looks at the ratio of between-set and within-set sums
of squares. There are also choices of d based on medoids, or representing the cluster
by the median, rather then centroids, often giving more robustness. Usually, whatever
choice of d is used, it reduces to the underlying metric when A and B are singleton
sets, as in the four instances above.

Loosely, Ward’s method, K-means, and centroid linkage tend to give homogeneous
clusters around central values, means or medians, so the clusters can be readily sum-
marized. To a greater or lesser extent, these methods refine a given clustering rather
than generating a clustering from the start.
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In addition to AGNES, PAM (partitioning around medoids) and CLARA (clustering
large applications) are popular packages for clustering. In PAM the collection of all
pairwise distances between data points or sets of data point objects is stored using
O(n2) memory space. So, PAM doesn’t scale up to large n well. CLARA avoids this
problem by only finding the dissimilarity matrix for subsets of the data to reduce com-
putation time and storage requirements. Roughly, CLARA uses two steps. A subsam-
ple of the data is drawn and divided into K clusters, as in PAM, and the two steps are
to choose successive medoids to find the smallest possible average distance between
the data points in the sample and their most similar representative data points and then
to try to decrease the average distance by replacing representative data points. Then
each data point not in the sample is assigned to the nearest medoid. However, PAM
and CLARA are similar in that they try to find K central values for their clusters.

Aside from these heuristics, the various clustering algorithms have been compared ex-
tensively, theoretically and empirically. Fisher and Ness (1971) compare two versions
of K-means and single, complete, and centroid linkages under a variety of geometric
criteria. The most important ones are convexity of the clusters, the ability to recon-
struct the dissimilarity matrix from the clusters, whether the similarity between two
elements of the same cluster is higher than between elements of different clusters,
and several versions of the Sibson-Jardine stability principles (see Sibson and Jardine
(1971)) discussed below.

Roughly, in terms of the desirable properties they examined, single linkage is best,
complete linkage is second best, variants on K-means are third, and a method based on
centroids did worst. However, as noted before, because hierarchical clustering requires
several passes through the data, efficiency of the algorithm may limit how well it scales
up, and it is K-means that seems to scale up best to complex problems. This is roughly
consistent with the observations on the methods above and in the exercises at the end of
this chapter, as well as with the Sibson-Jardine theory discussed below. However, while
average linkage does not have such nice theoretical properties as yet, it is regarded by
many practitioners as giving better results.

Separate from how clustering procedures work and what type of clusters they favor,
there are a large variety of ways to evaluate clusterings. Obviously, the within- and
between-cluster sums of squares used in K-means or Ward’s method can be used more
generally. More pragmatically, given a clustering, one can insist on giving it an in-
terpretation and then ask whether the points in the cluster are consistent with that
interpretation. For example, in document clustering, one might have clusters that seem
to correspond to different subject matter. In principle, a human can read the docu-
ments and determine whether each document actually belongs to its cluster and so
compute the proportion of documents correctly assigned. Essentially, this turns a clus-
tering problem into a classification problem.

More generally, the entries d(xxxi,xxx j) of the dissimilarity matrix D can be used to de-
fine criteria a good clustering should satisfy. Representative of this class of optimality
criteria is the average distance of points in a cluster Ci = {xxxi1 , ...,xxxiu}, given by

d̄i =
1

u(u−1)

u−1

∑
j=1

u

∑
h= j+1

d(xxxih ,xxxi j)
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which can be summed for K clusters to give the total average distance

T (C1, ...,CK) =
1

#(C1)+ ...+#(CK)

K

∑
i=1

#(Ci)d̄i

much at one with the expressions obtained for K-means clustering. Obviously, many
different functions d(xxxi,xxx j) can be used.

As has been noted, different clustering procedures perform well under various criteria.
In addition, different clustering procedures give different clusterings for the same data
and on different data sets a given clustering procedure may perform quite differently.

As a practical matter, when n or p is large, the fastest hierarchical agglomerative clus-
tering is usually single linkage, which creates a minimal spanning tree (although K-
means is faster, in general, than most hierarchical methods). Indeed, to get a useful
clustering from a single-linkage procedure, sometimes it is enough just to remove the
longest edges, as shown in Fig. 8.3. This procedure may give results similar to K-means
when K is chosen correctly and the clusters are roughly convex. In fact, this simple
technique will be adequate for separated clusters, but this is a very strong assump-
tion. One of the more difficult tests for a clustering procedure is where the clusters are
formed by concentric annuli with even integer inner radii. In this case, one can choose
two points, one from each of two clusters that are closer to each other than either is to
most of the points in their respective clusters. Losing convexity of regions and mess-
ing up the within-cluster distances challenges most clustering procedures that scale up
well. (Nearest-neighbor methods can sometimes be adjusted to handle this, but they
scale up poorly.)

When p is large and most of the measurements are noise, it is very difficult to discover
true cluster structure because the signal that distinguishes one cluster from another gets
lost in the chance variation among the spurious variables. This can lead to multiple
cluster structures over different runs that seem equally plausible initially. Sometimes
this is due to the instability of the procedure – a method based on means will be less
stable than one based on the median. However, more typically the xxxis will show strong
clustering with respect to one subset of variables and comparably strong but different
clustering with respect to a different subset of the variables. Recall that polythetic pro-
cedures use all p entries in the xxxis as opposed to monothetic strategies in which the
entries in the xxxis are used one at a time. In monothetic strategies, a defined clustering
may be found before all the entries have been examined so that not all the coordinates
of the data points necessarily affect the procedure. Since monothetic clusterings de-
pend on which entries are examined first, monothetic clustering strategies are usually
more susceptible to spurious variables than polythetic ones are.

To dramatize this, consider a data visualization technique for multivariate data xxx1,...,xxxn

from Inselberg (1985) called a parallel coordinate plot. Imagine p real lines as in Fig.
8.4, labeled by the entries in xxxi. Then each xxxi = (x1,i, ...,xp,i) can be represented as
a piecewise linear curve intersecting the p real lines so that in the kth real line xk,i

is plotted. This gives n piecewise linear curves to represent the n data points. For six
data points, this is shown in Fig. 8.4. Using the first three coordinates, A, B, C and
D, E, F form two clusters. However, using x6 and x7, C, E, B and F, A, D form two
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Fig. 8.3 In this hypothetical case, the clusters indicated in the left panel were obtained by deleting
the long lines connecting them in the right panel.

different clusters. While this kind of visualization technique helps sort out different
monothetic clusterings for a small number of dimensions, it usually does not provide
enough summarization for dimensions much above, say, p = 20.

X7

X6

X5

X4

X3

X2

X1
A B C D EF

C E B F A D

Fig. 8.4 In this diagram the coordinates of the points A–F are indicated by the intersections of the
jagged lines with the axes labeled by the variables. It is seen that clustering on X1, X2, or X3 gives
different results from clustering on X6 or X7.
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Friedman and Meulman (2004) discuss the problem of using only a few of the entries of
the xxxis to produce a clustering; i.e., of doing variable selection on xxx. Variable selection
will be treated in Chapter 10, but it is worth stating their criterion here. To state their
optimality criterion, recall the membership function C(i) = k⇔ xxxi ∈Ck for a collection
of Cks in the clustering C . Using this, the clustering goal can be stated as finding
the choice of C(·), say, C∗(·) that minimizes how bad a clustering is. Intuitively, a
clustering is good if the cases in the clusters are more similar to each other than they
are to cases in other cluster, and poor if not. If the criterion is denoted Q(C), then one
might seek, for instance,

C∗ = argmin
φ

Q(C) = argmin
C

K

∑
k=1

Wk

n2
k
∑

C(i)=k
∑

C( j)=k

d(xxxi,xxx j), (8.2.2)

where nk = #(Ck) and Wk for k = 1, ...,K are weights assigned to the clusters. Obvi-
ously, there are other choices for Q in (8.2.2). Now, define

d(xxxi,xxx�) =
p

∑
j=1

w jdi,�, j =
p

∑
j=1

w jd j(xxxi,xxx�),

where d j is the distance measure on the jth entry in the xxxis and the weights w j are pos-
itive and sum to 1. The distances can also be normalized, as in Friedman and Meulman
(2004), by replacing d j by

d j(xxxi,xxx�)
1
n2 ∑n

i=1∑
n
�=1 dk(xxxi,xxx�)

.

If all w j = 1/p in (8.2.3), then all explanatory variables have the same influence on
(8.2.2) and so on C∗. However, the weights need not be uniform, for instance if there
is prior information that some variables are more important than others. The equal-
weights clustering criterion is

Q(C) =
K

∑
k=1

Wk

(
1
p

p

∑
j=1

(
1

n2
k
∑

C(i)=k
∑

C(�)=k

di,�, j

))
. (8.2.3)

A natural choice for di,�, j is (xi j− x� j)2/s2
j .

Since Q(C) in (8.2.3) depends also on the wks, one can rewrite it as Q(C,www) and min-
imize jointly over C and www. An optimum www∗ will put small weight on explanatory
variables that do not affect the clustering and large values on those that do. If this
problem is extended so that different clusters are permitted to have different weights
on the entries of the xxxis assigned to them and a penalty is imposed for putting weight
on too few explanatory variables, then it is likely that all the explanatory variables will
be used on the clustering unless there is strong evidence that some do not matter (and
so get a zero coefficient). Using a negative entropy penalty (that is minimized when
the weights are all the same), scaled by a tuning parameter λ , Friedman and Meul-
man (2004) show, in a series of examples, that optimal hierarchical agglomerative
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clustering using (8.2.3) tends to identify clusters whose data points are comparatively
close based on different subsets of the explanatory variables.

8.2.2 Divisive Hierarchical Clustering

Divisive hierarchical clustering treats the data initially as being one group that gets
split successively using a distance measure, in principle until each subset consists of
a single element. Clearly, divisive hierarchical clustering is the reverse of agglomera-
tive clustering. In fact, every technique for agglomerative clustering ultimately unites
all the data points into one cluster, so doing it backwards gives a technique for divi-
sive clustering. Conversely, every technique for divisive clustering can be done back-
wards to give an agglomerative technique. However, the different starting points for
the two sorts of hierarchical clustering make different techniques seem more natural
even though they are mathematically equivalent.

At its root, hierarchical divisive clustering splits sets according to fixed rules. The basic
template for hierarchical divisive clustering is:

Start with a sample xxxi, i = 1, ...,n regarded as a single cluster of n data points and
a dissimilarity d defined for all pairs of points in the sample. Fix a threshold t for
deciding whether or not to split a cluster.

� First, determine d(xxxi,xxx j), the distance between all pairs of data points, and
choose the pair with the largest distance dmax between them.

� Compare dmax to t. If dmax > t, then divide the single cluster in two by using the
selected pair as the first elements in two new clusters. The remaining n−2 data
points are put into one of the two new clusters: xxx� is added to the new cluster
containing xxxi if d(xxxi,xxx�) < d(xxx j,xxx�); otherwise xxx� is added to the new cluster
containing xxxi.

� At the second stage, the values of d(xxxi,xxx j) are found for xxxi, xxx j within one of
the two new clusters to find the pair in the cluster with the largest distance dmax

between them. If dmax < t, the division of the cluster stops and the other cluster
is considered. Then the procedure repeats on the clusters generated from this
iteration.

The procedure can be run up to n− 1 times, which gives n singleton clusters, in
which case a level in the dendrogram must be chosen to specify a clustering, or the
procedure can be run until dmax > ts for all the existing clusters.

Divisive methods are often more computationally demanding than agglomerative
methods because decisions must be made about dividing a cluster in two in all possible
ways. In fact, the template shows there are two basic problems that must be resolved
to implement a divisive procedure. First, a cluster to split must be chosen and then the
actual split must be found.
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The first problem has three standard answers. (i) Split every cluster until a complete bi-
nary dendrogram is obtained. (ii) Always split the largest cluster. (iii) If www is the center
of the cluster, choose the cluster with the largest variability around www; i.e., the j with
the highest value of∑i∈C j

‖xxxi−www‖2. The first two are simple: The first ignores whether
the clusters are meaningful and lets the practitioner choose where along the dendro-
gram to stop. Always splitting the largest cluster tends to generate dendrograms where
all leaves are about the same size. The third may be the best because it is sensitive
to the scatter of points in clusters. It will tend to produce clusterings that are tighter
than the others. Other cluster selection rules can be readily formulated; the specific
rule chosen tends to act like extra information, favoring one class of clusterings over
others; see Savaresi et al. (2002). Ding and He (2002) present examples suggesting
that splitting the loosest cluster (i.e., the cluster with the smallest average similarity or
largest average dissimilarity) gives good performance.

As with agglomerative clustering, there are many procedures that implement the tem-
plate. Here, it is enough to describe two packages and two procedures, one based on
K-means and the other based on a matrix decomposition. To an extent, other popular
methods are variants of them.

The two packages are MONA (monothetic analysis) and DIANA (divisive analysis).
MONA is a divisive monothetic procedure that applies to binary variables only. Each
split is based on one variable, hopefully well chosen. Given the variable, a starting
cluster is divided into two clusters, one having data points with value 1 for that variable
and the other having value, say, 0 for that variable. Each cluster is divided until all the
data points in the same cluster are identical. Choosing the variable on which to split
is the key feature: It is the variable with the maximal total association to the other
variables within the cluster to be split. To define this measure of dependency, define
the association between two binary variables Xi and Xj as

A(i, j) = P(Xi = 1,Xj = 1)P(Xi = 0,Xj = 0)−P(Xi = 1,Xj = 0)P(Xi = 0,Xj = 1).

The total association of a variable Xi is then

TA(i) =∑
j 	=i

A(i, j).

Treating the components Xi for i = 1, ..., p of xxx in this way, MONA estimates the TA(i)s
and splits on xi, where i = argmaxi TA(i). This procedure does not work with missing
values, so missing values in a data point are filled in by using a separate procedure also
based on total association.

DIANA is an implementation of the divisive template for the dissimilarity D̄,

D̄(xxxi,Ck) =

{
1

#(Ck)−1 ∑xxx j∈Ck, j 	=i d(xxxi,xxx j) if xxxi ∈Ck;
1

#(Ck) ∑xxx j∈Ck
d(xxxi,xxx j) if xxxi /∈Ck.

Clearly, D̄ is an average dissimilarity based on d. The full data set is treated as a single
cluster and split until each cluster contains only a single object. At each iteration, the
cluster with the largest diameter is selected; the diameter of a cluster is the largest
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dissimilarity between any two of its objects. For this cluster, DIANA first finds the
data point that has the largest D̄ distance to the other objects of the selected cluster.
This data point starts another cluster. Data points are then assigned to this new cluster
if they are closer to it than to the old cluster they were in. The result is a split of the
selected cluster into two new clusters.

8.2.2.1 Divisive K-means

Recall that the basic K-means procedure is to select K points as initial centers, assign
the data points to their closest center, recompute the centers, and then repeat until the
centers stop changing too much. Savaresi et al. (2002) proposes a divisive form of this,
called bisecting K-means, that can be summarized as follows. Note that the suggestive
notation ‖ · ‖ is used in place of the generic dissimilarity d.

Start with a sample xxxi for i = 1, ...,n regarded as a single cluster of n data points
and a norm || · ||. Initialize by selecting a point ccc0 ∈ IRp and finding some location
www of the sample, such as a mean. Define ccc1 = www− (ccc0−www).

� Divide the sample into subsets S0 and S1 by

∀i : if ||xxxi− ccc0|| ≤ ||xxxi− ccc1||, then put xxxi ∈ S0,

and
∀i : if ||xxxi− ccc0||> ||xxxi− ccc1||, then put xxxi ∈ S1.

� Find the centers www0 and www1 of S0 and S1, respectively.

� If www0 = ccc0 and www1 = ccc1, stop. Otherwise, take ccc0 as www0 and ccc1 = www1 and re-
peat, systematically searching through the clusters to minimize the SSE from the
bisection in terms of ‖ · ‖.

The last step can be modified so the procedure stops when ||www0−ccc0|| and ||www1−ccc1||
are less than a threshold.

Comparing this with the K-means algorithm, one sees that rather than proposing an
initial set of K-means, the data set is bisected to find the means that can be used to
define clusters. The division is done in the first step, and each xxxi is put in the cluster
whose center is closest to it. The analogy is even closer if the procedure stops when a
pre-assigned number of clusters has been found. The time complexity of this bisecting
version is linear in n (i.e., O(n)), making it more efficient than regular K-means clus-
tering: There is no need to compare every point to every cluster center since to bisect
a cluster one just looks at the points in the cluster and their distances to two centers.
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8.2.2.2 Principal Direction Divisive Partitioning

The PDDP method was invented by Boley (1998) and was developed in the context
of document retrieval, where the data points xxxi = (xi,1, ...,xi,p) represent the relative
frequency of p words, suitably scaled. For ease of exposition, let MMM = [xxx1, ...,xxxn] be
the p× n matrix formed by concatenating the data points as column vectors. This
can be centered by subtracting the mean coordinatewise to give MMMc = MMM− x̄xx1′, where
x̄xx = (x̄1, ..., x̄p)′. Although MMMc is not a square matrix in general, the strategy is to find
the eigenvector corresponding to its largest eigenvalue and use this to identify a di-
rection for a good split. The premise is that the direction of greatest stretching is the
right axis on which to split to find clusters. For nonsquare matrices, the analog of an
eigenspace decomposition is called a singular value decomposition (SVD). Essentially,
it generalizes the usual diagonalization procedure by identifying the subspace (of di-
mension less than or equal to min(p,n)) on which there really is a diagonal form. The
remaining dimensions are treated as a null space for the matrix as a linear operator.

Consider a real p×n matrix AAA with p > n. It is possible to define the eigenvectors of AAA,
but there will be at most n of them, even though they are elements of a p-dimensional
space. Let the matrix of eigenvectors of AAA be PPP. Since PPP is not square, it is singular so
there is no basis transformation in which AAA is diagonal with eigenvalues on its main
diagonal. Nevertheless, AAA can be written as

AAA = UUUDDDVVV ′, (8.2.4)

in which UUU is p×n, DDD is n×n diagonal, and VVV is an n×n square matrix. Both UUU and
V can be chosen to have orthogonal columns, so

UUU ′UUU = VVV ′VVV = Id.

The elements of DDD are called singular values; at most n of them are nonzero. The
proof uses the Gram-Schmidt orthogonalization technique to identify submatrices cor-
responding to the spaces of xxxs and yyys on which the equation AAAxxx = λyyy can be solved.
The relationship between PPP and AAA, UUU , or VVV is beyond the present scope. (In fact, VVV
and PPP do not appear in the PDDP procedure.) However, it is clear that, without loss of
generality, the diagonal entries of DDD can be assumed to decrease. Assume that the first
element is largest and the last element is nonnegative.

Given these formalisms, Savaresi et al. (2002) present PDDP as follows.

Start with a sample xxxi for i = 1, ...,n regarded as a single cluster of n data points.
Find the mean x̄xx and MMMc = MMM− x̄xx1′.

� Let AAA = MMMc, and find the UUU , VVV in the SVD of MMMc as in (8.2.4).

� Take the first column of UUU , say u = U·,1, and partition the data points xxx1, ...,xxxn

from MMM into two subsets MMM0 and MMM1 using the inequalities

∀i : if u′(xxxi−www)≤ 0, then put xxxi ∈MMM0,



426 8 Unsupervised Learning: Clustering

and
∀i : if u′(xxxi−www) > 0, then put xxxi ∈MMM1.

� Iterate this procedure with MMM0 and MMM1 in place of MMM: Center MMM0 and MMM1, find
the SVDs of the centered matrices, and then use the first columns of the new UUU
matrices on each cluster.

In fact, this is close to the spectral methods discussed below since it uses the spectrum
of the data matrix, though not the spectrum of a dissimilarity matrix. Moreover, it is
enough to find the first singular value and column of UUU , rather than the whole SVD, to
effect this split.

The bisecting k-means and PDDP algorithms are somewhat similar. Both split MMM
through the centroid x̄xx, but the first does so using a plane perpendicular to the line join-
ing the centroids www0 and www1 of S0 and S1, while the second uses a plane perpendicular
to the direction of the centered data MMMc that has the largest variance. Consequently, the
actual splits the two procedures give can often be close; the differences emerge more
from the choice of clusters to split. The main contribution of Savaresi et al. (2002) is
a technique for taking the shape of clusters into account. Their procedure does so by
“looking ahead” – if there is little scatter to the points relative to the distance between
centroids, then there may be two separable clusters, while if there is a lot of scatter,
then there may be one large cluster. This criterion also indicates which clusters are
most important to split.

In fact, Boley (1998) actually developed PDDP using principal components, a tech-
nique for decomposing covariance matrices. However, the derivation for principal
components uses an SVD and in fact is nearly equivalent to an SVD.

8.2.3 Theory for Hierarchical Clustering

First, it is important to note that clustering methods are generally just procedures and
the notion of fit derives from dissimilarities, not probabilities. Probabilistic properties,
when invoked, are mostly for evaluating some aspect of performance of the clustering
procedure rather than generating clusters.

Second, clustering data effectively means regarding them as having come from a single
source, even if that source is a mixture of components. The single source is a density
on XXX so clustering corresponds to searching for the local maxima of a density. In gen-
eral, where to draw the boundary between different modes is arbitrary unless extra
information compels a particular choice. Given the variety of possible densities for
a p-dimensional random variable, it is likely unreasonable to expect to find an opti-
mal clustering procedure for completely general settings. Despite this caveat, there is
reason to hope a comprehensive theory will emerge over time. The widespread impor-
tance of clustering means the search for good theory to motivate and develop clustering
procedures, and interpret results from them, is worthwhile.
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Third, the range of current theory runs from optimists who remain hopeful a compre-
hensive theory can be developed (see Luxburg and Ben-David (2005)) to pessimists,
such as Kleinberg (2003), who have theorems showing that no clustering procedure
can satisfy an innocuous list of desirable properties.

An intermediate position that continues to motivate investigation is taken in Sibson
and Jardine (1971) and is intended only for hierarchical clustering procedures. They
introduce a collection of desiderata that a good clustering procedure should satisfy.
They regard a clustering procedure C as acting on the dissimilarity matrix for a data
set using a dissimilarity d and giving an equivalence relation or hierarchy on the data
points. This can be thought of as an “ultrametric” (see Janowitz (2002)) a level of study
deeper than needed here.

Several of the Sibson and Jardine (1971) conditions are worth stating. First, they want
the clustering to be independent of the labeling of the data points. Second, they want a
clustering to be well-defined, meaning that any fixed dissimilarity matrix will always
give the same clustering under the procedure. A third condition is a fitting-together
condition: Removing only a few data points should change the clustering only a little.
One way to formalize this is to insist that if the data points on a branch are removed,
then clustering the points on the branch and on the data points in the complement
separately should give the same tree structure as in the original clustering. Fourth, the
dendrogram should be independent of scale; i.e., multiplying the dissimilarity matrix
should not change the clusters it generates. Fifth, the clusters should be stable under
growth in that as more data accumulate the clusters shouldn’t change much. There are
several other criteria, but the most controversial of all of them is the continuity axiom:
The clustering function C should be continuous as a function of the dissimilarities.
Using these properties, Sibson and Jardine (1971) provide a (unique) characterization
of single-linkage clustering. The problem is that single-linkage clustering suffers the
chaining problem and doesn’t scale up particularly well to higher dimensions.

To elaborate on the debate, let d be a distance on a set S identified with the set {1, ...,n},
and define a clustering function to be any function C that takes a distance function d
on S to a partition Γ of S. That is, C(d) =Γ . Kleinberg (2003) defines three properties
a good C should satisfy:

• Scale Invariance: For any d and α > 0, C(d) = C(αd).

• Richness: Range(C) equals the set of all partitions of S.

• Consistency: For two distances d1 and d2, if C(d1) =Γ and d2 is a γ transformation
of d1 (i.e, d2 satisfies (i) ∀i, j ∈ S belonging to the same cluster d2(i, j) ≤ d1(i, j)
and (ii) ∀i, j ∈ S belonging to different clusters d2(i, j)≥ d1(i, j)), then C(d2) = Γ
as well.

Intuitively, scale invariance means that the clustering function should be insensitive
to changes in the unit of measurement. Richness means that, given any partition Γ ,
C−1(Γ ) is a well-defined, nonvoid set. The consistency condition encapsulates the idea
that shrinking the distance between points in the same cluster or expanding the distance
between points in different clusters should not affect the clustering itself. Using these,
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Kleinberg (2003) establishes an impossibility result: There is no clustering procedure
that satisfies all three of these properties.

To prove the theorem, the concept of an antichain must be defined. First, Γ ′ is a refine-
ment of Γ if each set in Γ ′ is a subset of a set in Γ . The binary relation of refinement
between partitions is a partial ordering, so the set of partitions of S under the refine-
ment relation is a partially ordered set. Now, a collection of partitions is an antichain
if it does not contain two distinct partitions such that one is a refinement of the other;
that is, an antichain is a sequence of partitions whose elements when compared under
refinement are not comparable.

Theorem (Kleinberg, 2003): If a clustering function C satisfies scale invariance and
consistency, then Range(C) is an antichain.

Since the collection of all partitions is not an antichain, Kleinberg observes the follow-
ing immediate consequence.

Corollary: There is no clustering function C that satisfies scale invariance, richness,
and consistency.

Proof of the Theorem: To set up the proof, two definitions are required. First, given a
partition Γ , a distance d is said to (a,b)-conform if there is an a and b such that for any
i, j in the same cluster d(i, j) ≤ a and for i, j in different clusters d(i, j) ≥ b. Second,
given a clustering function C, (a,b) ∈ IR2 is Γ -forcing if every d that (a,b)-conforms
to Γ satisfies C(d) = Γ .

Now, let C be a clustering function on S that satisfies consistency.

Step 1: For any partition Γ ∈ Range(C), ∃a,b ∈ IR+ with a < b so that (a,b) is Γ -
forcing.

Let Γ ∈ Range(C). Then ∃d with C(d) = Γ . Let

a∗ = min
i, j in the same cluster of Γ

d(i, j)

and
b∗ = max

i, j in different clusters of Γ
d(i, j).

Next, let (a,b) ∈ IR2 with a < b so that [a∗,b∗] ⊂ (a,b). Now, any distance d∗ that
(a,b)-conforms to Γ must be a Γ transformation of d, so, by Consistency, C(d∗) = Γ
and (a,b) is Γ -forcing.

Suppose now that C also satisfies scale invariance and that there are distinct partitions
Γ0,Γ1 ∈ Range(C) so that Γ0 is a refinement of Γ1.

Step 2: This last supposition leads to a contradiction.

Let (au,bu) be a Γu-forcing pair with au < bu for u = 1,2. Step 1 ensures that these
requirements can be satisfied.

Let a2 ≤ a1 and let ε ∈ (0,a0a2/b0). Now, there is a distance function d such that (1)
d(i, j)≤ ε when i, j belong to the same cluster of Γ0; (2) a2 ≤ d(i, j)≤ a1 when pairs
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i, j belong to the same cluster of Γ1 but not to the same cluster of Γ0; and (3) d(i, j)≥ b1

when i, j are not in the same cluster of Γ1.

The contradiction arises as follows. The distance d (a1,b1)-conforms to Γ1 so C(d) =
Γ1. So, set α = b0/a2 and d′ = αd. Scale invariance implies C(d′) = C(d) = Γ1.

However, for points i, j in the same cluster of Γ0,

d′(i, j)≥ a2b0

b0
≥ b0,

meaning that d′ (a0,b0)-conforms to Γ0, and therefore C(d′) = Γ0 and so Γ0 = Γ1, a
contradiction. �
Kleinberg’s theorem holds if the distances are metrics, and Kleinberg (2003) verifies
that any two of the three properties can be satisfied.

Despite Kleinberg’s theorem, other approaches to the development of a theory remain
promising. The central issue may be not to work with the distance to which a cluster-
ing corresponds, but to define a distance between clusterings. Luxburg and Ben-David
(2005) introduce two ideas for how to do this. The first is an extension operator: If C1

is a clustering of S1 and C2 is a clustering of S2, where S1 and S2 are subsets of X , then
both Cus can be extended to a clustering on the whole space and the extended cluster-
ings can be compared. For instance, one can take the K means found for a clustering
and generate a clustering for X by assigning any point in X to its closest center. Now,
the two partitions of X from the Cus are comparable and any way to assign extra data
points to clusters defines an extension.

The second idea of Luxburg and Ben-David (2005) is to define a quality measure, say
q(C ), for a clustering C and use d(C1,C2) = |q(C1)− q(C2)| as a distance measure.
Two similar clusterings should have qs that are close together, but it is possible for quite
different clusterings to have similar qs as well. Steinbach et al. (2000), Section 4, sug-
gest several possibilities; one is q(C ) = ∑K

k=1(1/#(Ck)2)∑xxxi,xxx j∈Ck
cos(xxxi,xxx j), where

the cosine is of the angle between the vectors in its argument.

Given a distance measure on clustering and its extensions, it is straightforward to define
convergence of clusterings. Since they depend on the initial data xxx1,..., xxxn, the usual
modes of convergence (distribution, probability, etc.) apply. One consequence of this
is that if the distance measure is bounded, its expectation

A(A1,A2,P,n) = ExP(d(C1(S1,n),C2(S2,n)))

exists, where, for u = 1,2, Au is a clustering procedure giving clusterings Cu for in-
dependent samples of n points, Su,n. Under reasonable conditions, it is possible to
establish probabilistic bounds of the form

P(|d(C1(S1,n),C2(S2,n))−A(A1,A2,P,n)|> t)≤ e−αnt2

using Hoeffding’s inequality, for instance. It remains to be seen how well this strategy
generates and evaluates clustering procedures.
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8.3 Partitional Clustering

In contrast to hierarchical techniques, which give a nested sequence of clusterings,
usually based on a dissimilarity, partitional clustering procedures start with an initial
clustering (a partition of the data) and refine it iteratively, typically until the final clus-
tering satisfies an optimality criterion. In general, the clusterings in the sequence are
not nested, so no dendrogram is possible. On the other hand, this means that partitional
clusterings do not lock in bad choices; in principle, a bad choice for forming a cluster
in one iteration can be undone at a later iteration. In a trivial sense, any hierarchical
clustering can be regarded as partitional by ignoring the nesting of the clusters at each
iteration. However, aside from the nesting, hierarchical methods are usually based on
a dissimilarity, while partitional procedures are usually based on an objective function.
So, if a hierarchical method has a fixed stopping rule and its iterations try to satisfy an
optimality principle, the sense need not be so trivial. Since it is hard even to think of a
general partitional method as hierarchical, it is easy to see that partitional methods are
the larger class.

While objective functions are not necessarily part of the definition of partitional
methods, they occur commonly enough to justify discussion. So, consider a function
F = F(K0,C (K0)), where K0 is an initial number of clusters and C0(K0) is an ini-
tial clustering of the xxxis. Given F , a natural procedure for partitional clustering is to
rearrange points to maximize F :

Start with a sample xxxi for i = 1, ...,n and an integer K0. Let C0(K0) be written
C0,1,...,C0,K0 .

� Find F(K0,C0(K0)), and set

F0 = F(K0,C0,1, ...,C0,K0).

� Rearrange the points assigned to the C0,ks, possibly rechoosing K0 to obtain a
new clustering, C1(K1), with K1 clusters, (C1,1, ...,C1,K1).

� Find the new value of the objective function

F1 = F(K1,C1,1, ...,C1,K1).

� Continue iterating, searching through values of K and clusterings Cj,1,...,Cj,Kj

until Fj is small enough and the final choice of Kf in and Cf in,1,...,Cf in,Kf in ob-
tained.

The initial clustering C (K0) may be random or defined by K0 statistics such as
cluster means.

The big gap in this template is the choice of F . There are many possibilities. Indeed,
most partitional clustering techniques have a specific F they optimize. For instance,
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(8.1.1) is the optimality criterion that K-means optimizes and (8.3.1) below is another
objective function from the perspective of graph theoretic clustering.

Several important classes of objective functions are identified by Zhao and Karypis
(2002). One is the class of internal criteria. These objective functions express the de-
sire that the clustering should maximize the homogeneity of the points in each cluster
rather than the between cluster spread; e.g., try to make W (C ) small rather than trying
to make B(C ) large. External criteria are the reverse: They focus on how clusters are
different from each other rather than how similar the elements of a cluster are to each
other. This would correspond to maximizing B(C ) rather than trying to make W (C )
small. An evaluation of a wide variety of clustering procedures, including more objec-
tive functions than noted below, can be found in Jain et al. (2004). Zhao and Karypis
(2005) note some examples:

� One internal criterion is motivated by K-means which focuses on maximizing the
similarity between cluster centers and cluster elements. It can be written

IC1 =
K

∑
k=1

nk ∑
xxxi∈Ck

xxx′ix̄xxk

‖xxxi‖‖x̄xxk‖
. (8.3.1)

(Recall that cos(xxxi,xxx j) = xxx′ixxx j/‖xxxi‖‖xxx j‖, the angle between the vectors.)

� Another internal criterion is to maximize the sum of normalized pairwise similar-
ities between the elements in each cluster. This effectively separates each cluster
from the entire data set as much as possible (i.e., makes the average squared dis-
tances between the cluster centers as large as possible). This can be expressed as
maximizing

IC2 =
K

∑
k=1

nk

(
1

n2
k
∑

xxxi,xxx j∈Ck

xxx′ixxx j

‖xxxi‖‖xxxi‖

)
=

K

∑
k=1

‖nkūuuk‖2

nk
,

where uuuk is the average of the normalized elements of cluster k.

� An external criterion might focus on minimizing the angle between cluster centers
and the overall mean of the data set, for instance in

EC =
K

∑
k=1

Nk
x̄xx′kx̄xx

‖x̄xxk‖‖x̄xx‖
.

Numerous other objective functions have been proposed; IC1/EC and IC2/EC are
among them as efforts to combine internal and external criteria.

Once an objective function is chosen, there remain many ways to search the possible
clusterings of a data set to find one that optimizes it. Obviously, one could exhaus-
tively search all possible clusterings (C1, ...,CK) for each K = 1, ...,n. This would be
computationally prohibitive, so effective search strategies for finding optima, possibly
only local, are needed. The simplest, used in K-means, is to refine an initial clustering
by finding the new centers and then reassigning each data point to its closest center.
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This can be repeated but usually makes most of its gains in the first few iterations.
Sometimes this is called iterated assign to nearest.

More flexibly, one can start with an initial clustering and then use split or join rules to
divide a cluster into two smaller ones or to condense two clusters into a single one; see
Cutting et al. (1992). The basic idea of splitting is to find a cluster that scores poorly on
a homogeneity criterion and split it using some procedure (e.g., K-means) using K = 2.
To join two clusters that are not usefully distinguished by the difference between their
centers, one can look for data points that are close, possible only on some of the p
entries in xxxi.

A greedy approach can also be employed; it will always give a local minimum but
can be restarted with different initial clusters to help find a global minimum. Given an
initial clustering, visit the n points xxxi in random order. For each xxxi, find the change in
F from moving xxxi from its cluster to another cluster by testing each alternative cluster.
Then, put xxxi into the cluster giving the highest improvement. If there is no move that
increases F , then xxxi remains in its cluster. If no xxxi can be moved, the iterations stop.
One can improve this by recomputing the cluster centers each time an xxxi is moved.

Next, three different classes of partitional clustering procedures will be explained.
These complement the first partitional procedure, K-means, that was explained at
the beginning on account of its popularity. The three classes are model-based, graph-
theoretic, and spectral.

8.3.1 Model-Based Clustering

The idea is to propose an overall model for the observed data by assigning distributions
to subsets of the data. The most typical case is to regard the clusters as representing
local modes of the true distribution, which is then modeled as a mixture of components,
one for each mode. While a mixture model might be true, for clustering purposes it is
enough to assume that the true model can be readily approximated by a mixture.

A less typical case, but possibly more general, is to recall the cherry-picking technique
of House and Banks (2004), see Chapter 1, Section 2.2, which is an effort to decompose
a collection of points into subsets with lower dimensional structure. Given n points xxxi,
one can choose q+2 < n points and use q of them to define a q-dimensional subspace
of the p-dimensional space. The other two points are needed to estimate a variance
and to test goodness of fit. Once a set of points has been found that defines a useful
subspace, any other points that are not too far from the hyperplane can be added to the
q+2 points and declared part of the same cluster. Then the process can be repeated on
the remaining n−q−2 points.

This kind of strategy may find clusters that are lower-dimensional and dispersed.
The human eye tends to be good at picking out the shapes of clusters that are tight
or relatively well filled. The eye does not do so well with dispersed clusters, even
when they have just as much structure. For instance, a small-ish component of the
form N(0,M) for a large M could look like outliers rather than a cluster. However,



8.3 Partitional Clustering 433

model-based cherry picking might find this kind of cluster because goodness of fit is a
global criterion, whereas proximity is a local condition.

Regardless of the clustering procedure, identifying a partition and unambiguously as-
signing each xxxi to a partition element often leads to points that sit near a boundary.
This may be unsatisfactory because the choice of boundary includes unquantified vari-
ability: A different run of the experiment would have given different data and thus,
probably, different boundaries. There is a robustness problem in the boundaries as
well. Tweaking the procedure used to get the clustering procedure will typically give
slightly different clusters. Imagine replacing single-linkage clustering with a sort of
double-linkage clustering (the average of the two closest points is within a specified
distance), for instance. A variant on this problem is that it is easy to generate small sam-
ples from many unimodal distributions, such as an exponential, that lead to (weakly)
bimodal histograms. So, it is important to assess how accurately the clusters represent
the source as well as assessing whether the clusters are otherwise reasonable. These
questions can be answered in part by asking how stable a clustering is.

Addressing these questions may be where model-based procedures are most useful.
To see why, note that one way to represent the uncertainty in whether a point is in a
cluster is to back off from determining absolute membership of each xxxi in a cluster
and ask only for a degree of membership. That is, one can use soft rather than hard
assignment: Rather than saying xxxi is or is not in cluster Ck, the statement is of the
form that xxxi is in Ck with probability πi,k, where ∑k πi,k = 1. One can recover a hard
clustering, if desired, by saying xxxi is in the cluster Ck with the highest probability; i.e.,
choose k = argmaxk πi,k. Since the clusters themselves can be regarded as random, too,
this procedure is usually done conditional on a fixed clustering.

The idea of soft membership can be formalized in a mixture model. Suppose f is the
density of XXX , and write

f (xxx) =
K

∑
k=1

πk pk(xxx |θθθ k), (8.3.2)

where the πk are positive and sum to one and the pks are density functions in a family
indexed by θθθ . The pks are called components and the πks are weights indicating what
fraction of the data arise from each component. In fact, most densities can be repre-
sented, to any desired level of approximation, as a finite sum of densities drawn from
a large enough class, in most distance measures. So, mixture models are more general
than they may appear at first.

Models like (8.3.2) are familiar from the Bayesian formulation. Consider the discrete
Bayesian model in which the parameter values are θk for k = 1, ...,K with prior prob-
abilities π(θk). When θk is true, the model for the data is pk(xxx|θk). So, the posterior is
the ratio of the joint density for (Θ ,XXX) to the marginal for the data,

m(xxx) =
K

∑
k=1

π(θk)pk(xxx|θk). (8.3.3)
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Writing π(θk) = πk turns (8.3.3) into (8.3.2). In other contexts where the values of θk

can be regarded as missing data, they are often called latent variables.

Implementing a model such as (8.3.2) necessitates choosing K and the densities pk and
then estimating the weights πk and the parameters θk.

Effectively, choosing K amounts to choosing the number of clusters. So, methods of
clustering already discussed can be used to give an indication of the range of K. In ad-
dition, as with K-means, several values of K can be chosen in (8.3.2) and the resulting
model evaluated to see how well it fits the data. The issue is how to evaluate the fit,
especially when p is large relative to n. The Bayes information criterion is one way to
choose K; it amounts to regarding f (xxx) as f (xxxn|π1, ...,πK ,θ1, ...,θK) (i.e., a parametric
family with 2K parameters) and then maximizing

BIC(K) =−2log f (xxx|π̂1, ..., π̂K , θ̂1, ..., θ̂K)+K′ logn, (8.3.4)

where K′ is the number of real-valued parameters; see Chapter 10, Section 2.2, on
variable selection, or Fraley and Raftery (2002). It is well known that this expression
gives the mode of the posterior on a class of models indexed by K. Sarle (1996) has a
thorough discussion and reference list for choosing the number of clusters. When the
gks are normal, Goldberger and Roweis (2004) propose a technique that uses a value of
K known to be too large so as to collapse (8.3.2) down to the correct K; their theorem
ensures the K found by their procedure is a local minimum of an objective function.

Given that K has been chosen, the choices of pks are varied. One problem that must
be resolved is that the resulting f (xxx) is not identifiable. For instance, with normal gk,
consider two instances of (8.3.2). It is seen that both

Mixture Density 1 : {π1 = .5, p1 = N(0,1); π2 = .5, p2 = N(0,1)} (8.3.5)

and

Mixture Density 2 : {π1 = 1, p1 = N(0,1/2); π2 = 0, p2 = N(−10,7)} (8.3.6)

have the same mean and variance and so describe exactly the same data generator. In
practice, identifiability problems only arise on sets of measure zero in the model space,
usually corresponding to boundaries. Lindsay (1995) gives a convexity argument for
solving the identifiability problem, but in practice typical mixture modeling ignores
the identifiability question, using a computational approach (the EM algorithm to be
discussed shortly) that generally gives decent results.

Although the pks can correspond to any distribution, discrete or continuous, usu-
ally they are chosen for convenience, typically being of a familiar parametric form
(Gamma, logistic, log normal, t, Poisson, Weibull, multinomial, or normal). However,
it is obvious that many different choices for the set of K densities pk are possible and
that different choices would give different mixture models. For instance, if the pks are
normal but the clusters are not elliptical, or even convex, then clusterings generated
under a normal assumption are not likely to be representative of the data. The choice
of models pk implicitly makes relatively strong assumptions about the clusters to be
expected; in higher dimensions, this can be a major problem.
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In practice, it is often assumed that the differences arising from different choices of the
pks are small for commonly occurring cases. This is used to justify leaving the variabil-
ity due to selection of the pks unquantified. As a pragmatic point, most authors just fix
a K and choose the pks to be normal. Thus, θk = (μμμk,ΣΣΣ k), and for p-dimensional data,
f has K(p + p(p− 1)/2) real-valued parameters in the pks plus K− 1 independent
weights.

Fig. 8.5 These figures show contour plots of densities in two dimensions. Each has three local modes;
the location of the modes and regions around the modes differ. In the first, the modes of the three
peaked regions form an equilateral triangle and they have the same indicated spread. In the second,
the modes are unrelated and the regions have spreads that are small, medium, and large. In the third,
the modes are unrelated and the spreads are small, small, and large.

Figure 8.5 shows three contour plots from two-dimensional densities each corre-
sponding to three clusters. If K = 3 and the components in (8.3.2) are normal (i.e.,
pk(xxx|θk)) = φ(xxx|μμμk,ΣΣΣ k)), then the centers of the ellipses estimate the μμμks and the
relative sizes of the ellipses indicate the spread of the normals corresponding to prop-
erties of the ΣΣΣ ks, tighter ellipses corresponding to smaller variances of the entries of xxx.
Clearly, if the level sets of a density were not convex, for instance a kidney or annular
shape, then a normal mixture might not approximate the true density well – unless the
normals were allowed to be so close that their modes formed a ridge mapping out the
nonconvex shape.

Note that Fig. 8.5 also shows how obtaining (8.3.2) leads to a clustering. The number
of clusters is K, often chosen by BIC. The soft membership function for a typical data
point xxxi is the vector

1
π1 p1(xxxi|θ1)+ . . .+πK pK(xxxi|θK)

(π1 p1(xxxi|θ1), . . . ,πK pK(xxxi|θK)).
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This can be converted to a hard membership by assigning each xxxi to the cluster for
which its soft membership is highest. Thus, if the model (8.3.2) is fit, the clustering is
determined. Indeed, it can be seen that the result of the maximization step in the EM
algorithm below effectively gives the soft clustering entries.

Fixing a K and taking the pks to be normals with unknown means and variance matri-
ces, the task remaining is to estimate the parameters. In a single normal distribution,
the MLEs for μμμ and ΣΣΣ are well known and well behaved. However, when two or
more normal densities are mixed, the unboundedness of the density as a function of
the variance becomes a problem. Consider a standard N(0,1) and an N(μ2,σ2

2 ), with
π1 = π2 = 1/2. Given a data point x, one can set μ2 = x. Now, by choosing σ2 to be
ever smaller, the likelihood can be made arbitrarily large, making estimation by an
MLE impossible. The next subsection presents a computational technique called the
EM algorithm. Under some conditions, it produces estimates that converge to their true
values at the usual rates.

8.3.1.1 The EM Algorithm: Two Normal Components

To fix ideas, suppose that a random variable with p = 1 has been measured repeatedly,
leading to the smoothed histogram depicted in Fig. 8.6. Since two modes appear, it is
reasonable to fit a K = 2 component mixture model. In the absence of other informa-
tion, since the neighborhood of the modes looks symmetric, it’s probably acceptable to
choose the pk(x) = φ(μk,σ2

k )(x) to be normal. Setting θθθ k = (μk,σ2
k ) in (8.3.3) means

that an observation has a density of the form

f (x) = πφ(x |μ1,σ2
1 )+(1−π)φ2(x |μ2,σ2

2 ). (8.3.7)

Like (8.3.3), (8.3.7) is a mixture; it assumes that x is drawn from φ(x |μ1,σ2
1 ) with

probability π and from φ2(x |μ2,σ2
2 ) with probability 1−π but that the observer does

not know which of the two densities produced a given observation. It’s as if the data set
is of the form ((Y1,X1), ...,Yn,Xn)), where Yi = 1,2 indicates the component sampled,
but Yi is missing so only the marginal density for the data can be used. The component
index behaves like a parameter in a Bayesian treatment; the task here is to estimate its
π as well as the parameters in the components.

Consider the standard approach to finding the MLE. A product of n factors of the form
(8.3.7) becomes a sum of logs so the log likelihood is

�(θθθ ,xxx) =
n

∑
i=1

ln[πφ1(xi |μ1,σ2
1 )+(1−π)φ2(xi |μ2,σ2

2 )], (8.3.8)

in which the parameter is five-dimensional, θθθ = (π,μ1,μ2,σ2
1 ,σ2

2 )′. Maximizing
(8.3.8) is hard because the argument of the log has more than one term.

Although useful expressions for the MLE do not exist, a computational approach
called the EM algorithm is usually successful. The EM algorithm alternates between an
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Fig. 8.6 This figure depicts the smoothed histogram from a one-dimensional density with two modes
or clusters.

expectation step and a maximization step to converge to an estimator of θθθ with many
of the same properties as the MLE.

The idea behind the EM algorithm is to reconstruct the unobserved Yis that would
have indicated which component in (8.3.7) generated the observation. Since the correct
Yis were unobserved, write the reconstructed versions as latent variables denoted Zi,
i = 1, ...,n. That is, the Zis indicate which component produced each Xi:

Zi =
{

0 if xi ∼ φ2

1 if xi ∼ φ1,
(8.3.9)

where IP[Zi = 1] = π and for brevity write Zn = (Z1, ...,Zn) and Xn = (X1, ...,Xn).

Using (8.3.9), (8.3.7) can be written as

X1,i ∼ N(μ1,σ2
1 ),

X2,i ∼ N(μ2,σ2
2 ),

Xi = ZiX1,i +(1−Zi)X2,i.

Clearly, if Zn were known, it would be easy to get MLEs for (μ j,σ2
j ) separately for

j = 1,2 as well as estimate π . However, Zn is unknown and so can’t be put back
except in a probabilistic sense. This amounts to taking a mean, but it’s subtle because
π is unknown, and even if it were known, different Xis could still come from different
components.

Overall, the strategy for estimating θθθ can be introduced as the following:

Let {xxxi | i = 1, ...,n} be drawn from (8.3.7), in which θθθ = (π,μ1,μ2,σ2
1 ,σ2

2 ) is
unknown.

� Start the procedure by choosing θθθ 0, the initial values for π̂ , μ̂1, μ̂2, σ̂2
1 , and σ̂2

2 .
Often π̂ = .5 is reasonable, the μ̂ js can be taken as well-separated sample values,
and the σ̂2

j s are both set to the sample variance of the full data set.

� The Expectation step: For each i, estimate the conditional probability that Xi

came from component one given the data and θθθ , i.e., estimate
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ζi = E(Zi|θθθ ,xn) = IP(Zi = 1|θθθ ,xn).

These can be taken as posterior probabilities that xi came from component one,
suggesting

ζ̂i =
π̂φ1(xi | μ̂1, σ̂2

1 )
π̂φ1(xi | μ̂1, σ̂2

1 )+(1− π̂)φ2(xi | μ̂2, σ̂2
2 )

. (8.3.10)

� The Maximization step: Update the estimate θ̂θθ 0 to θ̂θθ 1 by finding

θ̂θθ 1 = arg max
θ

EZn|Xn,θ̂θθ0
log p(Xn,Zn|θθθ). (8.3.11)

� Use (8.3.10) to weight the xis. This gives π̂1 =∑n
i=1 ζ̂i/n. For (8.3.7), the expres-

sions are:

μ̂1 = ∑n
i=1 ζ̂ixi/nπ̂1 μ̂2 = ∑n

i=1 (1− ζ̂i)xi/n(1− π̂1)
σ̂2

1 = ∑n
i=1 ζ̂i(xi− μ̂1)2/nπ̂1 σ̂2

2 = ∑n
i=1 (1− ζ̂i)(xi− μ̂2)2/n(1− π̂1).

� Cycle through the steps until a convergence criterion is satisfied.

Note that the central feature of this procedure is that the proportion of outcomes from
component one, π , is estimated by an average of the ζis that represents the probability
that an Xi came from component one. Then, these weights are just carried through to
give weights for inclusion in the means and variances of the components. Exercise
8.10 asks you to derive (8.3.10) for the case of two normal distributions and verify that
the four expressions in Step 4 follow from (8.3.11).

It can already be surmised that the EM algorithm produces a sequence of values θθθ j

that tends to converge to a local, possibly not global, maximum. In fact, both the E
and the M steps tend to increase the objective function, giving a high convergence rate.
Thus, even though the EM algorithm does not solve the identifiability problem, it does
find a local maximum.

8.3.1.2 EM Algorithm: Derivation of the General Case

What is now called the EM algorithm was originally proposed by Hartley (1958). It
was studied by Baum and Petrie (1966), and developed by Baum and various collab-
orators in the early 1970s, for which reason it is sometimes called the Baum-Welch
algorithm. (Curiously, the role of Welch is unclear.) The EM algorithm was intro-
duced to statistics by Dempster et al. (1977). In the following subsections, the EM
algorithm will be derived more generally and some of its properties given. In fact, the
EM algorithm is considerably more flexible than the two-component case indicates.
Dempster et al. (1977) show how the EM algorithm can be applied to a wide variety of
other models, including imputation in missing, truncated, or censored data problems,
variance components, iteratively reweighted least squares, and factor analysis. Also,
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Bilmes (1998) shows how the EM algorithm applies to estimating the parameters in a
hidden Markov Model, as noted in Chapter 6.

The treatment here covers many of the basic facts about the procedure for the context
of clustering but does not develop its broad applicability. Here, it will be enough to
observe that any modeling strategy for which the unknown parameters can be related
to incomplete data will tend to fit the EM framework.

To introduce the general EM algorithm, consider a density p(x|θ) and denote the log
likelihood by �(θ) = log p(xn|θ). Implicitly take x real; vector-valued xs follow the
same derivation. If θ = θ0 is an initial value for θ , and θk is the value after k iterations,
then, at the k +1 iteration, one seeks θk+1 with �(θk)≥ �(θk+1).

Now suppose that for each XXXi there is a discrete random variable Zi that is unknown.
In the previous section, the Zis were 0-1 random variables indicating the component.
The marginal for XXX is now

�(θ) = p(xn|θ) = ∑
zn∈Z n

p(xxx,zn|θ) = ∑
zn∈Z n

p(xn|zn,θ)p(zn|θ),

reminiscent of (8.3.7). Following Borman (2004), the problem of maximizing �(θ) is
seen to be equivalent to maximizing

�(θ)− �(θk) = log ∑
zn∈Z n

p(xn|zn,θ)p(zn|θ)− log p(xn|θk)

= log ∑
zn∈Z n

p(xn|zn,θ)
p(xn|zn,θ)p(zn|θ)

p(zn|xn,θk)
− log p(xn|θk).(8.3.12)

It is tempting to get a lower bound using Jensen’s inequality in expression (8.3.12) to
bring the log inside the expectation over zzz represented by the sum.

Giving in to temptation leads to

�(θ)− �(θk) ≥ ∑
zn∈Z n

p(zn|xn,θk) log
p(xxx|zn,θ)p(zn|θ)

p(zn|xn,θk)p(xn|θk)

≡ Δ(θ ,θk). (8.3.13)

So it is reasonable to set

�(θ |θk)≡ �(θk)+Δ(θ ,θk). (8.3.14)

Now, (8.3.13) and (8.3.14) give

�(θ)≥ �(θ |θk). (8.3.15)

Strictly, �(θ |θk) is not a likelihood and Δ(θ ,θk) is not a distance. However, the abuse
of notation is suggestive. Indeed, since (8.3.15) is just a desired property of the k + 1
stage value of θ , the hope is that the lower bound from Jensen’s inequality is tight
enough that using it as an objective function for the next iteration will move θk to some
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θk+1 closer to a local maximum of �(θ). That is, hopefully it is enough to optimize the
lower bound �(θ |θk) in (8.3.15).

To see that it is reasonable to assume (8.3.15) is tight, observe that

�(θk|θk) = �(θk)+Δ(θk,θk) (8.3.16)

= �(θk)+ ∑
zn∈Z n

p(zn|xn,θk) log
p(xn|zn,θk)p(zn|θk)
p(zn|xn,θk)p(xn|θk)

,

and rearranging in (8.3.16) gives �(θk|θk) = �(θk); i.e., the actual log likelihood equals
the contrived log likelihood at θk. So, if there is a local maximum of �(θ) near θk,
perhaps �(θ |θk) will track the increase of �(θ) well enough that obtaining a θk+1 from
�(θ |θk) will give a larger value of �(θ) than �(θk).

Supposing it is reasonable to use �(θ |θk) as an objective function, then the EM criterion
can be derived as follows. Write the maximization problem as:

θk+1 = argmax
θ

�(θ |θk).

Recalling the definition of �(θ |θk) and Δ in (8.3.13) and (8.3.14), it is seen that the
terms involving θk in the denominator of (8.3.13) do not depend on θ . So,

θk+1 = argmax
θ ∑

zn∈Z n

p(zn|xn,θk) log p(xn|zn,θ)p(zn|θ).

Writing the conditional densities in the log as ratios of joint densities and canceling
gives a conditional expectation. In fact,

θk+1 = argmax
θ ∑

zn∈Z n

p(zn|xn,θk) log p(xn,zn|θ)

= argmax
θ

(
EZn|xn,θk

log p(xn,Zn|θ)
)

(8.3.17)

in which the expectation is over Zn and xn, θk are held constant.

The EM algorithm can now be succinctly stated as an E step in which the conditional
expectation in (8.3.17) is found and an M step in which the conditional expectation
is maximized, leading to a new E step. The difference between the EM algorithm and
regular MLEs is that (8.3.17) takes into account the unobserved Zn.

8.3.1.3 EM algorithm: K components.

To see how the EM algorithm can be applied more generally, consider a general mix-
ture family with K components for a vector xxx,

p(xxx|θ) =
K

∑
k=1

πk pk(xxx|θk), (8.3.18)
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and write θ = (π1, ...,πK ,θ1, ...,θK), in which ∑πi = 1, πi ≥ 0, and each pi is a density
function parametrized by θi. The log likelihood is

�(θ |xxxn) =
n

∑
i=1

log

(
K

∑
k=1

πk pk(xxxi|θk)

)
.

Augmenting each xxxi by a zi to indicate which component produced it gives

�(θ |xxxn,zn) =
n

∑
k=1

log p(xxxi|zi,θ)p(zi|θ) =
n

∑
k=1

log(πzi pzi(xxxi|θzi)) (8.3.19)

as the log likelihood, if the zis were known.

Since in fact the zis are unknown, the first task is to get an expression for their distribu-
tion. Let θ0 = (π1,0, ...,πK,0,θ1,0, ...,θK,0) be an initial guess for use in (8.3.19). This
means that pk(xxxi|θk,0) is known for each i and k. Since πk = P(Zi = k) for each i and
the mixing probabilities constitute a prior on the components, Bayes’ rule gives

p(zi|xxxi,θ0) =
πzi,0 pzi(xxxi|θzi,0)

p(xxxi|θ0)
, (8.3.20)

in which the denominator of (8.3.20) is of the form (8.3.18). In addition,

p(zzzn|xxxn,θ) =Π n
i=1 p(zi|xxxi,θ). (8.3.21)

Using (8.3.19) and (8.3.21) in (8.3.17) gives

G(θ ,θ0) = ∑
zzzn∈Z n

p(zzzn|xxxn,θ0) log p(xxxn,zn|θ)

= ∑
zzzn∈Z n

n

∑
i=1

log(πzi pzi(xxxi|θzi))Π
n
j=1 p(z j|xxx j,θ0)

as the objective function.

Following the reasoning laid out lucidly in Bilmes (1998), one can express the sum
over zzzn as n sums over zi ∈Z . Introducing an extra summation over u = 1, ...,K with
a Kronecker δ -function δu,zi and some algebra gives that

G(θ ,θ0) =
K

∑
u=1

n

∑
i=1

log(πu pu(xxxi|θu))
K

∑
z1=1

. . .
K

∑
zn=1

δu,ziΠ
n
j=1 p(z j|xxx j,θ0). (8.3.22)

Fortunately, this can be simplified. Fix a value of u in 1, ...,K. Then the inner sequence
of summations in (8.3.22) is
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K

∑
z1=1

. . .
K

∑
zn=1

δu,zi Π
n
j=1 p(z j|xxx j,θ0)

=

(
K

∑
z1=1

. . .
K

∑
zi−1=1

K

∑
zi+1=1

. . .
K

∑
zn=1

Π n
j=1, j 	=i p(z j|xxx j,θ0)

)
pu(xxxi,θ0)

= Π n
j=1, j 	=i

(
K

∑
z j=1

p(z j|xxx j,θ0)

)
p(Zi = u|xxxi,θ0) (8.3.23)

= p(Zi = u|xxxi,θ0), (8.3.24)

since the summation in brackets in (8.3.23) is one.

Using (8.3.24) in (8.3.22) gives

G(θ ,θ0) =
K

∑
u=1

n

∑
i=1

log(πu pu(xxxi|θu))p(Z = u|xxxi,θ0)

=
K

∑
u=1

n

∑
i=1

log(πu)p(Z = u|xxxi,θ0)

+
K

∑
u=1

n

∑
i=1

log(pu(xxxi|θu))p(Z = u|xxxi,θ0), (8.3.25)

in which one term is free of πus and the other term is free of θus.

Maximizing the first term in (8.3.25) gives an expression for the πus. To see this, recall
the constraint ∑uπu = 1, let λ be the Lagrange multiplier, and try to solve

∂
∂πu

(
K

∑
u=1

n

∑
i=1

log(πu)p(Z = u|xxxi,θ0)+λ

(
K

∑
u=1

πu−1

))
= 0. (8.3.26)

Expression (8.3.26) simplifies to

1
πu

n

∑
i=1

p(u|xxxi,θ0)+λ = 0.

Rearranging and summing over u gives λ =−n, so that

π̂u =
1
n

n

∑
i=1

p(Z = u|xxxi,θ0), (8.3.27)

generalizing the K = 2 case, see (8.3.10). A separate argument, not given here, shows
that the π̂us give a maximum.

Up to this point, the treatment has been fully general, but the second term in (8.3.25)
is hard to maximize without extra assumptions about the analytic form of the com-
ponents. The normal is the easiest case, and the result was stated for K = 2. More
generally, the p-dimensional normal with mean μ and variance Σ has density
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pu(xxx|μu,Σu) =
1

(2π)p/2|Σu|1/2
e−(1/2)(xxx−μu)′Σ−1

u (xxx−μu),

which can be used as pu(xxxi|θu) so that closed form expressions can be derived to give
the maximum of the second term in (8.3.25).

In fact, it is straightforward to derive the updating equations for the normal case us-
ing (8.3.25), thereby generalizing (8.3.10). Take the log of the p-dimensional normal,
substitute it into the second term of (8.3.25), and take derivatives to solve for the max-
imum. Using θ = (μ ,Σ), the first step is to write

∑K
u=1

n

∑
i=1

log(pu(xxxi|μu,Σu))p(Z = u|xxxi,θ0) (8.3.28)

=
K

∑
u=1

n

∑
i=1

(
−1

2
log(|Σu|)−

1
2
(xxxi−μu)Σ−1

u (xxxi−μu)
)

p(Z = u|xxxi,θ0).

The derivative of (8.3.28) with respect to μu is

n

∑
i=1

Σ−1
u (xxxi−μu)p(Z = u|xxxi,θ0) = 0,

which can be readily rearranged to give the solution for the μus, namely

μu = ∑n
i=1 xxxi p(Z = u|xxxi,θ0)
∑n

i=1 p(Z = u|xxxi,θ0)
, (8.3.29)

which can be verified to be a maximum, generalizing (8.3.10)

Maximizing over the variance matrix is harder, and the derivatives need to be defined
properly; this is recalled in the Notes at the end of this chapter. (This was necessary
for (8.3.28) too, but vector derivatives are more familiar.) Again, Bilmes (1998) gives
a thorough treatment which is followed closely here.

So, to solve for Σu, write (8.3.28) as

K

∑
u=1

(
−1

2
log(|Σu|)

n

∑
i=1

p(Z = u|xxxi,θ0)

−1
2

n

∑
i=1

p(Z = u|xxxi,θ0)tr(Σ−1
u MMMu,i),

)
, (8.3.30)

where MMMu,i = (xxxi− μu)(xxxi− μu)′, and the matrices were rearranged under the trace.
Fixing a value of u and differentiating (8.3.30) with respect to Σ−1

u leaves only
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1
2

n

∑
i=1

p(Z = u|xxxi,θ0)( 2 Σu−diag(Σu))

− 1
2

n

∑
i=1

p(Z = u|xxxi,θ0)(2MMMu,i−diag(MMMu,i))

=
1
2

n

∑
i=1

p(Z = u|xxxi,θ0)(2QQQu,i−diag(QQQ))

= 2UUU−diag(UUU), (8.3.31)

where QQQu,i = Σu−MMMu,i and UUU = (1/2)∑i p(Z = u|xxxi,θ0)QQQu,i.

Setting the derivative (8.3.31) equal to zero gives UUU = 0 so that

n

∑
i=1

p(Z = u|xxxi,θ0)(Σu−Mu,i) = 0.

Finally,

Σu = ∑n
i=1 p(Z = u|xxxi,θ0)MMMu,i

∑n
i=1 p(Z = u|xxxi,θ0)

= ∑n
i=1 p(Z = u|xxxi,θ0)(xxxi−μu)(xxxi−μu)′

∑n
i=1 p(Z = u|xxxi,θ0)

. (8.3.32)

Note that (8.3.32), like (8.3.29), is a generalization of (8.3.10).

So, to update in the EM algorithm in this case, form the π̂us from (8.3.27) and the
μus from (8.3.29) and then use the new μus in (8.3.32) to get the updated estimate for
the Σus. These can be used in the next expectation step to update θ0 and so on until
convergence is observed.

8.3.1.4 EM Algorithm: Exponential Family Case

For completeness, it is important to state the form of the EM algorithm for exponential
families like

p(yyy|θ) = a(θ)b(yyy)eη(θ)′ttt(yyy),

where ttt is a vector of m sufficient statistics, η(θ) = (η1(θ), ...,ηm(θ)), b is a real-
valued function of yyy, and a(θ) is a normalizing constant. In general, θ = (θ1, ...,θd).
Now, regard yyy as the complete data of the form (xxx,zzz) in which xxx represents the actual
data collected and zzz, as before, represents the extra, hidden information, for instance
the knowledge of which component in the mixture gave a given data point. Thus, the
incomplete but available data are xxx = xxx(yyy), a function of the complete data yyy. Formally,
the density for xxx is

p(xxx|θ) =
∫
{yyy:xxx(yyy)=xxx}

p(yyy|θ)dyyy.
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For exponential families, the objective function in (8.3.17), also called the E-step, can
be written as

n

∑
i=1

EZZZ|xxx,θk

[
logb(xxxi,ZZZi)+η(θ)′tttk(xxxi,ZZZi)

]
+ loga(θ).

The first term does not depend on θ , so it does not affect the maximization in (8.3.17).
The other two terms become

n

∑
i=1

η(θ)′tttk(xxxi,θk)+n loga(θ), (8.3.33)

where tttk = E(ttt(XXX ,ZZZ)|xxx,θk). For an exponential family in its natural parametrization,
(8.3.33) becomes

1
n

n

∑
i=1

tttk(xxxi,θk) =
∂ loga(θ)

∂θ
.

So, the EM algorithm reduces to an E step, find the function tttk = E(ttt(XXX ,ZZZ)|xxx,θk), and
an M step, use the tttks in expression (8.3.33), optimize over θ by differentiating, and
repeat until convergence.

8.3.1.5 EM Algorithm: Properties

First, it is important to see that the EM algorithm does increase the likelihood, hope-
fully to a maximum. With some abuse of notation, let the conditional density of YYY
given XXX = xxx be

p(yyy|xxx,θ) =
p(yyy|θ)
p(xxx|θ)

.

(The abuse is that the relationship between the two measure spaces, for yyy and for
(xxx,zzz), has not been stated and that the sample size n has been absorbed into the vector
notation, in both cases for simplicity.)

Now, the complete data log likelihood is

�c(θ) = log p(yyy|θ) = �(θ)+ log p(xxx|θ).

Doing the E step from (8.3.17) means taking the conditional expectation over the con-
ditional for the missing data ZZZ; i.e., with respect to ZZZ|xxx,θk. Then, denoting the objective
function by EM(θ ,θk), in which the dependence on xxx is suppressed,

EM(θ ,θk) = EZ|xxx,θk
log p(xxx,ZZZ|θ)

= �(θ)−EZ|xxx,θk
log p(YYY |xxx,θ)≡ �(θ)+H(θ ,θk),

where H is almost a conditional entropy.

The difference in log likelihoods for two EM iterations is �(θk+1)−�(θk), which equals
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[EM(θk+1,θk)−EM(θk,θk)]+ [H(θk,θk)−H(θk+1,θk)]≥ 0. (8.3.34)

This follows by (i) Jensen’s inequality on the log in the relative entropy to see that
the second bracketed term on the right in (5.37) is nonnegative and (ii) the EM proce-
dure, which always seeks a θk+1 that never decreases the value of EM(θk+1,θk). Thus,
exponentiating the result from (8.3.34) gives that the likelihoods are increasing over
iterations; i.e.,

�(θk+1)≥ �(θk). (8.3.35)

Second, the EM function itself defines stationary points. Let the EM function M be
defined by an iteration of the EM algorithm as

θk+1 = M(θk).

Then, extending (8.3.35), it can be shown (see McLachlan and Krishnan (1997), Sec-
tion 3.5) that

log�(M(θ))≥ log�(θ)

with equality if and only if

EM(M(θ),θ) = EM(θ ,θ) and p(yyy|xxx,M(θ)) = p(yyy|xxx,θ).

Little and Rubin (2002) have results that ensure the sequence θk will converge to a
solution of the likelihood equation.

Third, using a convergence theorem from optimization theory, Wu (1983) corrects The-
orems 2 and 3 in Dempster et al. (1977) and establishes a series of results that char-
acterize the performance of the EM iterates. Let L(θ) = log p(xxx|θ), the log likelihood
for the incomplete available data. Then, Wu (1983)) can be summarized as follows.

Theorem (Wu, 1983): Suppose EM(θ ,θ ′) is continuous in θ and θ ′. Then:

(i) All limit points of any sequence θk of an EM algorithm are stationary points of L
and L(θk) converges monotonically to L∗ = L(θ ∗) for some stationary point θ ∗.
(ii) If, in addition,

supθ ′EM(θ ′,θ) > EM(θ ,θ),

then all the limit points of any sequence θk are local maxima of L(θ), and L(θk) con-
verges monotonically to L∗ = L∗(θ ∗) for some local maximum θ ∗.
(III) If L(θ) is unimodal, with a unique stationary point θ ∗, and the first derivatives of
EM(θ ′,θ) with respect to the entries of θ ′ are continuous in θ and θ ′, then any EM
sequence θk converges to the unique maximum θ ∗ of L(θ).

Proof: Omitted, see Wu (1983). �.

Finally, the rate of convergence of the EM algorithm is an issue. Dempster et al. (1977)
argue that the rate of convergence over iterations in the EM algorithm is linear and
depends on the proportion of information in the complete data. If a large portion of the
data are missing then convergence slows.
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Meng (1994) observes that if θk converges to θ ∗ and M(·) = (M1(·), ...,Md(·)) is dif-
ferentiable, then Taylor expanding θk+1 = M(θk) at θk = θ ∗ gives

θk+1−θ ∗ = J(θ ∗)(θk−θ ∗),

where J is the d×d Jacobian matrix of M, i.e., with (i, j)th entry ∂Mi/∂θ j. So, the EM
algorithm is a linear iteration with rate matrix J(θ ∗). Since the rate is determined by
the largest eigenvalue, in principle an explicit rate can be identified; see Meng (1994)
for some details.

Arguably, the major drawbacks of EM procedures in general include slow convergence
(sometimes), choosing initial values θ0, and sometimes the E or M steps are intractable.
Meng and Rubin (1991) have some methods for assigning covariances; see Ng et al.
(2004) for a general discussion.

8.3.2 Graph-Theoretic Clustering

Graph-theoretic clustering comes in two forms. In one, a graph (usually directed,
sometimes weighted) is given. An instance of this form is given by reference lists.
Each paper on a reference list refers to other papers, which in turn refer to earlier
papers, and often there is an overlap between the references in one paper and the ref-
erences in one of the papers it cites. Abstractly, this is a directed, unweighted graph.
The task is to partition it into subgraphs that correspond to meaningful clusters such as
topics. The other form of graph-theoretic clustering uses a similarity d on a collection
of data points xxxi i = 1, ...,n. One can form a fully connected, undirected graph from
the points in the sample, with weights given by a similarity measure; sometimes this is
called a similarity graph. Again, the task is to partition the graph into subgraphs that
correspond to meaningful clusters. Here, the focus will be on this second formulation
of the graph-theoretic clustering problem on the grounds that many of the techniques
apply to the first, albeit imperfectly.

Consider a graph G = (V ,E ) in which V is the set of vertices of G and E is the set
of edges of G . To describe the techniques, some basic definitions from graph theory
are needed. The degree of a vertex in an undirected graph is the number of edges
connected to it. If the graph is directed, there are two degrees, the inward and the
outward degree for each vertex. The inward degree is the number of edges arriving
at the vertex; the outward degree is the number of edges leaving from the vertex. A
tree, graph-theoretically, is a graph in which any two vertices are connected by exactly
one path. A clique in an undirected graph is a set of vertices which is fully connected;
i.e., the graph restricted to those vertices is complete. The cut of two subsets of V is a
general concept of adding up the weights of the edges between points in the two sets.

Now, given these definitions, two classes of techniques that have proved important are
those based on minimal spanning trees (MST) and those based on local connectivity
properties of graphs, for instance the degrees of vertices. Since many of these are recent
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developments in a large and fast-moving field, only a small fraction of the existing
techniques can be surveyed here.

8.3.2.1 Tree-Based Clustering

The central concept in many tree-based clustering procedures is the minimal spanning
tree. Given a connected, undirected graph, a spanning tree is a subgraph, which is a
tree connecting all the vertices; such trees are not unqiue. If the graph is weighted,
a minimum spanning tree is a spanning tree with the smallest possible sum of edge
weights; this is unique provided all the edge weights are distinct.

To see why an MST might be useful, consider the similarity graph generated by n
data points xxxi. If an MST is found, one can immediately see that forming a clustering
of K clusters by deleting the K−1 edges with the largest weights results in a divisive
procedure giving the point sets represented by the connected components of the K sub-
graphs as the clusters. Of course, one need not choose K at the outset of this procedure;
it can emerge if a threshold is set for how large the weights must be before an edge is
deleted. The problem is that there may be relationships among the points that are not
well represented within the MST, and the edges with the largest weights need not in
general correspond to points that belong in different clusters. Single-linkage agglomer-
ative clustering also gives subgraphs of the MST and has analogous problems, includ-
ing chaining. (By contrast, complete-linkage agglomerative clustering corresponds to
maximal complete subgraphs.)

Another way that MSTs can be seen to arise comes from noting that the levels sets of
a density estimator from a data set are nested. That is, write

L(λ , p) = {xxx | p(xxx) > λ} (8.3.36)

for a density p and a parameter λ > 0. If p = p̂ estimates the density of XXX , the highest
density clusters correspond to maximally connected subsets of L(λ , p). If two high
density clusters A and B are chosen, then either one contains the other (A⊂ B or B⊂ A)
or their intersection is void, A∩B = φ . Stuetzle (2003) recursively defines the resulting
hierarchical structure and calls it a cluster tree: Each node N of the tree represents a
subset D(N) of the support of p, D(N)⊂ L(0, p), and is defined by a value λ = λ (N).
Thus, the root node is L(0, p) and λ (root) = 0. The descendants of the root node
are determined by the lowest value of λ , say λd , for which L(λ , p)∩L(0, p) becomes
disconnected. Repeating the procedure on the components generates a sequence of λds
and splits the support of p until there is no λd giving two connected components. This
means a leaf of the tree has been found. Thus the cluster tree represents the modal
structure of the unknown density.

Stuetzle (2003) shows that the cluster tree of a nearest-neighbor density estimate can
be found from the MST of the data, and it is isomorphic to the dendrogram from
single-linkage clustering. Indeed, write the nearest-neighbor density estimator as
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p̂(xxx) =
1

nV d(xxx,D)p , (8.3.37)

where V is the volume of the unit ball in IRp and d(xxx,D) = mini d(xxx,xxxi). Now, fix λ
and set

r(λ ) =
(

1
nVλ

)1/p

(8.3.38)

so that

p̂(xxx) > λ ⇔ d(xxx,D) = min
i

d(xxx,xxxi) < r(λ ). (8.3.39)

This means that the set L(λ , p̂) is a union of open balls of radius r(λ ) centered at the
xxxi; i.e.,

L(λ , p̂) = ∪iB(xxxi,r(λ )). (8.3.40)

Now, Stuetzle (2003) shows the following, but credits it to Hartigan (1985).

Proposition: The sets Lk =∪i∈Ck B(xxxi,r(λ )) are the connected components of L(λ , p̂).

Proof: First note that each Lk is connected because the maximum weight on an edge
in the subgraph corresponding to the kth cluster is below 2r(λ ), so the kth subgraph of
the MST is a subset of Li.

To see that Lk ∩L j is void unless k = j, consider a proof by contradiction. Suppose T
is an MST and that there are observations xxx∗ and xxx∗∗ in Ck and Cj, respectively, such
that d(xxx∗,xxx∗∗) < 2r(λ ). Then, an edge of length at least 2r(λ ) in the path connecting
Ck and Cj could be replaced by a series of edges containing an edge connecting xxx∗ and
xxx∗∗ giving a spanning tree of smaller total weight, a contradiction. �
Given the importance of the MST, it is important to describe how to find it for a data
set. There are two common techniques; one is called Kruskal’s algorithm the other is
called Prim’s algorithm. Kruskal’s procedure basically removes edges one at a time
based on how large their weight is. Formally, start with a set of trees T and a set of
edges S . Initialize these by T = V and S = E , so the procedure starts with n trivial
trees of a single vertex and the set of edges of the graph. Choose the edge in S with
the smallest weight: If it connects two of the trees in T then include it and merge the
trees. Otherwise, discard the edge and continue until S is empty.

Prim’s algorithm is similarly easy: Start with any xxx = xxxi. Choose an edge from E with
minimal weight joining xxx to some other vertex, xxx′. The result is xxx, xxx′ and the edge
connecting them. Repeat the procedure choosing an xxx′′ that can be joined to either xxx or
xxx′ by an edge of the next smallest weight. Continue in this way until all the vertices are
connected. Proof that these two algorithms give minimal spanning trees is in the notes
at the end of this chapter.
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8.3.2.2 Degrees of Vertices

In many real-world cases, only local connectivity properties of vertices are available or
are most important. In this setting, the main property of a vertex is the list of vertices
linked to it by one edge. So, these clustering procedures tend to focus on the degree of
vertices as a main way to form clusters.

Perhaps the most basic of these is the k-degree algorithm, see Jennings et al. (2000). Fix
two parameters k and Dmax, where k is a guess as to the highest degree a vertex might
have and Dmax is a bound on the cluster radius, the number of edges away from a given
vertex one is willing to travel. The procedure starts by looking at vertices with degree
at least k and simultaneously constructs a cluster around each. The high-degree vertices
will often compete for vertices that are midway between them in terms of number of
edges. Starting with a high-degree vertex, add vertices layer by layer stepping out one
edge at each layer. The growth of the layer stops when either the maximum radius
Dmax is reached or the number of vertices added is too few. Formally, this can be done
by setting �(u) to be the number of vertices in the uth layer and continuing as long
as at least k vertices are added at each layer; i.e., there are at least k�(u)vertices at
the u + 1 layer. Then the same procedure can be repeated using k− 1 in place of k to
continue the search for highly connected subgraphs. Jennings et al. (2000) report that
this procedure tends to give relatively few clusters of variable size and radius, arguably
revealing the structure of the real clusters.

An alternative to this layered procedure is proposed by Hartuv and Shamir (2000). Let
d = d(G ) be the minimum number of edges that need to be removed to disconnect
G . Thus, if G is an undirected graph with all edgeweights 1, then a minimum cut S
consists of exactly d edges; the higher the degree of the vertices, the more edges must
be removed to disconnect it. Define a graph G to be highly connected if d(G )≥ n/2; a
highly connected subgraph H has d(H )≥ #(VH )/2, where VH is the set of vertices
of H . The higher the degree of the vertices, the easier it is for a graph to be highly
connected. Indeed, the diameter of every highly connected graph is at most 2: When
all the edges of a minimum degree vertex are removed, the graph is disconnected so
d(G ) ≤ minv deg(v). If G is highly connected then #(V )/2 ≤ d(G ). Taken together,
these inequalities mean that every vertex is adjacent to at least half the vertices of G .
Every two vertices are distance 2 apart since have a common neighbor.

Now, if highly connected subgraphs are regarded as clusters, it is enough to search for
highly connected subgraphs in order of size from largest to smallest. The largest sub-
graphs will correspond to the minimum-sized cut. So, the Hartuv and Shamir (2000)
procedure starts by looking at G . If G is highly connected, then the procedure stops.
Otherwise, it starts with the minimum cuts and searches the resulting bipartite par-
titions of G for highly connected subgraphs. Then the minimum cut is augmented by
one and the search repeated. The cut size continues to be augmented until all the highly
connected subgraphs are found. To avoid triviality, singleton vertices are not consid-
ered clusters. It can be proved that if the smaller of H and H c contains � vertices,
then #(S ) ≤ �, where S is a minimum cut, with equality only if min(H ,H c) is a
clique. Although this procedure uses more than just local connectivity properties, de-
grees of vertices are at the heart of it and the procedure can be speeded up substantially
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by preprocessing to remove low-degree vertices so that the higher-degree vertices will
give the desired clusters.

An even more sophisticated procedure effectively regards the neighborhoods of a ver-
tex probabilistically. Aksoy and Haralick (1999) define the neighborhood N(v) of a
vertex v to be the vertices linked to it by one edge. Then a conditional count can be
defined by

D(u|v) = #({w ∈ V |(w,u) ∈ E and (x,w) ∈ E }).
This leads to the notion of a region Z(v, �) around a vertex v for a fixed �:

Z(v, �) = {u|D(u|v)≥ �}.

Such regions are said to be dense and a dense region candidate is of the form Z(v) =
Z(v,J) around v where J = max{�|#(Z(u, �)) ≥ �}. Clearly, if M is a clique of size L
(i.e., a fully connected subgraph of L vertices), then (u,v) ∈ M implies D(u,v) ≥ L.
So, M ⊂ Z(v, �) and � ≤ L ≤ #(Z(u, �). Another conditional probability idea is called
the association of a vertex v to a subset B of V . Let

A(v|B) =
#({N(v)∩B}

#(B)
,

so that 0≤ A(v|B)≤ 1. Finally, the compactness of a set B⊂ V is the normalized the
association

C(B) =
1

#(B) ∑v∈B
A(v|B).

Again, 0≤C(B)≤ 1.

Aksoy and Haralick (1999) now give two algorithms one for finding dense regions and
one for aggregating dense regions into clusters that may not be disjoint. To determine
a dense region B around a vertex v, their procedure is as follows.

Start with a sample xxxi for i = 1, ...,n regarded as a point set in IRp giving V . G
may be fully connected or only have a subset of the edges connecting the xxxis. Fix a
vertex v.

� Compute D(u|v) for each u ∈ V .

� Find a dense region candidate Z(v|�′), where

�′ = max{�|#{u|D(u|v)≥ �} ≥ �}.

� Remove the vertices from the candidate set if their association to v is too low.

� Ensure the remaining vertices have high enough compactness (average associa-
tion) and give a large enough set.

When C(B) ≥ 1 and B = {w ∈ Z(v)|A(w|Z(v)) ≥ 1} for v, the regions found are
cliques of the graph.
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The Aksoy and Haralick (1999) procedure for turning dense regions into clusters is to
start with dense regions of the graph B1 and B2. If

min

(
#(B1∩B2)

#(B1)
,

#(B1∩B2)
#(B2)

)
≥ T

where T is a threshold chosen in advance, then merge B1 and B2. Iterate over all the
Bs produced from their first algorithm to get the clustering. Depending on the choice
of T , it is possible that clusters overlap.

8.3.3 Spectral Clustering

Spectral techniques are based on graph theory as well, however, they focus on the
spectrum and eigenvectors of the graph Laplacian rather than the usual connectivity
properties of a graph. The graph Laplacian is an n×n matrix of the form LLL = DDD−WWW ,
where WWW is the matrix of edgeweights w(i, j) and DDD is the adjacency matrix, a general-
ization of the concept of the degrees of the vertices to take the weighting into account.
Specifically, let Δi = ∑ j w(i, j) be defined as the degree of vertex i so that w(i, j) = 0
means that i and j are not connected. If all the edgeweights are one, this reduces to
the earlier definition of the degree of a vertex. Now, DDD = diag(Δ1, ...,Δn). In some
cases, the graph Laplacian can be derived to represent a specific optimality principle
based on the cut of a graph. More generally, DDD reflects the weighting and connectivity
of the graph so that w(i, j) is related to d(xxxi,xxx j) but operations on it such as finding
its eigenvalues are not as readily interpretable in terms of the structure of a graph.
When the edgeweights are based on the distances between the xxxs, spectral methods
are akin to kernel methods, which are also distance based in that the kernel provides a
representation for an inner product so as to evade the Curse of Dimensionality.

In practice, given data xxxi, there are three types of graphs whose Laplacians are studied.
The obvious example is a fully connected graph in which w(i, j) = d(xxx j,xxx j). There are
many choices for the similarity d; one is Gaussian, d(xxxi,xxx j) = exp[−‖xxxi− xxx j‖2/2σ2],
in which large σs make the data points farther apart. For a given set of vertices VVV ,
the other extreme is to form an edge set EEE by only joining xxxis for which d(xxxi,xxx j)≤ ε
for some preassigned ε > 0. This includes the local connectivity of the points, but in
achieving sparsity it may fail to model more distant relations. Between fully connected
and ε-neighborhood graphs are k-nearest-neighbor graphs. The idea is to include an
edge from vertex xxxi to xxx j only when xxx j is one of the k-nearest neighbors of xxxi. The
result is a directed graph because the nearest-neighbor relationship is not symmetric.
However, the graph can be made directed by ignoring the directions or by only includ-
ing edges for which both directions are present.

Spectral techniques have been developing rapidly because, when p is large, reducing
to LLL converts a large p, small n problem into a manageable n× n problem. Of the
numerous methods available, only a few can be discussed.
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8.3.3.1 Minimizing Cuts

In general, a graph-theoretic cut is a partition of the vertices of the graph into two sets.
For a graph G = (V ,E ), one writes V = S ∪T , a disjoint union. An edge e with
vertices s ∈S and t ∈T is a cut edge and “crosses the cut”. In a weighted graph, the
size of a cut is the sum of the weights of the edges crossing the cut; that is,

Cut(S ,T ) = ∑
s∈S ,t∈V

w(s, t). (8.3.41)

Note that if a point in S and a point in T are connected by a path of length two
or more, this does not give a term in Cut; the point of controlling Cut is to control
the paths of length one between the two sets. More generally, the requirement that
V = S ∪T can be dropped in (8.3.41) and the definitions do not change substantially.

Cuts can be used to define optimality criteria a clustering procedure should satisfy.
In these cases, it is easiest to think of the edgeweights as dissimilarities such as the
inverse of the distance between two vertices. So, usually, cuts in one way or another are
minimized on the grounds that very dissimilar points should be in different clusters.
Often, this kind of strategy will give clusters that are not unreasonable, or at least
identify highly connected components of a graph corresponding to points that might
reasonably belong to the same cluster. Wu and Leahy (1993) probably had the earliest
criterion of this form. For a given K, they partitioned a graph into K subgraphs so that
the maximum cut between any two subgraphs is minimized. While effective in many
cases, this had the drawback that it favored leaving small sets of isolated vertices. This
arises because the cut is a sum of edgeweights and fewer vertices in a subgraph tends
to give a smaller sum.

Shi and Malik (2000) improved on Wu and Leahy (1993) by changing the optimality
criterion to a normalized cut,

Ncut(S ,T ) =
Cut(S ,T )

Assoc(S ,V )
+

Cut(S ,T )
Assoc(T ,V )

, (8.3.42)

in which the association Assoc is defined by

Assoc(T ,V ) = ∑
u∈T ,v∈V

w(u,v)

and is the edge sum from the vertices in T to the vertices in the whole graph. In this
optimality criterion, a cut that gives a small set of isolated points will have a large Ncut
since the cut will be a large fraction of the edge sum. Similarly, the association can be
normalized to

Nassoc(S ,T ) =
Assoc(S ,S )
Assoc(S ,V )

+
Assoc(T ,T )
Assoc(T ,V )

.

It is not hard to see that the Nassoc summarizes how tightly vertices in a set are con-
nected to each other and that
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Ncut(S ,T ) = 2−Nassoc(S ,T ).

Shi and Malik (2000) establish that minimizing the Ncut even for K = 2 is NP complete
but convert the problem into a generalized eigenvalue problem that is more amenable
to solution. Suppose S ∪T = V , S ∪T = φ and search over partitions of the graph
into two subgraphs. Since S = T c in V , Shi and Malik (2000) use a sequence of
clever steps to show

min
S

Ncut(S ,T ) = min
τττ

τττ ′(DDD−WWW )τττ
τττ ′DDDτττ

, (8.3.43)

where τττ = (τ1, ...,τn) = (111 + ννν)− b(111− ννν) and ννν = (ν1, ...,νn) with νi = 1 when
xxxi ∈S and −1 otherwise. The constant b is

b =
∑νi>0∑ j w(i, j)
∑νi<0∑ j w(i, j)

.

Thus, in (8.3.43), τi ∈ {1,−b} and the constraint τττ ′DDD111 = 0 must be imposed. If the τis
are permitted to assume real values, then (8.3.43) reduces to solving the generalized
eigenvalue system

(DDD−WWW )τττ = λDDDτττ. (8.3.44)

Clearly, (8.3.44) is a criterion based on finding the spectrum of LLL.

Shi and Malik (2000) verify that solutions to (8.3.44) automatically satisfy τττ ′DDD111 = 0.
Indeed, (8.3.44) is

DDD−1/2(DDD−WWW )DDD−1/2zzz = λ zzz, (8.3.45)

where zzz = DDD−1/2τττ , so zzz0 = DDD1/2111 is an eigenvector of (8.3.45) with eigenvalue 0. Since
LLL is positive semidefinite, zero is the smallest eigenvalue of DDD−1/2(DDD−WWW )DDD−1/2, and
therefore the first eigenvector corresponding to a nonzero eigenvalue is orthogonal to
zzz0. It is a theorem that, for any matrix AAA with real eigenvalues, the minimum of xxx′ZZZxxx
over unit length vectors xxx orthogonal to the first j eigenvectors of AAA is achieved by the
eigenvector of the next smallest eigenvalue. Thus, the eigenvector zzz1 from the second
smallest eigenvalue is the real solution to the minimum normalized cut problem

zzz1 = arg min
z: z⊥z0

zzz′DDD−1/2(DDD−WWW )DDD−1/2zzz
zzz′zzz

,

and so

τττ = arg min
τ : τD1=0

τττ ′DDD−1/2(DDD−WWW )DDD−1/2τττ
τττ ′τττ

. (8.3.46)

This is converted back to the discrete case where τi ∈ {1,−b} by choosing a grid of
values and finding the gridpoint that gives the minimal Ncut.
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A clustering into two classes now comes from the n× 2 matrix [zzz0,zzz1]. If rrr j is the
vector from the j-row, j = 1, ..,n then cluster the rrris into two clusters, C′1 and C′2,
using, say, the K-means algorithm. Setting Ck = {xxx j|rrr j ∈ C′k} gives the clustering of
the original data points. If the first � eigenvectors are found so that an n× � matrix is
found, then K-means is used on vectors of length � to cluster the xxxis into K clusters.

The Shi and Malik (2000) procedure can be extended to graph partitions of more than
two elements in other ways. One is a divisive procedure that permits some subjectivity.
Simply examine the bipartite partition for stability and to make sure the Ncut is below
a prespecified value. If either of these desiderata fail, one of the partition elements is
split again using the same technique. An alternative is to generate a K class partition
for some large K′ and then merge clusters so as to minimize the K-way normalized cut
criterion

NcutK =
Cut(S1,V −S1)

Assoc(S1,V )
+ . . .+

Cut(SK ,V −SK)
Assoc(SK ,V )

.

In addition to (8.3.42), another variant on Wu and Leahy (1993) comes from Ding
and He (2002). Instead of normalizing a cut by an association, observe that an ideal
bipartite partition of a graph into two sets S and T should have small Cut(S ,T ),
but large values for the edgeweights within S and T . So, another cut-based criterion
would be to minimize

Mcut(S ,T ) =
Cut(S ,T )

Cut(S )
+

Cut(S ,T )
Cut(T )

. (8.3.47)

(Here, Cut(T ) = Cut(T ,T ).) It turns out that approximately minimizing (8.3.47)
can also be converted to a generalized eigenvalue problem in terms of LLL. This criterion
will tend to generate clusters with similar sizes by extending it to K clusters as in
(8.3.47).

Another cut-based criterion that has been studied results from changing the denomina-
tors in (8.3.47). The ratio cut criterion is to minimize

Rcut(S ,T ) =
Cut(S ,T )

#(S )
+

Cut(S ,T )
#(T )

.

Again, this is amenable to a generalized eigenvalue formulation in terms of LLL. Opti-
mization of these cut-based criteria has been improved by using concepts of linkage
across the cut. The idea is to search the vertices adjacent to the cut to see if any of them
have a higher linkage to the other cluster than the one they are assigned to.

Finally, an even more elaborate cut-based clustering procedure is given by Flake et al.
(2004). The idea is to form minimum-cut trees from a graph G . The minimum-cut
tree has the same vertices as G but the edges are derived from cuts. Specifically, the
minimum cut between any two vertices u, v in G can be found by looking at the path in
the min-cut tree connecting them. The edge of minimum capacity connecting u to v in
the min-cut tree corresponds to the minimum cut between u and v in G . Removing the
edge of minimum capacity in the min-cut tree gives two sets of vertices corresponding
to the two clusters. This procedure can be elaborated to give a hierarchical procedure.
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However, finding the min-cut tree may not be easy. So, Flake et al. (2004) have several
heuristics to speed the search for min-cut trees.

8.3.3.2 Some General Properties

Having seen that the graph Laplacian arises in procedures, it is worth seeing some of
its general properties. First, note that Cut(S ,T ) can be represented in terms of LLL.
With ννν as before,

Cut(S ,T ) = ∑
νi>0,ν j<0

−w(i, j)νiν j = (111+ννν)′(DDD−WWW )(111+ννν). (8.3.48)

In addition,

Assoc(A ,V ) = ∑
νi>0

Δi = (b/(1+b))111′DDD111. (8.3.49)

Taken together, these suggest how (8.3.42) gets converted to (8.3.43). Moreover,
(8.3.48) and (8.3.49) suggest that in general cuts can be represented in terms of graph
Laplacians, which therefore represent aspects of how graphs can be partitioned. A
proposition from Luxburg (2007) helps summarize this.

Proposition: The graph Laplacian LLL satisfies:

(i) ∀ννν ∈ IRn,

ννν ′LLLννν =
1
2

n

∑
i, j=1

w(i, j)(νi−ν j)2.

(ii) LLL is symmetric and positive definite; LLL has n eigenvalues

0 = λ1 ≤ λ2 ≤ . . .≤ λn,

in which the eigenvector of 0 is 111.

Proof: Only the first part requires proof. By definition of DDD in terms of the Δis,

ννν ′LLLννν =
n

∑
i=1

Δiν2
i −

n

∑
i, j=1

νiν jw(i, j)

=
n

∑
i=1

Δiν2
i −2

n

∑
i, j=1

νiν jw(i, j)+
n

∑
j=1

Δ jν j =
1
2

n

∑
i, j=1

w(i, j)(νi−ν j)2. �

The graph Laplacian also summarizes the number of connected components.

Proposition: Let G be an undirected graph with nonnegative weights. Then, the mul-
tiplicity of the eigenvalue 0, say m, gives the number of connected components A1,...,
Am of G and the eigenspace is the span of the vectors 111A1 ,..., 111Am , the indicator vectors
for the vertices of the components.
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Proof: Suppose ννν is an eigenvector of 0; i.e.,

0 = νννLLLννν =
n

∑
i, j=1

w(i, j)(νi−ν j)2.

Then, for w(i, j) ≥ 0, the terms in the sum must be zero. So, if vertices i and j are
connected and w(i, j) > 0, νi = ν j. Consequently, any vector ννν must be constant on
connected components. �
Two variants on LLL are called normalized graph Laplacians. They are

LLLsym = D−1/2LLLD−1/2 = III−D−1/2WWWD−1/2

and

LLLrw = DDD−1LLL = III−DDD−1WWW ,

called the symmetric and random walk forms. Both are positive, semi-definite and
have n real valued eigenvalues, the smallest being 0. In parallel to the last proposition,
Luxburg (2007) shows the following.

Proposition: (i) For any ννν ∈ IRn,

ννν ′LLLννν =
1
2

n

∑
i, j=1

w(i, j)
(

νi√
di
− ν j√

di

)2

.

(ii) The following are equivalent: (I) λ is an eigenvalue of Lrw with eigenvector vvv; (II)
λ is an eigenvalue of Lsym with eigenvector www = DDD1/2vvv; and (III) λ and vvv solve the
generalized eigenvalue problem LLLvvv = λDDDvvv. �
A special case of this is when λ1 = 0, so that 111 is the eigenvector of Lrw and DDD1/2111 is
the eigenvector of LLLsym.

With these results stated, it is important to observe that there are numerous variants
on the Shi and Malik (2000) procedure. For instance, in place of finding the first �
eigenvectors of the generalized eigenvalue problems LLLvvv = λDDDvvv, one can use the first
� eigenvalues of LLL by themselves; see Wu and Leahy (1993). Alternatively, one can
find the first � eigenvectors of LLLsym, say zzz1,...,zzz�, and convert to a matrix UUU in which
ui, j = (zi, j/∑ j z2

i, j)
1/2. Then set rrri to be the ith row of UUU , see Ng et al. (2002).

Typically, the eigenvectors of normalized graph Laplacians converge while the eigen-
vectors of unnormalized graph Laplacians often do not, see Luxburg et al. (2008).
Verma and Meila (2003) compare several spectral clustering methods. The methods
presented here appear to perform well when the correct number of clusters is moderate
to large, say K ≥ 6. A different sort of spectral clustering algorithm (normalized mul-
tiway cuts, based on finding the cut values between elements of a partition of a graph
into K disjoint pieces rather than two (see Meila and Xu (2002)) appears to do well
when K ≤ 5.
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8.4 Bayesian Clustering

Fundamentally, the goal of Bayesian clustering is to obtain a posterior distribution over
partitions of the data set D , denoted by C = C (K) = {C1, . . . ,CK}, with or without
specifying K, so that the modal partition can be identified. Several methods have been
proposed for how to do this. Usually they come down to specifying a hierarchical
model mimicking the partial order on the class of partitions so that the procedure is also
hierarchical, usually agglomerative. At its root, Bayesian clustering is a much more
probabilistic approach than the earlier clustering techniques. The first procedure below
is an attempt to use a straightforward application of probability modeling to extract
optimal partitions. More generally, Bayesian nonparametrics extend the probability
modeling and lead to more elaborate hierarchical models. The second is simpler in
that the probability model is used only to decide merges on the basis of Bayes factors.
One benefit of pure Bayesian techniques is their built-in treatment of the variability of
the clustering.

8.4.1 Probabilistic Clustering

Possibly the first effort to do Bayesian clustering was the hierarchical technique due
to Makato and Tokunaga (1995). Starting with the data D = {xxx1, ...,xxxn} as n clusters
of size 1, the idea is to merge clusters when the probability of the merged cluster
P(Ck ∪Cj) is greater than the probability of the individual clusters P(Ck)P(Cj). Thus,
the clusters themselves are treated as random variables, an idea that is developed in
later work. It’s an open question how well the Makato and Tokunaga (1995) method
performs; their major contribution may have been encapsulating the clustering problem
within the Bayesian framework.

8.4.1.1 Makato and Tokunaga Procedure

Write C� to mean the clustering {C1, ....,CK�
} at the �th stage of merging, � =

0, ...,n− 2. Each Ck is a cluster with elements drawn from the xxxis; at � = 0, each
is a singleton set. Interpreting P(C |D) to mean the probability that a data set D is
clustered into a clustering C , the task is to find the clustering Copt with maximal con-
ditional probability. This optimization is hard to do in full generality, so a search over
clusterings is used starting with the trivial clustering of n clusters and merging.

The general step of merging or not merging two clusters in passing from step � to step
� + 1 is as follows. Suppose the xxxis have been partitioned into a clustering C = C�

with clusters C1,...,CK = CK�
, generically denoted C. The posterior probability of a

clustering C is
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P(C |D) = ∏
C∈C

P(C|D) = ∏
C∈C

P(D |C)P(C)
P(D)

=

(
∏

C∈C

P(C)
P(D)

)
∏

C∈C

[
∏
xxx∈C

P(xxx|C)
]

(8.4.1)

=
PC(C )

P(D)#(C ) ∏
C∈C

SC(C),

in which SC(C) is the quantity in square brackets in (8.4.1), while PC(C ) is the product
of P(C)s over C ∈C and the clusters and data points have been treated as independent.

To derive a merge rule, observe that if C�+1 = C� \{Ck∪Cj}∪{Ck,Cj}, then the ratio
of the posterior probabilities is

P(C�+1|D)
P(C�|D)

=
PC(C�+1)
PC(C�)

SC({Ck,Cj})
SC(Ck)SC(Cj)

. (8.4.2)

The ratio of PCs functions like a prior on clusters; the information in the data is mostly
only in the ratio of SCs. So, it makes sense to merge clusters Ck and Cj in C� at the
next, �+1, stage when they achieve

max
Ck,Cj∈C�

SC({Ck,Cj})
SC(Ck)SC(Cj)

.

Choosing this merge as optimal at each step also means that from merge step to merge
step only the new merge factor SC({Ck,Cj}) must be found since the other factors are
already available.

Implementing this search for clusters to merge requires some interpretation. First, note
that P(D) drops out of the maximization so only P(C) and P(xxx|C) need to be given.
Treating P(C) as a prior, it may be reasonable to set P(C) ∝ 1/(A)#(C) so that clus-
ters have probabilities that respond to their sizes. Other choices may be reasonable,
too. Specifying P(xxx|C) usually requires more work. For instance, if there is a random
variable T such that C and xxx are conditionally independent given T , then it may be
reasonable to set

P(xxx|C) = P(xxx)∑
t

P(T = t|xxx)P(T = t|C)
P(T = t)

.

In the text classification context, T corresponds to choosing a term at random from a
set of terms. In this case, P(t|xxx) can be estimated by the relative frequency of a term in
a document xxx, P(t|C) can be estimated by the relative frequency of t in C, and P(T = t)
is the relative frequency of the term in the whole data set. So, it is seen that the Makato
and Tokunaga technique is an incomplete template: Extra information specific to the
subject matter must be added to have a useful implementation.
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8.4.1.2 General Nonparametric Clustering

The last method extends to more general assignments of probabilities so as to get pos-
terior probabilities on partitions. This subsection draws heavily from Quintana (2006),
who provides a clear summary.

For simplicity, regard D as S = {1, ...,n} so C = {C1, ...,CK} is a collection of sets
of integers. The membership function is still C(i) = k to mean integer i is in cluster
k and without loss it may be assumed that the Cis are in ascending order; i.e., the
smallest elements in the Cks are increasing with k. Now, defining a probability model
on P(S ), the collection of all partitions of S , can be done by factorization. Let
ρ ∈P(S ) such that ρ is a specific clustering of S . Then a probability on P(S ) is
given by specifying the conditional probabilities from the membership function

P(C(1), ...,C(n)) =
n

∏
i=2

p(C(i)|C(i−1), ...,C(1)). (8.4.3)

Because of the ascending order, P(C(1) = 1) = 1. For convenience, a no void clusters
restriction is assumed: If C(i) = k > 1 for some i, then there exist at least k−1 values
i1, ..., ik−1 ∈ S such that C(i j) = k for j = 1, ...,k−1. There are many ways to do this;
one involves the Dirichlet process.

Suppose a probability vector F is drawn from D(α). Then, sample X1, ...,Xn drawn IID
from F can be used to induce a clustering on S as follows. Since the Xis are discrete, if
n is bigger than the number of clusters to be created, there will be ties among the Xis.
So, define an equivalence relation on S by

i∼ j⇔ Xi = Xj.

The equivalence classes give a partition of S by looking at the multiplicity of the Xis.
Formally, C(1) = 1, so set X∗1 = X1. The value X∗1 represents the location of the first
cluster, or the first canonical representative of an equivalence class to be specified. If
X2 = X1, let C(2) =C(1), but if X2 	= X1, create a new cluster by setting C(2) =C(1)+1
and set X∗2 = X2. Thus, X∗2 is the first element of the new cluster to be formed. It is the
second canonical value to emerge from the multiplicity in X1, ...,Xn. Proceeding in this
way, the general step is to put the next Xi into a previously occurring cluster if Xi = Xj

for some j < i and to use Xi to start a new cluster otherwise.

Continuing this procedure defines the conditional distributions in (8.4.3). It can be
verified that

P(C(i+1) = k|C(i), ...,C(1)) =

{
nk,i
1+i if 1≤ k ≤ mi

1
1+k if k = mi +1,

where mi is the number of clusters formed up to the point where i + 1 is put into a
cluster. This is a version of the Chinese restaurant process in which customers, the Xis,
enter one at a time and either sit at a table X∗j where other people are already sitting or
start a new table X∗i where people arriving later can sit.
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Another way to specify conditional distributions in (8.4.3) is by using product partition
models, PPMs; see Quintana (2006). These are based on factoring a model conditional
on C , i.e., writing

p(xxx1, ...,xxxn|C ) =ΠK
k=1 pCk(xxxk), (8.4.4)

where xxxk = {xxxi : i ∈Ck}, the subvector of xxxs with indices in Ck, with probability mass
function pCk dependent only on Ck. Then, treating C as a parameter, assign it a prior
by writing

P(C ) ∝ΠK
k=1χ(Ck), (8.4.5)

in which χ(Ck) is the “cohesion” of the set Ck. Since there are finitely many partitions
of S, for a fixed choice of χ the normalizing constant makes P into a probability. Now,
the posterior probability from (8.4.4) and (8.4.5) is

p(C |xxx1, ...,xxxn) =
ΠK

k=1 pCk(xxxk)ΠK
k=1χ(Ck)

∑C ΠK
k=1 pCk(xxxk)ΠK

k=1χ(Ck)
.

Finally, a hierarchical Bayes model can be assigned to partitions. For fixed K, write

XXX1, ...,XXXn|θ ∗1 , ...,θ ∗k ,C (K),ψ ∼ p(XXXi|θi,ψ), where θi = θ ∗C(i)

θ ∗1 , ...,θ ∗K |C ,ψ ∼ p0(· | ψ),
C ∼ P1,

in which p0(θ ∗1 , ...,θ ∗K |ψ) is a density chosen by the analyst and P1 is a distribution
specified by its conditionals as in (8.4.3).

8.4.2 Hypothesis Testing

The simplest Bayesian approach to clustering may be the Bayesian hierarchical clus-
tering BHC of Heller and Ghahramani (2005). This procedure has the same structure as
any other agglomerative clustering procedure, but the merge rule is based on marginal
probabilities; essentially the merge rule finds the probability that the data points in a
potential merge come from the same component in a mixture. This is done by finding
the relevant Bayes factors, which are parallel to the left side of (8.4.2). This is different
from the Makato and Tokunaga (1995) method because no probability is assigned to
partitions; it is Bayesian only in the sense that merges are determined by Bayes factors.
Of course, this procedure is sensitive to the choice of models to form the components
and to the priors. The normal is the most tractable; however, many methods work well
for normal components, so the complexity of BHC may be most worthwhile when
normal components do not approximate all the clusters well.

To state the procedure, let D denote the n data points and start with n singleton sets,
each containing one data point. Write DT to mean the data in the leaves of a tree T ,
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where T is understood to represent the sequence of merges of DT into a single root
node. Thus, each singleton set is a trivial tree structure with one node. The idea of
BHC is to use Bayesian hypothesis testing, starting with the trivial trees, and decide at
each stage whether or not to merge two sets of data points, or clusters, DT1 and DT2 ,
by deciding whether or not to merge the two trees T1 and T2 into a single larger tree.
Doing this gives a sequence of trees that grow stepwise into a dendrogram for all of D .

Fix a collection of models p(· | θ), with a prior w(θ |ψ), where the ψ represents any
hyperparameters. To decide whether or not to merge given subtrees Ti and Tj into a
bigger subtree Ti, j, the two hypotheses must be specified. The first is H1: All the data
in Ti, j were generated IID from a single model p(· | θ), with θ unknown with prior
w(θ |ψ). This means that H1 specifies the model

p(DTi, j |H1) =
∫

p(Ti, j|θ)w(θ |ψ)dθ =
∫
Πxxx∈Ti, j p(xxx|θ)w(θ |ψ)dθ . (8.4.6)

Expression (8.4.6) evaluates how well the points in Ti, j fit into one cluster.

The alternative H2 is that the Ti and Tj represent different clusters so the subtrees
should not be merged. In this case, H2 includes the assumption that the data points in
the trees are independent and is

p(DTi, j |H2) = p(DTi ∪DTj |Ti,Tj) = p(DTi |Ti)p(DTi |Ti), (8.4.7)

where p(DTi |Ti) is defined recursively from the initial choice of models p(xxx|θ) for
individual data points.

In practice, this step can be the hardest to implement: The natural model to use for the
whole data set is of the form

p(xxxi|φ) =
K

∑
k=1

p(xxxi|θk)p(xxxi ∈Ck|ppp),

where θk is the value for cluster k, and k and ppp are the parameters of multinomial
distribution with p(xxxi ∈Ck) = pk. If p(φ |α) is the prior, then the mixture can be de-
noted p(D |α) = p(xxx1, ...,xxxn|α). For subsets DT of D , the restriction of this model to
the available data points can be used, giving p(DT |α). When testing a merge step, the
mixture over data in a set of the form DT must be done over all partitions of the data
that are consistent with the tree structure; i.e., that represent the possible permutations
of the data that result in the same clusters. This is denoted by p(DT |T ), where the
conditioning indicates the restriction of p(D) to the T -consistent permutations. Heller
and Ghahramani (2005) evaluate this factor for the Dirichlet processes.

To do the test, choose π = P(H1). Then the marginal probability for Ti, j is

p(DTi, j |Ti, j) = π(DTi, j |H1)+(1−π)p(DTi |Ti)p(DTi |Ti) (8.4.8)

from (8.4.6) and (8.4.7). So, the posterior probability that the two trees (i.e., the clusters
they represent) should be merged is
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π(DTi, j |H1)
π(DTi, j |H1)+(1−π)p(DTi |Ti)p(DTi |Ti)

.

Note that these tests are defined recursively; the first term in (8.4.8) is for the merged
clusters and the second one is over the other clusterings that are consistent with the
emerging tree structure. Thus, the joint probabilities are built up successively.

As written, different versions of this procedure can give different results depending on
the order in which subtrees are considered. In principle, this can be overcome as in the
Makato and Tokunaga (1995) procedure by seeking the highest posterior probability
merges and doing them.

Note that this is a procedure that is not the same as doing a Bayesian search over a
model class comprised of trees. Indeed, the procedure neglects model uncertainty in
the trees since there is no distribution over the collection of trees. In addition, it can
be computationally complex to implement. On the other hand, this procedure gives
a predictive distribution m(xxxnew|C ). Indeed, Bayes testing is the Bayes action under
zero-one loss so this procedure has an optimality property of sorts. The delicate use
of tree-consistent permutations can even be regarded as a kind of surrogate for model
uncertainty.

8.5 Computed Examples

Having described a wide variety of clustering methods, it is worth seeing what results
they give in some familiar cases. Recall Ripley’s two mixtures of two normal sources
of data in the plane, and Fisher’s iris data, which have four explanatory variables and
three classes. These were described and used in Chapter 7. Both of these are supervised
in the sense that the classes are known; however, in this section, the class indicators will
be ignored and the remaining data treated as an unsupervised problem. This provides
a useful technique for evaluating the performance of clustering methods because the
absolute performance of a procedure (relative to the truth) can be found as well as the
relative performance of one procedure over another.

Eight clustering methods will be compared here. Four are hierarchical: single link-
age, complete linkage, average linkage, and DIANA. The first three are agglomerative
and the last is divisive. Then, two methods based on centroids will be compared, K-
means and Ward’s method. Ward’s method is actually agglomerative, but it is natural
to compare it with K-means since the two are based on assigning points to whichever
cluster mean is closest to them. The last two methods are the mixture of components
model, for which the EM algorithm is appropriate, and the third class is spectral, an
implementation of the Ng et al. (2002) procedure.

Unfortunately, graph-theoretic and Bayesian techniques are not exemplified here. In-
deed, graph-theoretic techniques are only covered implicitly in the sense that the min-
imal spanning tree procedure is equivalent to single linkage. For this method, a fully
connected graph of the data was used, although sparser graphs would naturally be
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considered in data sets with high n. More general graph partitioning techniques
have been implemented by the Karypis lab. However, the Karypis software, METIS,
CLUTO, and PAFI, doesn’t interact well with R, although it is otherwise usable with
practice. In addition, spectral clustering procedures, such as specc, used below, of-
ten boil down to graph-partitioning criteria. Bayes methods, however, remain difficult
even to implement outside of special cases; e.g., Heller and Ghahramani (2005) focus
on Dirichlet processes. No software seems to be available for the Makato and Toku-
naga (1995) method.

As in the computed examples of Chapter 7, numerous extra features must be specified
to implement these eight methods. In particular, the distance or dissimilarity is often
the single most important feature. So, for comparison purposes, wherever reasonably
possible, two distances were used to define dissimilarities, Euclidean and absolute er-
ror (also called the city block, L1, or Manhattan metric). Actually, a variant on K-means
can be done with the absolute error but is not shown here.

Before proceeding to the results, it is important to comment that clustering in general
is not a very well-defined goal. It is easiest to think of clusters as local modes of the
overall density; however, since all points must be put in clusters, some will be far from
modes. Regarding some points as outliers is also problematic. Usually, they are valid
points but inappropriate for cluster formation or they are on a boundary between two
clusters and so contribute to instability of the clustering. This makes preanalysis data
cleaning somewhat subjective. Alternatively, one can think of clustering as unsuper-
vised classification. This is correct, except when there aren’t any classes. Even when
there are classes, this is little help because classification optimality and techniques re-
quire a response Y . It may be best to regard clustering like data summarization and
visualization; i.e., as a search technique to uncover structure.

Clustering is a relatively big problem since the number of clusterings one is searching
through is the power set of a (often high-dimensional) real space. Consequently, clus-
tering is relatively informal, and there are many heuristics or “sanity checks” that can
be used, depending on the data. For instance, one can form a histogram of the dissimi-
larities d(xxxi,xxx j) for j 	= j between the points and look for modes. The modes represent
common distances; a global mode at a small distance might correspond to the distances
between points within the same cluster. Later, smaller modes might indicate distances
between points in different clusters. The number of modes minus one might represent
the number of different distances between cluster centers; the height of these modes
might indicate how large the clusters are. In addition, clusterings on different subsets
of the variables may be generated and compared for consistency.

Partial information, if available, can be used to discriminate among different clustering
procedures and in the choice of K, the distance, initial cluster centers, and so forth. If
partial information is not available, then the clustering procedure can be varied (e.g.,
choose different Ks, starting centers, weights, or which edges to include) to give sev-
eral clusterings and justify a sort of consensus clustering. In general, at the end of the
procedure, subject matter information must be invoked to see if any of the clusterings
are reasonable. One can even hypothesize properties of the data generator and see if
they are borne out from a clustering. For instance, if a collection of variables that are
conjectured to indicate some general trait do not appear together in a cluster, it calls



8.5 Computed Examples 465

into question how reasonable it is to associate them. For example, in glaucoma, if high
intraocular pressure did not appear in the afflicted group, it might suggest thatreducing
intraocular pressure would not be helpful.

Informally, Koepke (2008b) suggests using K-means with a purposefully large K and
then combining clusters agglomeratively to find irregular shapes. This kind of idea
is built into hierarchical methods since they split or merge sets but would expand
the range of clusterings partitional methods would be able to find. The main crite-
rion would be to ensure that the agglomeration combines the large number of small
clusters into representative bigger ones.

The Ripley data example is presented first because it is two-dimensional and therefore
more easily visualized. Recall that there are two clusters. The iris data are known to
have three. So, for brevity, where K must be specified (K-means, mixture models, and
spectral clustering), only the results for values K = 2,3,4 are shown.

8.5.1 Ripley’s Data

Recall that Ripley’s data are analyzed from a classification perspective in Chapter 7,
where several plots of them can be found. Both clusters are mixtures of two normals;
roughly, there is a top cluster and a bottom cluster. What makes this synthetic data set
difficult is that over many regions it is impossible to cluster (or classify) perfectly be-
cause at many points there is a nonzero probability of each class occurring. Since they
are so commonly used, and easy to access, hierarchical methods are presented first,
followed by centroid-based, mixture model, and spectral procedures. It will be seen
that complete linkage, Ward’s method, K-means, and spectral procedures with poly-
nomial or Laplace kernels did well, while mixtures were passable and other methods
were poor.

8.5.1.1 Ripley, Hierarchical

The hierarchical methods discussed here, and others, can be found in the hclust con-
tributed R package. The basic form of the commands to generate dendrograms for
these cases is

data(synth.tr)
xx<-synth.tr[,-3]
hc <- hclust(dist(xx, method="euclidean"),
method = "single")
postscript("hSingleEuclidRipley.eps")
plot(hc, labels = FALSE, hang = -1,
main = "Hierarchical Clustering",
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sub = "Single Linkage on Ripley’s data using the
Euclidean distance")
dev.off()

in which the data set synth.tr is clustered using the Euclidean distance and single
linkage. The dendrogram plotted is in Fig. 8.7. Making the obvious substitutions for
the absolute error (called the Manhattan distance in the command) and other forms of
linkage (average and complete) generates the rest of the panels in Fig. 8.7.

The top row of Fig. 8.7 shows that the chaining problem associated with single linkage
is severe for this data set. Single points are pulled off one or a few at a time by the
nearest-neighbor criterion, making it difficult to find natural break points to identify
clusters. Note that aside from a few large decreases in dissimilarity at the start of the
procedure, the subsequent decreases in dissimilarity are quite small on the vertical
axis, indicating that only a little similarity is gained at each split. This means that
single linkage clustering is not giving good results; since it is equivalent to finding a
minimal spanning tree, the simplest graph-theoretic technique is also ineffective.

The middle row of Fig. 8.7 shows the dendrograms for average linkage. It is seen that
there is a large decrease in dissimilarity with the initial split, from around .9 to a little
over .8. In both dendrograms, the next split on the left branch gives a small cluster at
the extreme left. These likely represent near-outliers because if they are ignored one
can discern four clusters – two from the first split on the right branch and two more
from the second split on the left branch. Past this point, the decreases in dissimilarity
become small. Taken together, this suggests four clusters are reasonable for this data
set. This makes sense because both classes in the Ripley data set consist of two normal
components. Since all four normal components have weights that are not close to zero,
the clustering procedure detects them, as well as the two classes that emerge from the
initial split.

The third row of Fig. 8.7 shows the dendrograms for complete linkage. This is at the
other extreme from single linkage in that it considers all neighbors rather than nearest
neighbors. As with average linkage, four clusters are detected, but they are detected a
bit more cleanly because the small collection of outliers at the extreme left in average
linkage does not appear in complete linkage. The points are within one of the four
clusters found at the second split. With hindsight, therefore, complete linkage appears
to do best in this case.

If the Euclidean distance is replaced by absolute error, Fig. 8.7 does not change much.
So, these results are not shown. Neither distance gives splits substantially better reduc-
tion in dissimilarity at any level; neither distance finds or fails to find any meaningful
substructure. The effect of the change in distance is probably comparable in size to
other sources of error.

Recall that DIANA is divisive, so the dendrograms are formed from the bottom up
rather than the top down as with agglomerative procedures. In Fig. 8.8, it is seen that
both distances give a large reduction in dissimilarity, of about the same amount, at the
last merge (first split if the procedure is done in reverse). This probably corresponds
to the two classes. The second to last merge (second split) gives four well-defined
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Fig. 8.7 Hierarchical agglomerative procedures on the Ripley data. The left column uses the Eu-
clidean distance and the right column uses absolute error. The rows correspond to single linkage,
average linkage, and complete linkage.

groups in each case, although the dissimilarity is a bit lower for absolute error than
for Euclidean distance. Looking one step further down on the absolute case, it is seen
that the decrease in dissimilarity is roughly comparable for all the merges, whereas it
is more variable for the Euclidean case. That is, the appearance of the absolute error
graph is more regular in terms of reducing dissimilarity. However, the four clusters
are more similar in size for the Euclidean case than for absolute error. In the absence
of knowledge of the four-component structure of the data, one would be led to use
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absolute error over Euclidean – if the dissimilarity were believed appropriate. How-
ever, the Euclidean version is slightly better at finding the correct clusters.

Comparing the complete-linkage hierarchical dendrograms with DIANA with absolute
error, it is seen that DIANA seems to identify too many clusters because the decrease
in dissimilarity is still relatively large compared with the decreases close to the tips of
the branches. Complete linkage tends to give four well-defined clusters and so, again
with hindsight, might be preferred.
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Fig. 8.8 Hierarchical division; DIANA on Ripley. On the left, the Euclidean distance is used; on the
right, absolute error.

8.5.1.2 Ripley, Centroid Based

In its top row, Fig. 8.9 shows Ward’s method on Ripley for the Euclidean and absolute
error distances. Although Ward is a hierarchical agglomerative procedure, it agglom-
erates clusters defined by their means and sums of squares to keep the overall sum
of squares as small as possible. Thus, Ward is methodologically more comparable to
K-means than to other hierarchical procedures. The command for Ward is similar to
the commands for the other hierarchical procedures in hclust noted above. Also in
Fig. 8.9, three panels show K-means clusters for K = 2,3,4. The data roughly form
two clouds, one on the left (three components) and one on the right (one component).
However, there are enough points between the two clouds that one can imagine a sin-
gle cloud, like a backwards S rotated counterclockwise by 90◦. Note that, in the K = 4
panel, the larger cluster on the left has centroids (stars) that roughly line up to suggest
a single kidney-shaped cluster. The last panel in Fig. 8.9 shows the result from using
median absolute error linkage; median Euclidean linkage is similar. Both give slightly
bizarre results for Ripley, although one could be led to identify two or four clusters.
However, this can only be said with hindsight.

It is worth looking at panels 1 through 5 in more detail.
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Fig. 8.9 The top row is Ward’s method on Ripley data, Euclidean distance on the left, absolute error
on the right. The next three panels are for K-means on Ripley with K = 2,3,4; different geometric
shapes indicate the cluster to which each data point belongs, and stars indicate the location of the
centers. The lower right corner show median linkage on Ripley with absolute error.

It is seen that Ward’s method actually picks out 4 clusters fairly unambiguously, as it is
well adapted to finding compact spherical clusters. The initial drop in squared or abso-
lute error is quite large and, after the second split indicated in the dendrograms, there is
very little dissimilarity to be explained. (Indeed, after the third split, the dissimilarity
is effectively zero.) In both distances, Ward appears to outperform the earlier com-
plete linkage and the other hierarchical methods. It must be remembered that Ward’s



470 8 Unsupervised Learning: Clustering

method rests on having an initial clustering to agglomerate. The hclust documentation
does not indicate how this initial clustering is found by the software, but clearly it can
have a major impact if done poorly. In practice, one could just use K-means with large
K and random starts. Or, one could use a leader algorithm in which an initial data point
is chosen at random and later centers are chosen to be at least some fixed distance δ
from the centers found. Then the points are assigned to their closest center.

The K-means procedure in R uses the Hartigan-Wong algorithm starting with K ran-
dom centers. The command for K = 2 is:

data(synth.tr)
xx<-synth.tr[,-3]
kmRipley2 <- kmeans(xx,2)
kmRipley2$centers
kmRipley2$size
kmRipley2$withinss

As seen in Fig. 8.9, the K-means procedure on Ripley with K = 2 gives left- and right-
hand clusters (circles and triangles) with the two centers, noted by stars, roughly in
the middle of the clusters, as confirmed by the tables below. With K = 3, the data
cloud is treated as a sort of arc and partitioned into three sectors, indicated by plus,
circle, and triangle from left to right. The centers are again roughly in the middle of
each cluster. When K = 4, the pattern is similar. There are four sectors, indicated by
xs (circles, triangles, and plus signs, from left to right). The centers are in the middle
of their clusters. Essentially, as K increases, the data get partitioned into smaller and
smaller convex regions, sometimes called Voronoi sets because each point is assigned
to the cluster center closest to it. On the face of it, therefore, there is no way to choose
which K is best or which clusters are more meaningful.

In some cases, practitioners repeat the K-means procedure several times (with different
starting values, usually random) to search for better clusterings. Even so, there are data
sets for which the pattern seen in the Ripley data is quite strong: The data cloud gets
partitioned into convex regions with representative centers so that the optimal number
of clusters is hard to determine.

In these cases, it can be worthwhile to examine the output more carefully. The table
below summarizes the numerical results for K = 2,3,4. For each K, the results of K-
means on the Ripley data with the Euclidean distance and K cluster centers are in the
first two columns, the size of the clusters is in column three and the sum of squares
within the clusters is in the last column.

For K = 2, the total sum of squares is SST (C (2)) = 119∗17.2+131∗11.8 = 3593; for
K = 3, the total sum of squares is SST (C (3)) = 71∗3.9+124∗10.2+55∗3.1 = 1712;
and for K = 4, the total is SST (C (4)) = 32 ∗ 1.8 + 60 ∗ 2.9 + 120 ∗ 9.7 + 38 ∗ 1.3 =
1445. Larger Ks will give smaller total sums of squares, at the risk of overfitting by
using too many clusters. In these cases, often one looks for the knee in the curve
(K,SST (C (K))) as a function of K. In the present case, the knee appears at K = 4,
correctly identifying the most refined number of clusters despite K = 4 being correct.
However, the appearance of the panel for K = 2 in Fig.8.9 looks most esthetic – and
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is correct. This illustrates a problem with Voronoi type methods: The convexity of the
clusters makes all clusterings seem not unreasonable a priori. Indeed, finding too many
clusters may correspond to finding structure within the clusters rather than differences
between clusters.

x y size SS(W )
C1 −.53 .51 119 17.2
C2 .34 .50 131 11.8

C1 −.32 .71 71 3.9
C2 .36 .49 124 10.2
C3 −.74 .26 55 3.1

C1 −.68 .56 32 1.8
C2 −.23 .71 60 2.9
C3 .37 .49 120 9.7
C4 −.72 .16 38 1.3

There are many creative ways to justify a choice of K. In some cases, a normal model
is invoked and K can be chosen by an AIC or BIC type of criterion. For instance, one
can find the K that minimizes

SST (C (K))+λ pK logn,

in which λ is a decay factor and pK is the number of entries in the K centers in p
dimensions. However, there will always be anomalies. Consider a data set of three
separated clusters in the plane. If two clusters are small and close together while the
third is large but very far from the other two, it can be optimal to use one center to
represent the two small clusters and two centers to represent the big one!

8.5.1.3 Ripley, Model-Based

The main model-based method is fitting a mixture of components by using the EM
algorithm. This has been implemented for multivariate normal mixtures in the con-
tributed R package mclust. The command for the Ripley data is

yy<-synth.tr[,-3]
RipleyMixCluster <- Mclust(yy)
plot(RipleyMixCluster)

Because the procedure is model-based, the BIC (see (8.3.4)) can be used to choose
the correct number of clusters K; see Chapter 10, Section 2.2 for more details on the
BIC. The default range of K is one to nine, and as seen on the horizontal axis in Fig.
8.10, the BIC value is on the vertical axis. Even though the mixture consists only of
normals, the covariance can be parametrized in many different ways to represent the
shapes of the clusters; this affects the penalty term in the BIC. The legend at the lower
right of the figure codes for ten of these parametrizations. For instance, EII means that
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all the variance matrices in the normals are of the form λ Ip; i.e., they are diagonal
and all diagonal elements are the same. VII is a little more general; the covariance
matrices are of the form λkIp (i.e., they are diagonal and each component is allowed
a different diagonal value). EEI and VEI indicate variance matrices of the form λA
and λkA; i.e., the same general covariance matrix for all components and component
dependent factors on general covariance matrices. The remaining six cases continue to
increase the generality of the class of covariance matrices permitted.
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Fig. 8.10 BIC values for ten mixture of normal components models fit by the EM algorithm for the
Ripley data.

It is seen in Fig. 8.10 that the most general mixture model VVV (indicated by empty
squares) chooses K = 2 or K = 3, while the most restricted mixture model (indicated
by solid triangles) chooses K = 4. Of the remaining eight parametrizations, two choose
K = 4, five choose K = 3, and one is indeterminate. In general, the richer the model
class, the fewer components will be needed, although the BIC penalty reduces the
extent to which this is true. Unlike the earlier techniques, which reveal two or four
clusters, consistent with the structure of the data generator (two mixtures of two com-
ponents), the smoothing effect of the BIC tends to give three as an intermediate value,
roughly corresponding to the K = 3 case in K-means. This is wrong for the Ripley data
set, but not terribly so, and is probably quite good for many real data sets. Graphs of
this can be given but are omitted for brevity.

8.5.1.4 Ripley, Spectral

The contributed R package specc in kernlab is an implementation of the Ng et al.
(2002) variant on the Shi and Malik (2000) procedure. In these cases, the dissimilarity
d(xxx,xxx′) is usually a kernel function. For the radial basis function kernel with K = 2,
the command is:

data(synth.tr)
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xx<-synth.tr[,-3]
xx<- as.matrix(xx)
spRbfRipley2 <- specc(xx, kernel = "rbfdot", centers=2)
centers(spRbfRipley2)
size(spRbfRipley2)
withinss(spRbfRipley2)

The command for polynomial and Laplace kernels is similar. Embedding the data into
a nonlinear space by using a kernel corrects one of the drawbacks of other procedures,
such as K-means , that cannot capture clusters that are not linearly separable in their
input space. For the Ripley data, it is unclear a priori how much this will help because
the nonseparability of the clusters by linear functions is a property of the data gen-
erator itself. Kernels generally have a parameter that must be estimated so they are
correctly scaled. Built into the specc command above is the estimation of the variance
parameter; this can be done in several ways. The default was used here; it assumes
the dimensions of the data are all on the same scale. The two other kernels used here,
polynomial and Laplace, also have parameters to be estimated, and the commands for
them are similar. The results are given in Fig. 8.11. The documentation does not seem
to make it clear what the default number of eigenvectors m is to give the columns of
the matrix to which K-means is applied or how m is chosen.

In looking at the left column, it is seen that, as with K-means, the clustering partitions
the data cloud roughly into Voronoi regions. For K = 2 there are a left and right clus-
ters, triangles and circles, as in K-means with K = 2. For K = 3, there are three sectors
– circles, triangles, and pluses – again as in K-means with K = 3. For K = 4, however,
the right cluster is partitioned into three clusters; the circles indicate the largest, the
triangles the next largest, and the multiplication signs the smallest cluster – quite dif-
ferent from K-means with K = 4. The polynomial kernel is similar to the RBF kernel
for K = 2,3 but unlike the RBF kernel gives clusters that continue to be roughly the
same as the K-means even for K = 4. (The Laplace kernel also gives results much the
same as for the polynomial kernel, i.e., it, too, matches the K-means results.) Taken
together, it seems that squaring and exponentiating the squared error distance as in the
RBF kernel moves it too far away from the K-means optimality. Merely exponentiating
the L1 distance as in the Laplace kernel, or just taking a polynomial power distorts the
data less, giving more representative clusters. This is reasonable because the correct
clusters in the data themselves overlap. Forcing a linear separation with the RBF ker-
nel actually decreases the adequacy of a clustering. Thus, the Laplace or polynomial
kernels seem to do better than the RBF.

As with K-means, the selection of K can be difficult with spectral clustering. For com-
parison with the output of the K-means procedure, the SS(W )s for the three values of
K are compiled into a table for the polynomial kernel case. The corresponding table
for the Laplace kernel is essentially identical. (The RBF kernel is not shown because
it has already been seen to give poor results for K = 4.) Consistent with Fig. 8.11, the
table shows C2(2) = C3(2), so that increasing K from 2 to 3 splits C2(1). Likewise,
C3(1)≈C4(4), again indicating a split.
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Fig. 8.11 Spectral clustering on the Ripley data. The left column uses the radial basis function and
the right column uses the polynomial kernel. The top row uses K = 2, the middle row uses K = 3, and
the bottom row uses K = 4.

It is left as an exercise to see that K = 4 does better than K = 2,3 but that the total sum
of squares does not decrease as rapidly as it did for K-means. However, spectral clus-
tering does not optimize K-means any more than K-means tries to embed the data into
a subspace of the eigenvectors of the dissimilarity matrix (although it must be noted
that this spectral clustering uses K-means on the matrix of eigenvectors with a ran-
dom start). Nevertheless, if further Ks were computed, a scree plot of (K,T SS(C (K)))
could be found and the knee value of K chosen. This procedure or BIC would likely
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work as well for choosing K in general but correspond to different, additional, as-
sumptions. Nevertheless, the two criteria, spectral and squared errors are really quite
different, and it is difficult to decide a priori which will be better in a specific context.

Poly x y size SS(W )
C1 -.51 .52 123 146
C2 .35 .49 127 13

C1 -.74 .25 55 58
C2 .35 .49 127 13
C3 -.32 .73 68 75

C1 .29 .37 87 5.3
C2 -.33 .73 69 78
C3 .47 .75 40 5
C4 -.74 .25 54 55

8.5.2 Iris Data

Recall that Fisher’s iris data were analyzed from a classification perspective in Chapter
7. In this section, they are reanalyzed from an unsupervised perspective, so K = 3 can
be taken as correct. Since the procedures and software have already been explained
in the last subsection and the commands for the iris data are similar to those for the
Ripley data, they are omitted. This section will just look at the analysis of the data.
Plots are not given because the data is four dimensional.

Average linkage hierarchical, Ward’s method, and K-means worked well here, DIANA
and model-based methods were passable, and the other methods did poorly.

8.5.2.1 Iris, Hierarchical

In Fig. 8.12, six dendrograms are given, as in the last subsection. It is seen immediately
that single linkage suffers the chaining problem for both absolute error and Euclidean
distance. Complete linkage does better; however, it is easy to “overcluster”. By the
time the dissimilarity is decreased to a satisfying level, too many clusters have been
found. If you stop at dissimilarity 4 on the left (Euclidean), the results are good, but
the natural temptation is to see six clusters by using the dissimilarity level of two.
Likewise, any dissimilarity level between 5 and 8 on the right (absolute error) gives
good results, but the temptation is to choose a level below 5, again giving the wrong
number of clusters.

It can be seen, with hindsight, that average linkage does better than single or complete.
At any persuasive dissimilarity level, say around 2 on the right or 4 on the left, three
clusters are found. They look fairly stable because decreasing the dissimilarity in small
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Fig. 8.12 Hierarchical agglomerative procedures on the iris data. The left column uses the Euclidean
distance and the right column uses absolute error. The rows correspond to single linkage, average
linkage, and complete linkage.

increments only pulls off small numbers of data points that look like outliers more than
collections of points that seem like a unit.

Figure 8.13 gives the dendrograms for DIANA. The results are passable, better than
for complete linkage but worse than for average linkage. Indeed, both dendrograms
reveal three clusters as reasonable (dissimilarity between 3 and 5 on the left or 5 and
10 on the right) as well as tempting one to use a lower dissimilarity and overcluster to
get seven clusters (at levels 2 or 3, respectively). DIANA tends to give more esthetic
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dendrograms which lures one to overcluster. One can argue that in such cases one
should informally prune back the clustering much as trees must be pruned back some-
times by cost-complexity.
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Fig. 8.13 Hierarchical division; DIANA on iris data. On the left, the Euclidean distance is used; on
the right, absolute error.

8.5.2.2 Iris, Centroid-Based

Like the comparable section for Ripley data, the two methods used here were Ward
and K-means.

In Fig. 8.14, the dendrograms for Ward’s method are given. Recall that Ward is con-
ceptually similar to K-means, even though it is hierarchical. It is seen that Ward’s
method does well: Only two or three clusters are at all reasonable. This is consistent
with the data because two of the clusters overlap substantially. Whether or not one
would choose 3 as the correct number of clusters depends on how much one resists the
desire to overfit – i.e., insist on an unjustifiably low dissimilarity. Here, that temptation
actually leads to the correct answer, unlike complete linkage or DIANA.

Like Ward, K-means clustering does well. However, since the data is four dimensional,
it is difficult to generate scatterplots. One could look at projections into three dimen-
sions, but here it will be enough to examine the sums of squares. These are easily
given, as in the table below. It is seen that C1(2)≈C1(3), so in passing from K = 2 to
K = 3, roughly C2(2) is split. Likewise, C2(3)≈C4(4) and C3(3)≈C1(4), indicating
that, roughly, C1(3) was split into C2(4) and C3(4).

If you knew to choose K = 3, the result would likely be a reasonable clustering, given
that two of the clusters are hard to distinguish. Indeed, C2(2) and C2(3) probably have
many points (10 to 14) that could be put into either cluster, so cluster stability or
validation might be difficult. Since it can be verified that the knee of the curve of total
sum of squares (i.e., of (K,SST (C (K)))) is at K = 3, K-means is giving a reasonable
result, just like Ward.
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Fig. 8.14 Ward’s method on iris data; Euclidean distance is on the left, absolute error on the right.
There are no plots for K-means for iris because it’s four-dimensional.

x1 x2 x3 x4 size SS(W )
C1 5.0 3.4 1.6 .3 53 28.6
C2 6.3 2.9 5.0 1.7 97 123.8

C1 5.0 3.4 1.5 .2 50 15.1
C2 6.8 3.1 5.7 2.1 38 23.9
C3 5.9 2.7 4.4 1.4 62 39.8

C1 5.9 2.7 4.4 1.4 62 40.0
C2 5.4 3.8 1.5 0.3 17 2.6
C3 4.8 3.2 1.4 0.2 33 5.4
C4 6.8 3.1 5.7 2.1 38 23.9

8.5.2.3 Iris, Model-Based

Figure 8.15 shows the results for mclust on the iris data. As before, there are ten BIC
curves as a function of K. This time, they segregate into two classes, of four (top group)
and six (bottom group). The top group has well defined maxima and the bottom group
has knees. The difference between the two groups is that all the techniques in the top
group use richer model classes; i.e., they are more flexible. With more flexible models,
it is more typical to see a maximum – to the left, the curve is low, indicating bias and
to the right it is low, indicating excess variance. With narrower model classes, curves
with a knee are more typical: The idea is that, past a certain point, the gains are small
relative to the extra complexity introduced.

The top group has modes at 2 (two curves), 3 (one curve), and 4 (one curve). All
the curves in the bottom group have knees at 3. With hindsight, this suggests the top
group of richer classes is more unstable, possibly from overfitting the data. The lower
group appears to give the right K uniformly. So, the larger group of versions of this
method works rather well, except for the fact that two of the clusters must be unstable
since they are not easily separated. As a group, the results are not as good as centroid
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methods or average linkage. But, if the narrower classes are used to avoid overfit (i.e.,
one requires a well defined-knee) then this is a good way to choose K.
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Fig. 8.15 BIC values for 10 mixture of normal components models fit by the EM algorithm for the
Iris data.

8.5.2.4 Iris, Spectral

With spectral clustering, K must be chosen, and since p = 4, it is hard to generate
scatter plots without reducing the dimension. Results were found for K = 2,3,4 using
the RBF, Laplace, and polynomial kernels.

The RBF kernel, as before, did poorly. The table below for K = 2 indicates the prob-
lem. The two classes that are hard to separate are grouped together as C2(2). If K
increases, this clustering changes very little: For K = 4, the clusters have 4, 50, 2, and
94 members. That is, increasing K does not split the clusters but just forces the method
to slice off a few points from the larger cluster that do not fit as well with fewer clusters.
In effect, these points are treated as outliers more than the start of new clusters.

RBF x1 x2 x3 x4 size SS(W )
C1 5.0 3.4 1.5 0.2 50 1313.2
C2 6.2 2.9 4.9 1.7 100 2656.1

For K = 2,3, both Laplace and polynomial kernels give the same results as the RBF
kernel: They have approximately the same table as the RBF for K = 2 (above), and for
K = 3 they do not separate clusters 2 and 3.

When K = 4, the Laplace and polynomial kernels do better than the RBF kernel. (Re-
call that Laplace and polynomial kernels did better than RBF for the Ripley data.)
They were very similar; the table below is for the Laplace kernel. It is seen that merg-
ing C3(4) and C4(4) would give a better result; however, this is not any of the clusters
when K = 3.
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Overall, spectral methods in this example give reasonable results when K = 2,4 but
when K = 3, the correct value, the results are poor.

Lapl x1 x2 x3 x4 size SS(W )
C1 5.0 3.4 1.5 .2 50 1313.2
C2 6.6 2.9 5.4 2.0 55 1489.1
C3 5.9 2.8 4.4 1.4 6 141.5
C4 5.9 2.8 4.2 1.3 39 900.0

8.6 Cluster Validation

Having seen a plethora of clustering techniques, there are two natural questions, aside
from implementation. The first is which clustering procedure to choose; the second is
how to evaluate a clustering a procedure produces. The first question does not readily
admit a serviceable answer: If someone knew enough about the phenomenon to choose
unambiguously which clustering method to use, then one would de facto know what
the clusters were likely to look like. Many methods work well for relatively compact,
relatively separated, and elliptical clusters in relatively small dimensions. Outside that
convenient setting, the situation is murkier and mostly unresolved. In practice, one
chooses whichever clustering technique is not contraindicated by some feature of the
data or phenomenon and tunes it to get as reasonable an answer as it will give by
choosing it inputs – K, models, or distances.

Clearly, this is not entirely satisfactory, so the second question of evaluating clusterings
becomes central. There are two senses in which clusters can be evaluated: The first
is in terms of the subject matter discipline for which the clustering is intended; the
second is the statistical analysis of stability of the clustering. Of these, the first is
usually more important – when it can be done, which is not often. After all, if a given
clustering accurately encapsulates a physically reasonable model structure, it may not
matter much what its stability properties are. The natural questions are: Is the K a
reasonable number for the clusters physically? Does each cluster represent a definable,
recognizable subgroup of the population? Does the distance from cluster to cluster
match some aspect of the similarity between the units the clusters summarize? Are the
cluster boundaries close to boundaries between subgroups of the whole population?
In any specific application, there will often be even more criteria for how a clustering
should match the physical problem. (In text mining, infantry should be clustered with
soldier, not infant. In genomics, the genes in a cluster should serve related purposes.)

Regardless of problem-specific criteria, a clustering can also be evaluated statistically.
These techniques generally come down to measuring how different one clustering is
from another. This is a sort of robustness or sensitivity analysis; it is the clustering
analog of model uncertainty and deserves to be called clustering uncertainty.

At the heart of this is the choice of dissimilarity. As noted at the end of Chapter 7,
in high dimensions assigning distances between points is one of the main features de-
termining inferences. The question comes down to what makes two points far apart:
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many small differences in the entries of a vector all contributing to the overall distance
as with Euclidean distance or a few really large differences in entries of a vector, re-
gardless of the other coordinates. Where one is situated on this spectrum substantially
determines the metric topology of the solution. Another way to phrase this is to ask, for
each similarity (or dissimilarity) what the shape of its unit ball is. This is well known
for the Lp distances but is unknown in general.

In addition to the usual notion of distance between points, there are extra criteria
one might wish to impose so that lifting a dissimilarity on individual points to a
dissimilarity on clusters is more reasonable. Two conditions often imposed are that
d(C∪{yyy},C′)≥ d(C,C′) if yyy is not in C, C′ and that d(C∪{yyy},C′ ∪ {yyy})≤ d(C,C′).
These criteria emphasize that dissimilarity should decrease if one cluster is changed
and should decrease if both are changed the same way. These conditions are a sort of
replacement for the triangle inequality, which typically fails for dissimilarities. After
all, there is no need for clusters C and C′ to be close just because there is a third cluster
C′′ that is metrically close to each of them.

Apart from the effect of choice of dissimilarity, it is important to examine the stabil-
ity of clustering procedures because K is unknown. Even when K is known, in high
dimensions it is exceedingly easy to obtain spurious clusterings. Indeed, many proce-
dures will generate clusters even if they do not exist. For instance, for any K, K-means
will give a clustering of K clusters. Any hierarchical method will give a complete
nested sequence of subsets. Thus, guarding against spurious clusterings is essential.
This problem is accentuated in high dimensions, where it is easy to find clusterings
that are persuasive – even stable – but spurious in that under further data collection
they disappear. This probably arises because data are sparse in high dimensions.

Regardless of the manifold pitfalls, there are three basic techniques for evaluating clus-
ter stability, called external, internal, and relative.

In external cluster validity assessments a clustering is given as a reference and the data-
driven clustering is compared with it using some d. For instance, if C = {C1, ...,CK}
is the clustering obtained from data and an alternative is P = {P1, ...,PK′}, then one
can measure the distance between C and P as follows. Recall that there are C(n,2)
distinct pairs of points that can be chosen from the xxxis. For each pair (xxxi,xxx j), there are
four cases:

• Both xxxi and xxx j are in the same cluster Ck for some k in C and in the same cluster
Pk′ for some k′ in P . Call the number of pairs a.

• Both xxxi and xxx j are in the same cluster Ck for some k in C but are in different clusters
Pk′ and Pk′′ for some k′,k′′ in P . Call the number of pairs b.

• The xxxi and xxx j are in different clusters Ck and Ck′ for some k,k′ in C but are in the
same cluster Pk′′ for some k′′ in P . Call the number of pairs c.

• The xxxi and xxx j are in different clusters Ck and Ck′ for some k,k′ in C and are in
different clusters Pk′′ and Pk′′′ for some k′′,k′′′ in P . Call the number of pairs d.
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Clearly, a + b + c + d = C(n,2). Commonly occurring indices for gauging clustering
similarity include the Rand index, R = (a + d)/C(n,2), and the Jaccard index, J =
a/(a+b+ c), but there are many others.

Internal criteria measures are an effort to test how well the clustering reflects the in-
ternal structure of the data set. Let d(Cj,Ck) = d j,k be the dissimilarity between two
clusters and sk be a measure of dispersion for cluster Ck. Then a similarity measure R j,k

between Cj and Ck should satisfy two conditions (i) R j,k ≥ 0, R j,k = Rk, j, s j = sk = 0
implies R j,k = 0, and (ii)

[
s j > sk and di, j = di,k

]
or

[
s j = sk and di, j < di,k

]
⇒ Ri, j > Ri,k.

One choice for the similarity between clusters is R j,k = (s j + sk)/d j,k. Often, these are
combined into a one-dimensional index by setting R j = maxk| j 	= j R j,k and using the
Davies-Bouldin Index, DB = (1/C(n,2))∑ j R j.

The silhouette index is another internal criterion defined for a point xxxi as

s(i) =
b(i)−a(i)

max(a(i),b(i))
,

in which a(i) = (1/#(C))∑xxx∈C d(xxxi,xxx) is the average dissimilarity between xxxi and the
data points xxx in the cluster C that contains xxxi and b(i) = minCk 	=C d(xxxi,Ck). Essentially,
this is a scaled difference between the dissimilarities. Often this index works well for
compact separated clusters.

Relative criteria are an effort to choose among a collection of clusterings one that
is best in the sense that it satisfies an objective function. For instance, a clustering
procedure can be run several times under a collection of different conditions in an
effort to find the best clustering for the data set. The goal is that the clusterings should
be relatively similar to each other, perhaps in an internal or external sense.

As a generality, there are many ways to check the internal consistency of a clustering.
Two heuristics are: (i) Given a clustering, one can sample from it and treat the cluster
indices 1 through K as classes so the data are supervised. The accuracy of a classifier
is then a measure of the cluster stability. (ii) Given a clustering, choose a collection of,
say m, clusters from it. Rerun the clustering procedure to make sure that m remains the
best number of clusters for the data. A special case of this is choosing a single cluster
and making sure the data in it are best described by one cluster.

Recently, a Bayesian approach to cluster validation has been given in Koepke (2008a).
The formulation rests on a notion of soft membership because the amount of a given
data point apportioned to a cluster varies over (0,1). Being Bayesian, one conditions
on the data rather than perturbing them and the prior controls the distribution of a factor
determining how hard it is to shift a point from one cluster to another. There is evidence
that this technique gives better performance for evaluating the representativity of a
base clustering than other cluster validation techniques. Although the technique as
presented in Koepke (2008a) is internal, it can be readily reformulated to be external
or relative.
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Finally, it must be remembered that the point of clustering is to find the modes of a
complex distribution, but that this introduces a dependence structure probabilistically.
Thus, one can search for clusters or evaluate their reasonableness by searching for
events that commonly occur together. This is the general goal of using association
rules, which is a way to search for events that have high joint or conditional probability.
Interest is not on the form of the rule per se, since the rules themselves are instances
of traditional nonparametric statistical quantities, but rather in how to use them to
search for interesting events. Since the main concepts are familiar, an example may
help explain the terminology.

Consider a collection of n patients, each with a health history. The health history is a
long vector, of length say p, having one entry for each conceivable question. It is well
known that the answers to some health questions will be probabilistically dependent
on the answers to others in the population. A statistician searching for associations
between two questions might ask if a patient has taken drug A or drug B, or both, in
the past. A health economist might want to know whether A and B are consistently
prescribed together.

Interpret the statement “If A, then B” to mean if a patient has taken drug A then he or
she has also taken drug B, and call such an implication a “rule”. The first “if” part is
called the antecedent; the second “then” part is called the consequent. The two, A and
B, can often be interchanged as well.

The “support” for this rule is the number of patients who have taken both A and B.
This is the frequency of the intersection of the two events A = {have taken drugA}
and B = {have taken drugB}. This is nP(A∩B). The “confidence” is the ratio of the
number of patients who have taken both A and B to the number of patients who have
taken A. This is the conditional probability P(B|A). The “expected confidence” is the
proportion of patients who have taken drug B. This is the marginal probability of the
consequent, P(B). The “lift” is the ratio of confidence to expected confidence. That is,

Li f t =
P(B|A)
P(B)

=
P(A∩B)
P(A)P(B)

,

a familiar measure of association. If A and B are independent, Li f t is one. Otherwise,
Li f t can be any positive number. Quantities like |Li f t−1| occur in the φ -mixing con-
dition in probability theory.

Practical data miners have numerous sophisticated ways to search over events to iden-
tify those that commonly occur together or not under a variety of dependency criteria.
To date, practical data miners do not seem to have used other measures of association
such as the Pearson correlation, the Spearman rank correlation, or Kendall’s τ , whose
theory under conditioning, is also well established; see Daniel (1990). However, the
combination of clustering techniques and cluster validation promises great improve-
ments in the near future.
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8.7 Notes

8.7.1 Derivatives of Functions of a Matrix:

Consider a real-valued function F with a matrix argument MMM. The derivative of F with
respect to MMM is taken coordinatewise,

∂F
∂MMM

=
[
∂F(MMM)
∂mi, j

]
,

where MMM = (mi, j)
p
i, j=1. Thus the derivative of the matrix MMM is the matrix with all p2

entries equal to 1. A vector is a p× 1 matrix, so the definition applies to real-valued
functions of vector arguments as well. For instance, the derivative of a squared norm
is

∂xxx′MMMxxx
∂xxx

= (MMM +MMM′)xxx,

which reduces to the unidimensional case when p = 1.

Other useful facts can be readily derived. Let Cof(MMM)i, j be the (i, j)th cofactor (signed
minor) of MMM. The derivative of a determinant is

∂ |MMM|
∂mi, j

=

{
Cof(MMM)i, j if i = j,

2Cof(MMM)i, j if i 	= j,
,

and the derivative of the log of a determinant is

∂ log |MMM|
∂mi, j

=

⎧⎨
⎩

Cof(MMM)i, j
|MMM| if i = j

2Cof(MMM)i, j
|MMM| if i 	= j

= 2MMM−1−diag(MMM−1).

(This uses the definition of the inverse matrix as the transpose of the matrix of cofactors
over the determinant.) Finally, the trace, of a matrix MMM satisfies

∂ trace(TTT MMM)
∂TTT

= MMM +MMM′ −diag(M).

8.7.2 Kruskal’s Algorithm: Proof

Let Tn be the output of Kruskal’s algorithm. It is enough to show that Tn is a single tree
that is the MST for the points. It is easy to see that the output cannot have any cycles (or
else the last edge added would not have been between two trees) and so is a spanning
tree. The minimality follows by an argument by contradiction: If Tn is not minimal,
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let T ′ be an MST. Let e be the first edge in S that is in Tn but not T ′. Then T ′ ∪ e
has a cycle. The cycle must contain another edge e′ ∈S , which is only considered by
the procedure after e. Now, T ′′ = T ′ ∪ e \ e′ is a spanning tree with weight less than
or equal to T ′. If equality holds, repeat this procedure for the next edge in Tn not in
T ′. At the end, either another minimal spanning tree has been constructed or there is a
contradiction to the minimality of T ′.

8.7.3 Prim’s Algorithm: Proof

Now let Tn be the output of Prim’s algorithm. This Tn is a minimal spanning tree as
well: Clearly Tn is connected and is a tree because the edge and vertex added are
connected as well. To see the minimality, let T ′ be an MST. If Tn 	= T ′, let e be the first
edge added to make Tn that is not in T ′, and let V ′ be the vertices added up to the step
where e is added. Then, one vertex of e is in V ′ and the other is in V ′c and there must
be a path in T ′ joining them. On this path there must be an edge e′ joining a vertex in
V ′ to one that is outside V ′. At the step where e was added in the algoritm, e′ could
have been added if its weight had been less than that of e. However, e was added. So,
the weight of e must have been bounded by the weight of e′. Now, if T ′′ = Y ′ ∪ e\ e′,
T ′′ is connected, has the same number of edges as T ′, and has total weight bounded
by the weight of T ′. So, T ′′ is also a minimal spanning tree containing e and all the
edges added in Prim’s algorithm before V ′. Repeating this gives a spanning tree that is
identical to Tn with weight less than or equal to the weight of T ′. Thus, Tn is an MST.

8.8 Exercises

Exercise 8.1 (Cosine similarity). Define the cosine similarity between two p-dimensional
vectors aaa and bbb as

c(aaa,bbb) =
aaaT bbb
‖aaa‖‖bbb‖ .

If the entries in aaa and bbb only take values 1 and−1, give an interpretation for c. Find an
expression for ‖aaa−bbb‖2

2 in terms of c(aaa,bbb).

Exercise 8.2 (Sequential K-means). Because of its tractability in high-dimensional
problems, K-means has received a great deal of study. Here is a sequential modification
of the K-means procedure; it updates the means one data point at a time rather than all
at once.

� Start with initial guesses for the means, m1(0),...,mK(0), and let ck = #Ck for k =
1, ...,K, initially set to zero.

� For i = 0, ...,n−1 get the next data point, xxxi+1.
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� If xxx j+1 is closest to mk, increase ck to ck +1 and update mk(i) to m(i+1) = mk(i)+
(1/ck)(xxxi+1−mk(i)).

� Repeat until the data points are all used.

This procedure might be appropriate if data is gathered over time and clustered as they
are received.

Verify that the final cluster centers m1(n),..., mK(n) give the batch K-means clustering,
i.e., each mk(n)s is the average of the data points xxxi that were closest to it.

Exercise 8.3 (Computations with a dissimilarity matrix). Consider seven points in
a real space of dimension p, and suppose a (symmetric) dissimilarity d has been used
to generate the following dissimilarity matrix, in which the (i, j) entry is d(xxx,xxx j):

P1 P2 P3 P4 P5 P6 P7
P1 0 .1 .4 .55 .65 .7 1.5
P2 0 .6 .5 .95 .8 2
P3 0 .45 .85 .7 1.75
P4 0 .75 .1 .2
P5 0 .3 .1
P6 0 .2
P7 0

Using your favorite package, do the following:

1. Generate the dendrograms corresponding to several different linkage criteria such
as single, complete, and average linkage.

2. Re-cluster the data using a divisive procedure.

Exercise 8.4 (Clustering and density). Suppose you have a data set consisting of
n = 3r points in the plane. One-third of the points are evenly distributed on the unit
circle centered at the origin, one-third are evenly distributed on a circle of radius 10
centered at the point (11,11) and one-third of the points are evenly distributed on a
circle of radius 20 centered at (22,22).

1. If you use K-means to cluster this data set, how would you expect the cluster means
to be distributed? The same number in all three sets? More in the densest set? More
in the least dense set? Explain what happens as n increases.

2. What would the K-means procedure give if the data were distributed even over the
combined area of all three sets so that the smallest set had the fewest points?

3. Suppose the circles were replaced with non-intersecting ellipses that were relatively
long and thin. What kind of answer would you expect from K means in if the data
were as in item 1 or item 2?

Exercise 8.5 (Spurious clusterings). Generate a sample of size n = 10 with p = 100;
use a N(0,4) or a Uni f orm[−4,4].
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1. Using any clustering method you like, cluster the vectors by looking only at the ten
first coordinate values. How many clusters are found in the first coordinate? In the
second, third and so forth? What is the average number of clusters per coordinate?

2. Now, take the coordinates two at a time, or three at a time and repeat the procedure.
Does the number of clusters decrease, increase, or remain constant with the number
of coordinates used?

3. Now find a set of data with a smallish n and a largish p. Can you correct for the
number of spurious clusters you would find in it by comparing the results of clus-
tering it to clustering a data set of the same size and dimension but having data
generated from studentizing in the coordinates? (That is, generate n data points for
each entry using the N(x̄ j,s2

j) where x̄ j and s j are the mean and standard deviation
from the actual data values in the jth coordinates, j = 1, ..., p.)

Exercise 8.6 (Graph Laplacian and cuts). Consider a graph with cu vertices made by
fully connecting c cliques each of size of size u but leaving the cliques disconnected.
Suppose also that the edgeweights within each clique are 1.

1. What is the weight matrix WWW and the (unnormalized) graph Laplacian?

2. Find the smallest c eigenvalues of the Laplacian and their eigenvectors. What does
the result mean in terms of clustering?

3. Verify that the multiplicity of 0 for the graph Laplacian equals the number of con-
nected components. What is the eigenvector correspond to eigenvalue 0?

4. Now, connect the cliques with c− 1 edges to get a graph with a beads-on-a-string
appearance and suppose the edgeweights between any two graphs are the same
value, w. What is the graph Laplacian now?

5. Forc = 2, find the smallest two eigenvalues and their eigenvectors as a function of
w. What happens when w = 1? What does this mean in terms of clustering?

6. Verify that the second smallest eigenvector provides a good indication for the min-
cut for a connected graph.

Exercise 8.7 (Best-merge persistence). Define a condition called best-merge persis-
tent as follows. Suppose that at some stage of an agglomerative hierarchical clustering
the clusters are {C1, . . . ,CK} and consider Cj for some 1 ≤ j ≤ K. Suppose that the
best cluster to merge with Cj is Ck, k 	= j and suppose that in fact Cj is merged with C�

to form Cj,� = Cj ∪C�. Then, a clustering is best-merge persistent if, for all j, k, and
�, the best cluster to merge with Cj,� remains Ck since it was the best merge for Cj. In
other words, the best cluster to merge with the merged cluster is one of the best-merge
clusters of the components of the merged cluster.

Show that single-linkage clustering is best-merge persistent, but that centroid, com-
plete, and average linkage clusterings are not.

Exercise 8.8 (Nearest-neighbors and single linkage). Single-linkage clustering roughly
corresponds to a nearest-neighbors criterion, and this can be formalized by the use of
a minimal spanning tree for the data. Construct a fully connected graph from n data
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points and weight each edge by the distance between its vertices. The minimal span-
ning tree is a connected tree, with n− 1 edges, that goes through all the points and
has a minimal sum of weights. Let the edgeweights of the minimal spanning tree be
Δ1 > .. .Δn−1. Show that the merges from a single-linkage clustering procedure gen-
erate a minimal spanning tree and that any minimal spanning tree can be produced by
a single-linkage clustering procedure applied to the data.

Exercise 8.9 (Bisecting K-means versus K-means). Another way to describe bisect-
ing K-means is as follows. Start with the whole data set as a cluster and find the best
way to bisect it using K-means. Find the best bisection; i.e., the one with the smallest
SSE. Then, redo this procedure on each of the two clusters, making the SSE as small
as possible, until K clusters are found.

Give an example of a data set which is most naturally partitioned into three clusters for
which K-means would likely find the correct clusters, but bisecting K-means would
not. Can you give an example of the reverse; i.e., bisecting K-means would find the
correct clusters but K-means would not?

Exercise 8.10 (EM for two normals). Reread Sections 8.3.1.1 and 8.3.1.2 where the
EM algorithm for two normal components and the general algorithm are stated. Derive
the form of the EM algorithm for the case p = 1, K = 2, and the two components have
the same variance; i.e., σ1 = σ2. Now suppose the available data are is p dimensional.
Rederive the EM algorithm for K = 2 when the variance matrices are diagonal, but not
necessarily equal. (This is the case VII in Fraley and Raftery (2002).)

Hint: Some steps can be found at the Wikipedia entry under “Expectation-maximization
algorithm”.

Exercise 8.11. The EM algorithm is a way to make up for missing data in a proba-
bilistic way in general. Indeed, the missing data do not have to be different from the
available data. This means that the EM algorithm can be used in a predictive sense as
well, although really it’s more like imputation since the new data point is assumed to
be from the same population.

To see this, imagine that a ten patients undergo the same operation and each either lives
or dies afterward. You are told that seven of the ten lived and you model the outcomes
as independent Bernoulli(π). An 11th patient is undergoing the same operation and
during the operation the patients family asks you what the chance for survival is.

Your task is to describe an EM algorithm to use the data, including the missing value,
to estimate p. Write out the complete data likelihood, the conditional likelihood, the
function G(θ ,θ0) in (8.3.17), the E step and the M step. Mimic the derivation in Sec-
tion 8.3.1.3 to derive an explicit form for the estimator of π .

Implement your procedure. Does including the 11th data point in the EM algorithm
give an answer different from estimating π by its MLE using only the ten data points?
Explain why or why not.

Exercise 8.12. Consider 100 points on a 10×10 evenly distributed on the unit square
to form a regular grid, and 100 points randomly chosen from the uniform distribution
on the unit square.
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1. If you used a K-means procedure to cluster both data sets, would you always get
K = 1? Explain.

2. Which of the two data sets is likely to have a smaller SSE?

3. Can you formalize a sense in which, on average, the clusterings from of random
points will be the same as for the grid? (You may need to let n increase.)

4. What does this tell you about the importance of ruling out spurious clusters, espe-
cially in high dimensions?

Exercise 8.13. The zero-inflated Poisson is a distribution that modifies the usual
Poisson(λ ) to permit an extra component representing zeros, above what would be
expected from the Poisson alone, for any λ . Its probability mass function is the mix-
ture of a Poisson and a point mass at zero,

p(Xi = xi|λ ,π) = (1−π)
e−λλ xi

xi!
+πIxi=0,

where each xi is in 0,1,2, ... . Derive an EM algorithm for estimating π and λ . Specify
the complete data likelihood by identifying Zi and give the conditional likelihood, the
E step, and the M step.

(Zero inflation also occurs for the geometric and binomial. Can you derive an EM
algorithm for these cases?)

Exercise 8.14. Consider the Rand, Jaccard, and silhouette indices from Section 8.6.

1. For a toy data set consisting of points at the integers 1,2, . . . ,K, find the value of the
silhouette index for each point.

2. Do the same, but now assume that K = r2 and that the data points form a regular
r× r grid.

3. Now consider 100 data points that form a regular 10× 10 grid (use (i, j) for
i, j = 1,10) and choose 100 data points independently generated from the uniform
distribution on [.5,10.5]× [.5,10.5]. Cluster both sets of data using the same num-
ber of clusters. What statements (if any) can you make using the Rand or Jaccard
indices?

Exercise 8.15 (Spectral clustering in a simple setting). Consider a data set evenly
spread over two disjoint rectangles in the plane, say [0,1]× [2,4] and [4,5]× [1,2].
Clustering for this data would usually be trivial; here it is simple enough that it will
help us understand some aspects of spectral clustering.

1. Spectral clustering requires a dissimilarity matrix, WWW . So, consider a zero-one dis-
similarity based on Euclidean distance

wi, j = w( j, i) =

{
1 if ‖xxxi− xxx j‖2 ≤ t

0 else
. (8.8.1)
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What values of the threshold t are most helpful?

2. Let D be the dissimilarity matrix formed using the weights wi, j. Let n be anything
reasonable and assume the data are Uni f (R) where R is the union of the two rect-
angles. Find the first K eigenvalues of D, where K is the number of clusters desired.

3. For the problem with two uniform clusters in the plane set K=2. Is there a value of t
for which the eigenvectors corresponding to the first two eigenvalues can be found
readily? Find them – or explain why it’s hard.

4. Let U be the matrix with K columns given by the first K normalized eigenvectors of
D. Cluster the rows of this matrix by K-means (or any other clustering procedure).
For K = 2, what are the centroids of the two clusters?

5. Given the two centroids from item 3, try a distance based approach. Say that a point
xxxi is in cluster j if and only if the ith row of U is in cluster j. What are the final two
clusters given by this procedure?

6. What clusters you would expect (intuitively) from this kind of data?

7. Does the result of item 5 match item 6? Explain. Does the result generalize to data
drawn from a uniform with three disjoint regions?

8. Redo the problem but for data in a pair of concentric rings. To be definite, suppose
the two rings are centered at 2.5 and that the first ring has inner and outer diameter
given by 2 and 3, respectively, and that the second has uses 4 and 5. In this case,
use a radially symmetric dissimilarity such as

wi, j = e‖xxxi−xxx j‖2/2t2
.

Exercise 8.16 (Graph clustering). The CHAMELEON algorithm by Karypis, Han,
and Kumar is a graph-based clustering template with three steps. (i) Given a data
set, a sparse graph is first constructed for it. Usually, this is the K-nearest-neighbors
graph formed, say G , formed by including a directed edge from each vertex to its
nearest neighbors. (ii) A graph partitioning procedure is then applied to G to get an
initial clustering into a large number of small subgraphs. The graph partitioning in
CHAMELEON uses a min-cut bisection approach to split G into disjoint, roughly
equal subgraphs G1,...,GK with minimum edgeweights between the subgraphs. (Of-
ten this can only be done approximately; e.g., by trying to ensure maxk #(Gk) ≤
(1+ ε)#(G )/K.) (iii) An agglomerative hierarchical clustering procedure is then used
to merge the small subgraphs into meaningful clusters by connectivity and close-
ness measures; i.e., degree of vertices and edgeweights. CHAMELEON can be down-
loaded from http://glaros.dtc.umn.edu/gkhome/; note also the programs
METIS, gCLUTO, and CLUTO.

By using the software on test cases, explain what the effect of varying K would be for
various sets of artificial test data; e.g., normal data in the plane with tight clusters and
bulls-eye data (uniform on concentric rings around zero), also in the plane.
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Exercise 8.17. Recall that S = {1, ...,n}. Write (S1( j), ...,Sk j( j)) to mean the parti-
tion of the first j elements of S as determined by the cluster memberships of s1,...,s j.
Using (8.4.5), show that the conditional probabilities as in (8.4.3) for product partition
models are of the form

p(s j+1 = i|s j, ...,s1) ∝

{
χ(Si( j)∪{i})
χ(Si( j) if 1≤ i≤ k j,

χ({i}) if i = k j +1,

see Quintana (2006) for more details.

Exercise 8.18. The GGobi software is an open-source visualization program intended
for high-dimensional data. The webpage http://www.ggobi.org/book/ has a
collection of interesting, relatively well-understood data sets to which clustering tech-
niques can be applied and evaluated in part by sophisticated visualization techniques.
Any of these can be studied using the methods of this chapter. So, apply the various
techniques from Section 8.5 (or other sections) to see how they perform in these cases.

Three data sets of particular note, in increasing order of difficulty, are Flea Beetles,
Olive Oils, and PRIM7.

1. Flea Beetles is an easy six-dimensional data set. It has three elliptical clusters that
are well separated. Ignoring the class variables, centroid-based clustering proce-
dures such as Ward and K-means can be applied to find the answer. Other methods,
such as average or complete linkage, do poorly.

2. Olive Oils is a medium-difficulty eight dimensional data set. Stripping away the
class variables for region and area, it has nine actual clusters. There is some separa-
tion between the clusters. Some clusters get detected by many clustering methods
and some don’t; most clustering methods pick up four or five of the classes accu-
rately but miss the others. The clusters are mostly spherical (with different vari-
ances), but one is crescent shaped.

3. PRIM7 is a hard seven dimensional data set from physics. It has no known classes,
but there are seven clusters and some outliers. What makes this so hard is that
the clusters are low-dimensional structures in the seven-dimensional space. One
cluster is roughly an isosceles triangle, a two-dimensional structure situated in seven
dimensions. Two one dimensional structures stick out of each vertex of the triangle;
whence seven clusters. These six unidimensional clusters stick out at odd angles
so as to require all seven dimensions to contain the data. Essentially no clustering
method finds this structure, so it’s a good test case. Low-dimensional structures are
typically found more by visualization methods than by clustering, although variable
selection techniques often help, too.



Chapter 9

Learning in High Dimensions

A typical data set can be represented as a collection of n vectors xxx = (x1, ...,xp) each
of length p. They are usually modeled as IID outcomes of a single random variable
XXX = (X1, ...,Xp). Classical data sets had small values of p and small to medium values
of n, with p < n. Currently emerging data sets are much more complicated and diverse:
The sample size may be so large that a mean cannot be calculated in real time. The
dimension p may be so large that no realistic sample size will ever be obtained. The
XXX may summarize a waveform, a graph with many edges and vertices, an image, or a
document. Often data sets are multitype, meaning they combine qualitatively different
classes of data. In all these cases, and many others, the complexity of the data – to
say nothing of the model – is so great that inference becomes effectively impossible.
This means that in one guise or another, dimension reduction – literally reducing the
number of random variables under consideration – becomes essential.

There are two senses in which dimension can be reduced. First, conditional on hav-
ing chosen functions of the explanatory variables, one can choose those that are most
important. This includes long-established model selection techniques such as AIC,
BIC, cross-validation, Mallows Cp, forward and backward elimination, and so forth.
As well, there are more recent techniques such as the LASSO and regularization more
generally. These cases, covered in Chapter 10, do selection over a set of variables be-
lieved to be good for modeling purposes, often just the outcomes themselves.

However, one needn’t be restricted to using the explanatory variables as is. One can
choose functions of the data to use in a model instead and search the class of models
they define. This second sort of dimension reduction might be called feature extraction
since a collection of features (i.e., functions of the explanatory variables, say F ) must
be defined before a model can be proposed. Thus, beyond variable selection, feature
extraction includes identifying which functions of the data are most important.

This is done in techniques such as SVMs and RVMs where the model (such as it is) is
found by using a kernel evaluated at a well-selected subset of the data points. In effect,
a kernel function K(xxx,xxx′) is a continuously parametrized collection of functions Kxxx′(xxx)
of xxx as, say, xxx′ varies. For each fixed xxx′, Kxxx′(xxx) is like an element of a basis that might
be used to express a solution. Thus, SVMs and RVMs perform dimension reduction in
the sense of feature extraction because they search F = {Kxxx′(xxx)|xxx ∈ IRp} to return a

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 493
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linear combination of a few elements. Once the SVM or RVM model is chosen, one
can seek a secondary sort of dimension reduction, variable selection, by removing the
explanatory variables from xxx that do not contribute enough to the features.

It is the second notion of dimension reduction as feature extraction that is the focus of
this chapter. The notion of dimension reduction meant by variable selection is taken up
in the next chapter. It is as reasonable to treat these two senses of dimension reduction
in this order as it is to use the reverse order. However, in practice an order must be cho-
sen, and it is more typical to delay variable selection until a model class is identified.
This is partially because feature extraction may be unsupervised, whereas, as will be
seen in Chapter 10, variable selection is almost always supervised. That is, it is stan-
dard to extract information from the covariates by themselves before bringing in the
response. Hence, the goal here is to condense the information in the Xis into functions
that have the information most relevant to modeling, regardless of the response. Then
the information in the Y s can be used for variable selection on the extracted features.

The concept of dimension reduction can be interpreted in terms of a variance–bias
trade-off. Variable selection is an effort to throw out variables that contribute too much
variance to be worth including for the amount of bias they eliminate. Feature extraction
is an effort to find a collection of functions so that variable selection over the new
collection of features will give an even lower MSE because fewer features will be
required to express a model for the response.

Dimension reduction techniques in the feature extraction sense are presented here us-
ing three classes: The biggest conceptual division is between linear and nonlinear, but
linear techniques are divided further into those that are based on second-order statistics
and those that use higher-order statistics.

The two most common second-order procedures are principal components and factor
analysis. These are covered in Sections 9.1 and 9.2 and can be applied quite gener-
ally. However, when a distribution is not characterized by its first two moments, or
the optimal dimension reduction is not via linear functions of the data, the results of
these techniques may not be appropriate. Thus, it is worthwhile developing techniques
that are not limited to second-moment criteria or even linearity. Sections 9.3 and 9.4
present linear methods that include dependence on higher moments such as projection
pursuit and independent components analysis. The first is a variant of projection pur-
suit regression seen in Chapter 4, but here it is unsupervised. The second minimizes the
dependence among the components in the representation of the data. This technique is
easiest to apply in the linear case but is more general.

Nonlinear techniques for dimension reduction are more difficult, less is known about
them, and they are not as commonly used – yet. However, nonlinear methods may sum-
marize complicated data sets better or more efficiently than linear methods do. Many
of these techniques arise from generalizing concepts already familiar from other con-
texts, for instance nonlinear principal components and independent component anal-
ysis. Separately, curves and surfaces have also been proposed for feature extraction,
although they remain somewhat undeveloped.

For completeness, two supervised dimension reduction techniques are presented. The
first is called partial least squares and the second is called sufficient dimension
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reduction. These are intended for regression settings and are presented on the grounds
that it is natural to compare unsupervised dimension reduction with supervised dimen-
sion reduction to evaluate the benefit of including the extra information in the Y .

Because they are more complex, nonlinear and supervised dimension reductions are
only covered discursively in Sections 9.5-9.8; the interested reader is referred to the
growing literature on these topics.

Finally, it must be remembered that some data sets are so complicated, perhaps because
of low sample size and high dimension, that formal statistical techniques may be effec-
tively powerless without a lot of (unavailable) modeling information. In these cases,
the best that can be done is to search for suggestive patterns. Chapter 8, on clustering,
included some of these ideas; however, the field of data visualization has even more
insight to offer for the most complicated settings. In addition to the usual graphical
presentations of data, techniques that yield visual insight into the structure of the data
include multidimensional scaling, self-organizing maps, and a variety of computer in-
tensive approaches such as brushing (coloring parts of the data) and spinning (looking
at projections of the data into lower-dimensional subspaces). Sections 9.9 and 9.10 are
a treatment of these ideas just to provide an overview.

9.1 Principal Components

Principal components, PCs, is one of a collection of techniques (including canoni-
cal correlation and factor analysis) that extend linear regression by trying to define
underlying factors that explain a response. PCs were quite early, already in use by
the 1930s, see Hotelling (1933). At its root, the idea behind PCs is to find a rotation
of the original coordinate system in which to express the p-variate XXXis so that each
coordinate expresses as much of the variability in the XXX as a linear combination of
the p entries can. More formally, let UUU = (U1, ...,Up) be a random vector and write
UUU = AAAXXX with Var(XXX) = Σ . The goal of PCs is to find AAA = (aaa1, ..,aaap)T in which each
aaa j = (a j,1, ...,a j,p) such that

∀ j = 1, ..., p Uj = aaaT
j XXX =

p

∑
k=1

a j,kXk

and Var(Uj) = aaaT
j Σaaa j is as high as possible subject to being uncorrelated with the

other Uj = aaaT
j XXXs; i.e., Cov(Uj,Uk) = aaaT

j Σaaak = 0 for j 	= k. A consequence of this will
be that the Var(Uj)s are decreasing. It will be seen that PCs are eigenvectors of the
covariance matrix, ranked in order of the size of their eigenvalues, but that normality
of XXX does not need to be assumed.

The reason to search for linear combinations with high variance is that they are the
ones that affect the response the most. When p is so large that some variables must
be omitted, the variables least worth including are those with the smallest variability,
i.e., the ones whose deviations affect the response the least. If most of the variation
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comes from the first few PCs then it is enough to use them because the other linear
combinations vary so little from subject to subject that they can safely be ignored.

9.1.1 Main Theorem

The PCs can be peeled off one at a time from Σ by a sequence of optimizations. Start
by finding U1 = aaaT

1 XXX , where

aaa1 = arg max
‖aaa‖=1

Var(aaaTXXX). (9.1.1)

The aaa1 from (9.1.1) is the direction in the XXX-space along which the variability is max-
imized; i.e., the eigenvector of Σ with maximal eigenvalue. To find U2, or equivalently
aaa2, set

aaa2 = arg max
‖aaa‖=1,Cov(aaaT

1 XXX ,aaaTXXX)=0
Var(aaaTXXX). (9.1.2)

Then, U2 = aaaT
2 XXX . It will be seen that aaa1⊥ aaa2 when λ1 > λ2 and can be made orthogonal

otherwise. Later PCs are defined analogously; aaaTXXX is assumed uncorrelated with all
the previous aaa jXXXs (i.e., aaa is in the orthogonal complement of the eigenspaces of the
earlier eigenvectors).

Provided Σ is positive definite, it has a full set of p real eigenvalues λ1 ≥ . . .≥ λp > 0.
Then, it turns out that the correct AAA has columns given by the eigenvectors eee1, ..., eeep

of Σ and the variances of the PCs are the eigenvalues. This can be formalized in the
following theorem.

Theorem: Let Cov(XXX) = Σ have eigenvectors eee1, .. ., eeep with corresponding eigenval-
ues λ1 ≥ . . .≥ λp > 0. Then:

(i) The jth PC is Uj = eeeT
j XXX = e j,1X1 + . . .+ e j,pXp for j = 1, ..., p.

(ii) The variances of the Uj are Var(Uj) = eeeT
j Σeee j = λ j.

(iii) The covariances between the PCs are Cov(Uj,Uk) = eeeT
j Σeeek = 0.

The proof of this theorem is so important that it is worth looking at twice. The first
version is based on Lagrange multipliers; an informal version is presented here. The
second proof is cleaner but rests on an auxiliary inequality.

9.1.1.1 Proof: Lagrange Multipliers

To begin, center XXX so that EXXX = 0. Let aaa = (a1, ...,ap) have norm 1 so

Var(aaaTX) = E(aaaTX)2 = aaaTΣaaa.
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Following Anderson (1984), Chapter 11, and Mizuta (2004), the task is to find aaa such
that the normalized form of aaaTXXX has maximal variance; i.e., to solve

arg max
‖aaa‖=1

Var(aaaTXXX).

So, consider the equivalent Lagrange multiplier problem and maximize

φ1(aaa) = aaaTΣaaa−λ (aaaTaaa−1),

where λ (without a subscript) is the Lagrange multiplier. Setting the vector of partial
derivatives equal to zero gives

∇aaaφ1 =
∂φ
∂aaa

= 2Σaaa−2λaaa = 0⇒ (Σ −λ III p×p)aaa = 0. (9.1.3)

Expression (9.1.3) is satisfied for λ that are eigenvalues with corresponding eigen-
vectors aaa. So it is enough to solve det(Σ −λ ) = 0 for λ . Since this equation is a p-
dimensional polynomial, there are p solutions and, for aaas of norm 1, the first derivative
condition gives

aaaTΣaaa = λaaaTaaa = λ .

So, the λ js are the variances of aaaT
j XXXs, where the aaa js are recognized to be the eigenvec-

tors eee j. That is, if aaa1 satisfies (Σ −λ1)aaa1 = 0, set the first entry of UUU to be U1 = eee1XXX
and therefore the first column of AAA to be eee1. Now, Σeee1 = λ1eee1.

As in Anderson (1984), repeating the procedure and ensuring that U2 is uncorrelated
with U1, the extra condition on the next aaa is

0 = EaaaTXXXU1 = EaaaTXXXXXXTaaa1 = aTΣaaa1 = λ1aaaTaaa1. (9.1.4)

This leads to a Lagrange multiplier problem with two constraints, one for norm 1 with
λ and the other from (9.1.2) with ν1 for orthogonality. Thus

φ2 = aaaTΣaaa−λ (aaaTaaa−1)−ν1aaaTΣaaa1, (9.1.5)

where λ and ν1 are the Lagrange multipliers, is the expression to be maximized. The
first derivative condition from (9.1.5), with (9.1.4), implies that the optimal aaa must be
an eigenvector for λ2. So, U2 = aaaT

2 XXX and aaa2 = eee2 is the second column of AAA. This
procedure continues until AAA is the matrix of p eigenvectors.

Thus, there is an orthogonal matrix AAA such that UUU = AAAXXX so that the covariance matrix
of UUU is EUUUUUUT = diag(λ1, ...,λp), the eigenvalues of Σ in decreasing order. Each Uj

has maximum variance among normalized linear combinations of the XXXs uncorrelated
with the UUU1,...,UUU j−1.
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9.1.1.2 Proof: Quadratic Maximization

A standard result on maximizing quadratic forms on the unit sphere is that the kth
eigenvalues of a matrix BBB give the maxima of xxxTBBBxxx/‖xxx‖2 over xxx⊥ eee1, ...,eeek−1, which
are achieved by the eigenvectors. Using this, Johnson and Wichern (1998) set BBB = Σ ,
giving

max
aaa 	=0

aaaΣaaa
aaaTaaa

= λ1 and argmax
aaa	=0

aaaΣaaa
aaaTaaa

= αeee1,

where α 	= 0. Thus, for α = 1, U1 = eee1XXX and Var(U1) = Var(eee1XXX) = eee1Σeee1.

For j = 2, ..., p, the inequality gives

max
aaa⊥eee1,...,eee j−1

aaaΣaaa
aaaTaaa

= λ j and arg max
aaa⊥eee1,...,eee j−1

aaaΣaaa
aaaTaaa

= αeee j.

So, one can set aaa = eee j, giving Uj = eeeT
j XXX , eeeT

j+1eeek = 0 for k≤ j, and Var(Uj) = eeeT
j Σeee j =

λ j. Finally, if eee j ⊥ eeek for j 	= k, then Cov(Uj,Uk) = eee jΣeeek0. If the λis are distinct, then
the eee js are orthogonal. Otherwise, an orthogonal basis can be chosen for eigenspaces
of dimension two or greater.

9.1.2 Key Properties

Having obtained a convenient form for PCs, it is important to see how they characterize
variability in XXX . Clause (ii) in the previous theorem leads to regarding λ j/∑λ j as the
proportion of variation of XXX explained by Uj. Separately, the relationship between the
Ujs and the Xks may be looser or tighter; this, too, is mostly given by the entries of the
eigenvectors of Σ . Given this, the normal case will help to visualize what using PCs
means geometrically.

9.1.2.1 Characterizations of Variability

It is not just that PCs re-express the explanatory XXX so that the biggest contributions to
variance can be identified. The PCs and their structure permit sparsity in many cases
because one can, for instance, regress on relatively few of the PCs or summarize data
by using the PCs with, say, variances above a prechosen threshold. In principle, one
can even use shrinkage arguments to get sparse representations for the PCs themselves.
To do this, two important properties of PC in terms of how they characterize variability
in XXX are helpful.

Theorem: Suppose Cov(XXX) = Σ and Σ has p eigenvalues λ1 ≥ . . . ≥ λp with corre-
sponding eigenvectors eee j = (e j,1, ...,e j,p)T.
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(i) The sum of the variances of the Ujs is

p

∑
j=1

Var(Uj) = λ1 + · · ·+λp =
p

∑
j=1

Var(Xj) =
p

∑
j=1

σ j j.

(ii) The correlation between Uj and Xk is

ρ(Uj,Xk) =
e jk
√
λ j√

σkk
.

Proof: For (i), write Σ = PPPΛPPP, where Λ is the diagonal matrix of eigenvalues λ j and
PPP = (eee1, . . . ,eeep). Now, PPPPPPT = Ip×p, so rearrange in trace(Σ) under the trace.

For (ii), let aaak be the vector of zeros with 1 in the kth location so Xk = aaaT
k XXX . Use

Cov(Xk,Uj) = Cov(aaaTXXX ,eee jXXX) = aaaT
k Σeee j = λ je jk

in the definition of correlation. �
Note that (ii) invites one to set the e jks to zero when they are small in absolute value, in
addition to using only the first few PCs. This is a way to get more sparsity, albeit at the
cost of orthogonality. Alternatively, one can look for which entries of XXX get the highest
weight in the first few normalized PCs; these Xjs might have more information in them
relative to a response. See also Chipman and Gu (2001), who explore simplifications
of PCs.

9.1.2.2 Normal Case Interpretation

If XXX ∼ Np(μμμ,Σ), then the density is constant on ellipses of the form

(xxx−μμμ)TΣ−1(xxx−μμμ) = C2.

Ellipses of this form have axes along ±C
√
λ jeee j, determined by the eigenvalues

and eigenvectors of Σ . Set μμμ = 0, and use the spectral representation of Σ as Σ =
∑p

j=1λ jeee jeeeT
j to give

C2 = xxxTΣ−1xxx =
p

∑
j=1

1
λ j

(eeeT
j xxx)2.

It is seen that eeeT
j xxx is the component of xxx in the direction of eee j, the PCs. Writing u j =

eeeT
j xxx gives

C2 =
1
λ1

u2
1 + · · ·+ 1

λp
u2

p,

an ellipse in standard form in the (eee1, ...,eeep) coordinate system.
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This means that the PCs Uj = eee jXXX lie in the directions of the axes of a constant-density
ellipse. That is, any geometric point on the jth axis of the ellipse has coordinates in the
xxx-frame proportional to eee j and in the uuu-frame (of the PCs) has coordinates proportional
to aaa j.

9.1.3 Extensions

Given the form and interpretation of PCs, it is important to see how to use them cor-
rectly. First, it is often better to use the correlation matrix ρρρ than to use Σ . Also, since
neither ρρρ nor Σ are usually available, it is important to be able to obtain PCs from data.
These two variations are amenable to the same procedure as before. Second, the point
of PCs is to use only the first few, say K. There are several ways to choose K, but none
are entirely satisfactory in all cases.

An extension in a different direction, not covered here, is called canonical correlation
analysis (CCA). The essence of the method is to partition XXX into two vectors with p1

and p2 entries, p = p1 + p2, XXX = (XXX1,XXX2)T. Then, search for linear combinations L1

and L2 of the entries of XXX1 and XXX2 so that Corr(L1,L∗1) is maximized. As with PCs,
this can be done successively, giving min(p1, p2) pairs (L1,L∗1),(L2,L∗2), . . . having
unit variance, so that, at the rth stage, Lr and L∗r are uncorrelated with the vectors
from the r−1 and earlier stages. Like PCs, these pairs of vectors emerge from solving
an eigenvector problem on Var(XXX). Finding maximally correlated linear combinations
among explanatory variables will not be a suitable way to reduce dimension if the goal
is to explain YYY unless there is some way to remove a linear combination that was highly
correlated with another that was already in a model. However, CCA may serve other
dimension reduction purposes.

9.1.3.1 Correlation PCs and Empirical PCs

Standardizing variances, in addition to enforcing the mean-zero criterion, is impor-
tant when the data have dependence structures. So, instead of decomposing Σ , con-
sider applying the method for deriving PCs to the correlation matrix for XXX , say ρρρ .
Write Z j = (Xj − μ j)/

√σ j j so that ZZZ = (Z1, ...,Zp) = VVV−1/2(XXX − μμμ), where VVV =
diag(

√
σ11, . . . ,

√σpp). Now, EZZZ = 0 and Cov(ZZZ) = VVV−1/2ΣVVV−1/2 = ρρρ , the corre-
lation matrix of XXX . This standardization ensures that all the Z js are on the same scale.
Otherwise, Xjs with larger scales will dominate an analysis.

The PCs found from ZZZ are not, in general, numerically the same as those found from
XXX . Nevertheless, their forms and properties are the same and follow by proofs that are
only slight modifications from before.

Theorem: Let (λ1,eee1),..., (λp,eeep) be the eigenvalue, eigenvector pairs from ρρρ , with
λ1 ≥ . . .≥ λp ≥ 0 . Then,
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(i) The PCs of ρρρ are Uj = eeeT
j ZZZ = eeeT

j VVV−1/2(XXX−μμμ).

(ii) Variances are preserved in the sense that ∑ j Var(Uj) = ∑ j Var(Z j) = p.

(iii) Correlations between Uj and Zk are expressed in terms of the eigenvalues and
eigenvectors of ρρρ , ρ(Uj,Zk) = e j,k

√
λ j. �

Similarly, empirical forms of the PCs can be given. These result from using the PC
procedure on estimates of Σ or ρρρ . For instance, consider Σ̂ = (1/n)∑n

i=1 xxxixxxT
i or ρ̂ρρ =

V̂VV
1/2Σ̂V̂VV

1/2
, although any other estimate of Σ or ρ̂ρρ could be used as well. The empirical

PCs for XXX are Uj = êee1XXX , where êee j is the eigenvector corresponding to the jth largest
eigenvalue λ̂ j of Σ̂ or ρ̂ρρ . The other properties of the PCs remain the same in both cases,
apart from using estimates in place of population values.

It is worth noting that the estimates of the eigenvalues λ j and eigenvectors eee j are both
asymptotically normal, centered at the true values with variances

2λ 2
j and λ j

p

∑
k=1,k 	= j

[λk/(λk−λ j)2]aaakaaaT
k ,

respectively, where aaak is a vector of zeros with one in the kth entry.

9.1.3.2 How Many PCs?

The point of PCs is dimension reduction. So, let K be the number of PCs to be retained
in a model, 1≤K≤ p. Obviously, the first K PCs corresponding to the largest eigenval-
ues should be chosen, but the value of K is undetermined. If K = p, there is no reduc-
tion; the variables have just been transformed by AAA. If K = 1, then a one-dimensional
model, perhaps involving all the components of XXX , is the result. Unidimensionality
may be desirable since it gives a linear scale; however, in most cases, K ≥ 2 to capture
all the useful variability in XXX .

The three common ways to choose K are as follows. First, one can fix a proportion α
of the variation to be explained by the PCs and let K be the smallest number of PCs
required to achieve that. Thus, one chooses K just large enough that

λ̂1 + . . .+ λ̂K

∑p
j=1 λ̂ j

≥ α.

This is somewhat arbitrary and rests on the notion that it is reasonable to interpret α
as the proportion of information retained.

Second, perhaps most commonly, one can produce a scree plot. This is a graph of λ̂ j

as a function of j. If the points are connected, then one can look for the knee in the
curve, the point at which adding another PC adds relatively little explanatory power.
This is hard to formalize but often works well in practice.



502 9 Learning in High Dimensions

Third, and less common, is to invoke a physical interpretation. This is problematic
because one uses PCs because a physical interpretation is unavailable and the PCs
themselves are a mathematical construct that does not have a standard physical inter-
pretation. Nevertheless, one can look at the λ̂ js and recall that they represent the width
of an ellipse of constant density, at least in the normal case. Thus, if a λ̂ j is small, the
ellipse is narrow in the jth dimension and so the jth dimension may be neglected for
physical reasons if the most important contributing components in êee j are known to be
unimportant at that scale. By the same logic, if λ̂1 ≈ λ̂2, it would be unreasonable to
drop λ̂2 without dropping λ̂1 unless there were reason to believe that the components
in êee2 that had the greatest contribution were not helpful enough – for instance, there
might be many of them contributing a little each and so represent little more than noise.

9.2 Factor Analysis

Heuristically, the idea of factor analysis (FA) is to partition XXX into m strings of com-
ponents (X1, ...,Xp1),...,(XpK−1+1, ...,Xp) with p = pK with the property that the cor-
relations within each string are high and the correlations between components from
different strings are low. When this can be done, it may be reasonable to summarize
each string by a single construct or factor.

Thus, FA is a generalization of PCs in which, rather than seeking a full-rank linear
transformation with second-moment properties, one allows non-full-rank linear trans-
formations. That is, instead of finding UUU = AAAXXX and dropping some of the components
of UUU , consider modeling XXX as

XXX −μμμ =Λ fff +TTT , (9.2.1)

where EXXX = μμμ . More explicitly, for the j = 1, ..., p entries of XXX , (9.2.1) is

Xj =
K

∑
k=1

λ j,k fl +Tj +μ j. (9.2.2)

In (9.2.1) or (9.2.2), Λ is a fixed p×K real matrix; its entries are called “loadings”.
As noted in Fodor (2002), the loadings λ 2

j,k indicate how much Xj is affected by fk; if
several Xjs have high values of λ j,k for a given factor fk, then one may surmise that
those Xjs emanate from the same unobservable quantity and are therefore redundant.
The K× 1 vector fff can be nonrandom but is assumed random here. It represents the
common factors, the intrinsic traits that underlie an observed xxx. The random p×1 vec-
tor TTT represents the specific factors that underlie the particular experiment performed.
Both TTT and fff are unobservable. The goal is to explain the outcomes of XXX using fewer
variables, the K unobserved factors in fff , with K << p.

To make (9.2.2) tractable, the random quantities fff and TTT are standardized so

E fff = 0,ETTT = 0, (9.2.3)
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and the second moments are

Cov( fff ,TTT ) = 0,Cov(Tj,Tj′) = 0 for j 	= j′,Cov( fff ) = IdK×K . (9.2.4)

Usually one sets Var(TTT ) = diag(ψ1, ...,ψK) = ψψψ . Expression (9.2.1) also leads to
second-moment properties of XXX such as

Cov(XXX , fff ) =Λ , Cov(Xj,X�) = λ j,1λ�,1 + . . .+λ j,Kλ�,K and Cov(Xj,F�) = λ j,�.

To see how (9.2.1) and (9.2.2), with (9.2.3) and (9.2.4), lead to dimension reduction,
observe that (9.2.1) gives

Σ =ΛΛT +ψψψ. (9.2.5)

That is, the p variables correspond to K variables, and the p(p− 1)/2 entries in the
variance matrix are reduced to K(K−1)/2+K entries. When K < p, the savings can
be substantial. In many cases, a K-factor model can provide a better explanation of a
data set than a full covariance model using Var(Σ).

When (9.2.5) is valid, it follows that, for j = 1, ...p,

Xj =
K

∑
k=1

λ j,k fk +u j

leading to

σ j, j =
K

∑
k=1

λ 2
j,k +ψ j = h2

j +ψ j. (9.2.6)

The h2
j in (9.2.6) is called the communality; it represents the part of the variance of Xj

that comes from the underlying factors. The second term, ψi, is the specific variance,
contributed from Tj, summarizing deviations from the variability that the common
factors, the fks, can express.

As noted in Hardle and Simar (2003), FA reduces to PCs when TTT = 0 and the last
p−K eigenvalues of Σ = Var(XXX) are zero. In this case, write Σ = ΓΓΓDDDΓΓΓ T with the
last eigenvalues in DDD zero, dK+1, ...,dp = 0, so that the upper left K×K block of DDD is
DDD1 = diag(d1, ...,dK) and only the upper left K×K block ΓΓΓ 1 of ΓΓΓ matters.

Since PCs come from writing UUU =ΓΓΓ T(XXX−μμμ), it follows that XXX−μμμ =ΓΓΓUUU =ΓΓΓ 1UUU1 +
ΓΓΓ 2UUU2, where UUU1 and UUU2 are the first K and last p−K components of UUU and ΓΓΓ 2

is the lower right block of ΓΓΓ . Thus, UUU2 is trivial: It has mean and variance 0. So,
XXX −μμμ = ΓΓΓ 1UUU1, which is

XXX = ΓΓΓ 1DDD1/2
1 DDD−1/2

1 UUU1 +μμμ1.

Setting Λ = ΓΓΓ 1DDD1/2
1 and fff = DDD−1/2

2 UUU1 gives the reduced form of (9.2.1)–(9.2.4).
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It is seen that there are three sources of ambiguity in FA models: the choices of Λ ,
K, and fff . Taken together, they represent an enormous subjectivity that can be readily
abused to give ridiculous results.

To deal with these three ambiguities in turn, observe first that Λ is only determined
up to an orthogonal transformation. So, regard (9.2.1)–(9.2.4) as a components-of-
variance model with unidentifiable components. That is, let K ≥ 2 and let VVV be any
K×K orthogonal matrix, VVVVVVT = VVVTVVV = IK×K . The model (9.2.1) can be written as

XXX −μμμ = (ΛVVV )(VVVT fff )+TTT =Λ ∗ fff ∗+TTT (9.2.7)

since E( fff ∗) = 0 and Cov( fff ∗) = VVVTCov( fff )VVV = IK×K . This means that outcomes of
XXX cannot be used to distinguish Λ from Λ ∗; i.e., the model is not identifiable. In fact,
Σ = ΛΛ +ψψψ = Λ ∗Λ ∗+ψψψ . So, the communalities given by the elements of ΛΛ =
Λ ∗Λ ∗ are also unchanged by VVV . Thus, extra conditions must be imposed to get unique
estimates of Λ and ψψψ . In some cases, Λ can be purposefully rotated by VVV to make
the results interpretable. More generally, estimating Λ and ψψψ is essential because they
permit estimation of the factor scores f j in fff .

9.2.1 Finding Λ and ψψψ

As with PCs, the estimation procedures rest on Σ̂ . Let x̄xx denote the sample mean from
xxx1, ..., xxxn, and denote the sample covariance matrix by Σ̂ and the sample correlation
matrix by R̂. Setting σ̂ j, j = s j, j, the usual estimate of the standard deviation for an Xj,
write

Σ̂ = Λ̂Λ̂T + ψ̂ and σ̂ j, j =
K

∑
k=1

λ̂ 2
j,k + ψ̂ψψ j, j. (9.2.8)

An analogous expression can be written for R̂. The problem is to identify estimators Λ̂
and ψ̂ψψ . Two standard ways are ML factors and principal factors.

9.2.1.1 Maximum Likelihood

This method uses the distributional assumptions. When all the ( fi,Tj)s are bivariate
normal, the XXXs are normal too. The likelihood is

L(μμμ ,Σ) =
|Σ |−n/2

(2π)−np/2
e−(1/2)trace[Σ−1∑n

i=1(xxxi−x̄xx)(xxxi−x̄xx)T+n(x̄xx−μ)(x̄xx−μ)]. (9.2.9)

It is tempting to fix K, substitute using Σ = ΛΛT +ψψψ , and maximize over Λ , ψψψ .
However, this will not give a unique solution because of the rotation problem.
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One way around this is to impose the extra constraintΛTψψψΛ =Δ , where Δ is diagonal.
It is a fact that under this constraint (9.2.9) can be maximized to find the MLEs Λ̂ , ψ̂ψψ ,
and μ̂μμ = x̄xx, usually by a numerical method. The MLEs for the communalities are

ĥ2
j =

K

∑
k=1

λ̂ j,k,

and the proportion of total variance explained by the jth factor is

(λ̂ 2
1, j + . . .+ λ̂ 2

p, j)/
p

∑
j=1

s j j.

The same procedure can be applied to the correlation matrix ρρρ for XXX . As before,
write ZZZ = VVV−1/2(XXX − μμμ), where VVV = diag(

√
σ11, . . . ,

√σpp). Now, ρρρ = Cov(ZZZ) =
VVV−1/2ΣVVV−1/2 = (VVV−1/2Λ)(VVV−1/2Λ)T +VVV−1/2ψψψVVV−1/2, like (9.2.8) for Σ . However,
the loading matrix is Λ2 = VVV−1/2Λ , not Λ , and the specific variance matrix is ψψψ2 =
VVV−1/2ψψψVVV−1/2.

9.2.1.2 Principal Factors

Principal factors is an alternative technique for finding Λ̂ΛΛ and ψ̂ψψ given K. As the name
suggests, it is related to PCs. In fact, when ψψψ = 0 or K = p, the eigenvector decom-
position in PCs gives the FA representation. Indeed, the basic idea is to start with the
spectral decomposition of Σ and write

Σ =
p

∑
j=1

λ jeee jeee
T
j ≈

K

∑
j=1

λ jeee jeee
T
j

= (
√
λ1eee1, . . . ,

√
λ1eeeK)× (

√
λ1eeeT

1 , . . . ,
√
λ1eeeK)T

= ΛΛ , (9.2.10)

in which the jth column of Λ is
√
λ1eee j. That is, the jth factor loading comes from the

jth PC and is exact if K = p, in which case ψψψ = 0. Of course, this is usually done on
Σ̂ = (1/n)∑n

i=1 xxxixxxT
i using êee j and λ̂ j to give Λ̂ for a given K. In this case, ψ̂ψψ is usually

not zero and it is typical to set ψ̂ j = s j j−∑K
k=1 λ̂ 2

j,k so diag(Σ̂) = diag(Λ̂Λ̂ + ψ̂ψψ). The

communalities are then ĥ2
j = ∑K

k=1 λ̂ 2
jk.

The same procedure can be applied to the correlation matrix ρρρ . Explicitly, if (α j,γγγ j)

are the eigenvalue, eigenvector pairs for R̂RR = ρ̂ρρ = V̂VV
−1/2Σ̂V̂VV

−1/2
, then (9.2.10) becomes

R̂RR− ψ̂ψψ =
K

∑
j=1

α jγγγ jγγγ
T
j (9.2.11)
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for fixed K and approximates ρρρ −ψψψ . As before, ψ̂ψψ is usually chosen so the diagonal
entries match. Again, the decomposition for Σ and ρρρ is usually different, and often it
is preferable to use the correlation for scale standardization of the Xjs.

9.2.2 Finding K

As with PCs, the degree of dimension reduction depends on how small K can be with-
out losing too much information. There are several methods for ensuring K is rea-
sonable. The first is really only for principal factors; the second is primarily for ML
factors.

9.2.2.1 Bound on the Approximation

When the FA model is found using PCs, the natural way to evaluate how well it fits is
to look at how good the approximation of Σ is. It can be shown that

‖Σ̂ − Λ̂Λ̂ − ψ̂ψψ‖ ≤ λ̂ 2
K+1 + . . .+ λ̂ 2

p , (9.2.12)

in which the norm on the right is the sum of squares of the entries of the matrix. So as
K increases, the bound tightens.

However, the goal is small K, meaning that the contributions from a small number of
factors f j to the sample variance should be large enough that the other factors can be
neglected. The contribution to s j j = s2

j from the first factor f1 is λ̂ 2
j1. So, the contribu-

tion of f1 to the total sample variance trace(Σ̂) = s11 + . . .+ spp is

p

∑
j=1

λ̂ 2
j1 = (

√
λ̂1êee1)T(

√
λ̂1êee1) = λ̂1,

the (1,1) entry of Λ̂Λ̂T, where Λ̂ = (
√
λ̂1êee1), . . . ,(

√
λ̂pêeep), and this holds for 2, 3,...,

p. The consequence is that the proportion of the total sample variance attributable
to the jth factor is λ̂ j/∑p

j=1 s j j and λ̂ j/p when factor analysis is applied to Σ̂ or ρ̂ρρ ,
respectively. Since the eigenvalues are decreasing, the techniques for choosing K from
the section on choosing the correct number of PCs continue to apply.

9.2.2.2 Large Samples

When n is large and normal distributions can be assumed, the value of K can be in-
ferred from a likelihood ratio test of H0 : the model with K factors is correct, versus
H1 : the full model with Σ is correct when K ≤ p− 1. To set this up, recall that in
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the context of (9.2.1)–(9.2.4), when TTT and fff are multivariate normals, there is a well-
defined likelihood that can be maximized. In fact, writing XXX ∼ Np(μμμ,Σ) as in (9.2.1)
and (9.2.9) and assuming data xxx1, ..., xxxn, denoted D , the log likelihood is

�(μμμ,ΣΣΣ |D) = −n
2

log |2πΣ |− 1
2

n

∑
i=1

(xxxi−μμμ)TΣ−1(xxxi−μμμ)

= −n
2

log |2πΣ |− n
2

trace(Σ−1Σ̂)− n
2
(x̄xx−μμμ)TΣ−1(x̄xx−μμμ)

= −n
2

(
log |2πΣ |+ trace(Σ−1Σ̂)

)
, (9.2.13)

where μμμ was replaced by μ̂μμ = x̄xx in the last expression. When K = p, (9.2.13) can
be maximized to give the usual MLE Σ̂ for Σ and x̄xx for μμμ . When K ≤ p− 1, the
maximization subject to the diagonal constraint (ΛTψψψΛ = Δ ) can be done.

Assuming the ML estimates Λ̂ΛΛ and ψ̂ψψ for ΛΛΛ and ψψψ have been found, one can follow
the usual recipe. Two instances of (9.2.13), under the null and the alternative, give that
the test statistic is of the form

LR =−2log

(
ML under H0

ML under H1

)
= n log

[
|Λ̂ΛΛΛ̂ΛΛT

+ ψ̂ψψ |
|Σ̂ΣΣ |

]
. (9.2.14)

Wilks’ theorem applies and gives that LR has a χ2 distribution on (1/2)[(p−K)2−
p−K] degrees of freedom, as n→ ∞. (Bartlett’s correction can also be used to speed
the convergence of (9.2.14) to its limiting chi-square.)

9.2.3 Estimating Factor Scores

The choice of K gives the degree of dimension reduction from p, but it remains to
convert the p-dimensional data points xxxi to new points f̂ff i, called factor scores, in K
dimensions. Note that the choice of K,Λ , and ψψψ is determined by all the xxxis, so adding
another data point may change the whole model. In this sense, factor scores are more
of an imputation method than a dimension reduction method: If the FA model is not
updated as data accumulate, then the factor scores for new data points are forced to
look like they came from the same distribution as the earlier data points, even when this
is not reasonable. In other words, this dimension reduction technique is very sensitive
to any change in the population to which it is applied.

The basic problem is that there are n known values, the xxxis, but 2n unknown values,
the εεε is and the fff is. Nevertheless, there are two common ways to convert xxxis to factor
scores. The first is weighted least squares and the second is based on regression. Both
methods start with fixed values for Λ , μμμ , and ψψψ assumed known; usually these are
estimates. Also, both methods treat TTT as if it were an error term, εεε . So, write the
model as XXXi−μμμ =Λ fff i + εεε i for i = 1, . . . ,n and consider determining fff i for xxxi.
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The least squares strategy for overcoming the indeterminacy is as follows. Observe
that the sum of squares due to error is

SSE =
p

∑
j=1

ε2
j /ψ j = εεεψψψ−1εεε = (XXX−μμμ−Λ fff )Tψψψ−1(XXX−μμμ−Λ fff ).

Minimizing it gives fff min = (ΛTψψψ−1Λ)−1ΛTψψψ−1(xxx−μμμ). So, for i = 1, ...,n, when Λ
and ψψψ are estimated by the ML method (and Λ̂ ψ̂ψψ−1Λ = Δ̂ ), it is natural to set

f̂ff i = (Λ̂Tψ̂ψψ−1Λ̂)−1Λ̂Tψ̂ψψ−1(xxxi− x̄xx).

This procedure on the correlation matrix with zzzi = V̂VV
−1/2

(xxxi− x̄xx) and ρ̂ρρ = Λ̂2Λ̂T
2 + ψ̂ψψ2

gives f̂i = (Λ̂T
2 ψ̂ψψ

−1Λ̂2)−1Λ̂T
2 ψ̂ψψ

−1zzzi.

When the principal factors are used, the ψ̂ψψ drops out: The results are

f̂ff i = (Λ̂TΛ̂)−1Λ̂T(xxxi− x̄xx)

for Σ , which can be recognized as the first K scaled PCs evaluated at xxxi. For the corre-
lation matrix, f̂i = (Λ̂T

2 Λ̂2)−1Λ̂T
2 zzzi for the correlation.

The regression method for overcoming the indeterminacy is as follows. Since (XXX −
μμμ) = Λ fff + εεε ∼ N(0,Σ = ΛΛT +ψψψ), the joint distribution for (XXX − μμμ, fff ) is a 2× 2
block matrix of size p+K, with Σ and IK on the main diagonal andΛ orΛT otherwise.
Now,

( fff |XXX = xxx)∼ N(E( fff |xxx),Cov( fff |xxx)) = N(ΛTΣ−1(xxx−μμμ), I−ΛTΣ−1Λ).

Regarding the mean as a regression, it is reasonable to set f̂ff i = Λ̂TΣ̂−1(xxxi− x̄xx), in
which the estimate Σ̂ is either via ML or principal factors. For the correlation matrix,
f̂i = Λ̂T

2 ρ̂−1zzzi.

9.3 Projection Pursuit

High-dimensional data often have important structure obscured by high variability.
The hope in projection pursuit (PP) is that projecting the high-dimensional data down
to lower dimensions will retain only the most useful information, enhancing the infor-
mativity of the data because so much of the variability is removed.

Consider the following somewhat extreme example. Suppose XXX is p-dimensional, in
which X1 is N(0,100), X2 is N(Z/2,1/16) with Z = ±1 with probability 1/2 on each
value, and the last p− 2 Xjs are N(0,1) and all coordinates are independent. Given n
independent outcomes xxxi, i = 1, ...,n, projecting onto the first two coordinates will give
a data cloud that looks like two horizontally narrow, vertically stretched elliptical data
clouds centered at (−1/2,0) and (1/2,0).
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If the task is to find the structure in the data, without making any modeling assump-
tions, PCs will fail: The first PC will detect X1, the next p−2 PCs will detect the last
p−2 Xjs, and only at the end will the really interesting X2 be found. Thus, the first PC
with maximal variance would parallel the two clusters, so that projecting the clusters
onto a vertical line would mix them rather than reveal them. Only at the pth PC would
one project the data onto the horizontal axis and see the structure. This means that the
strategy of using PCs with large eigenvalues performs poorly. Similarly, factor analy-
sis performs poorly: The mean is μμμ = 0 and TTT = 0 because XXX is normal. So, principal
factors fail just as PCs do, and the ML version, while somewhat different, usually gives
roughly comparable results, therefore performing poorly, too. The problem with PCs
and FA is that second-moment characterizations are just not enough for many data sets
because the data are too far from normality in the interesting directions.

The search for interesting directions onto which high-dimensional data can be pro-
jected is more intuitive than it sounds. Consider a direction β ∈ IRp. Then βTxxxi,
i = 1, ...,n gives the portion of each xxxi in the direction of β . For many directions,
βTxxxi will look roughly normal, as noted in Chapter 1. So, those β s are not very infor-
mative. However, if a criterion can be formulated to express the idea of nonnormality,
then it can be optimized to give good β s. Then, the new data set βTxxxi for i = 1, ...n
can be analyzed and it is unlikely to be normal (i.e., uninteresting).

This procedure can be formalized. The extra information required to choose a good β
is called a projection index, say I : L2(IR)→ IR, so the central task is to find

β̂ββ = arg max
βββ :‖βββ‖=1

I(XXXTβββ ). (9.3.1)

The natural extension to K dimensions is to seek

ÂAA = arg max
AAA:aaa j ·aaak=δ jk

I(AAAXXX), (9.3.2)

where AAA is a K× p matrix whose rows aaa j are orthogonal and I : IRK → IR. Expressions
like (9.3.2) are usually optimized sequentially, and one row of AAA is identified at each
of K iterations.

The template for finding (9.3.2) is:

Start with a sample xxxi, i = 1, ...,n, and index I, an initial βββ 0.

� Sphere the data: For i = 1, ...,n, transform the outcomes to zzzi = Σ̂ΣΣ−1/2
(xxxi− x̄xx),

where x̄xx is the sample mean and Σ̂ΣΣ−1/2
is the sample covariance matrix.

� Form the criterion

Î(zzzn) =
n

∑
i=1

I(zzzTi βββ ), (9.3.3)

estimating any quantities required for evaluation of Î.



510 9 Learning in High Dimensions

� Optimize (9.3.3) numerically (if necessary), for instance by a gradient descent
method, starting with βββ 0.

� Find K acceptable β̂ββ ks and then analyze the K-dimensional projected data, βββ kxxxi,
for each k = 1, ...,K and i = 1, ...,n.

Thus the usefulness of PP for extracting nonnormal features of a data set depends on
the choice of I. For instance, if I(XXXTβββ ) = Var(XXXTβββ ), then the maximum in (9.3.1) is
the first eigenvalue of the variance matrix and βββ from (9.3.1) is the first PC. (The for-
mula (9.3.2) would give successive PCs.) Thus, PCs are an instance of PP in which the
projection obtained from variance maximization does not reveal the important struc-
tures for some data sets.

Three general classes for I have been identified by Huber (1985) based on invariances
of I. They are:

• Class I : location scale equivariance: I(aXXX +b) = aI(XXX)+b,

• Class II : location invariance, scale equivariance: I(aXXX +b) = |a|I(XXX),

• Class III : affine invariance: I(aXXX +b) = I(XXX),

where a,b ∈ IR. It is seen that PCs are a Class II approach. Class III is probably
the most important because it expresses invariance to affine transformations of the
data space, thereby enabling the discovery of structure not captured by correlation.
Usually, I is required to satisfy I(X1 + X2) ≤ max{I(X1), I(X2)}). Huber (1985) Sec-
tion 5, shows that a sufficient condition for I to be Class III is that it have the form
I(XXX) = h(S1(XXX)/S2(XXX)), where h is increasing and the Si are Class II functionals with
S2

1(X1 +X2)≤ S2
1(X1)+S2

1(X2) and S2
2(X1 +X2)≥ S2

2(X1)+S2
2(X2). Thus, many Class

III indices can be found.

Commonly used projection indices depend on more than just the first two moments
and usually are constructed to increase as the underlying data deviate from normality
so that the optimal β s will detect nonnormal features rather than the usual uninterest-
ing normal projections. For instance, standardized absolute cumulants sometimes find
interesting directions. In this case,

Isac(XXX) =
|κm(XXX)|
κ2(XXX)m/2

for some m ≥ 3. (Recall that, for the univariate case, the mth order cumulant of X is
κm = (1/im)d/dtm logE(eixt).) The first two cumulants of the normal are zero, so this
will not detect normality. A variation on this is

Icum(XXX) = κ2
3 +

κ2
4

4
,

which may be regarded as an approximation to the entropy projection index, Ient(XXX) =∫
p(xxx) ln p(xxx)dxxx, in some cases; see Jones and Sibson (1987). Also, the Fisher infor-

mation has been proposed as a good projection index; see Huber (1985).
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Many other indices have been proposed. Some are based on distances between nor-
mal densities and orthogonal series density estimators based on Hermite polynomials.
However, dependence on higher moments often emphasizes nonnormality in the tails
and can be oversensitive to outliers. Others are chosen to express some geometric as-
pect of the data.

9.4 Independent Components Analysis

Independent component analysis (ICA) starts with a model somewhat like (9.2.1) but
imposes a criterion that ensures the analog of the factors will be independent. Formally,
the general ICA model is

XXXi = T (SSSi,εεε i) for i = 1, ...,n, (9.4.1)

(see Eriksson (2004)), in which the XXXis are observed, SSSi is the original source signal,
εεε i is a noise term, and T is the system operator. The idea is that a signal SSS with K in-
dependent components is generated but, when it is observed as XXX , dim(XXX) = p through
the data collection procedure T . That is, T mixes all the components of SSS together.
Sometimes (9.4.1) is called a blind source separation system model because there is
little or no information about how the components of the signal have been combined
to form XXX . For instance, no training set of pairs (sssi,xxxi) is available to help identify
T . The task of the analyst is to use the n measurements of the mixed components to
uncover the original signal SSS or identify the system operator T , possibly both.

Expression (9.4.1) models the multiple-input/multiple-output setting. Imagine K peo-
ple at a meeting all talking at the same time, their voices picked up by p microphones.
Suppose no one listens to anyone else, so their voices are independent. The wave-
forms from the microphones represent p different superpositions (i.e., mixtures) of the
K waveforms from the voices. Although a single human ear can disentangle the K
voices, mechanically separating the K waveforms representing the voices may require
the outputs of many, p, microphones. But, this will take work because separating the
voices rests on the mixing process, which is unknown.

9.4.1 Main Definitions

If the system is memoryless (i.e., the measurements for time i are independent of those
for any other time i′), the system is called instantaneous; if the noise term in (9.4.1)
cannot be ignored, the system is noisy; otherwise it is noiseless. If the signals have
no time structure, it is reasonable to regard them as IID outcomes of a K-dimensional
random vector, SSS, so that XXX , also IID, is the mixture from SSS via T . Thus, the instanta-
neous, time-independent, noiseless ICA model is
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XXXi = T (SSSi) for i = 1, ...,n, (9.4.2)

where SSS and T may be unknown but the XXXs are available. When T is assumed to be
a matrix, ICA is a linear method. The simplification to linearity is not necessary, but
permitting nonlinear T s introduces substantial difficulties; see Eriksson (2004) for a
partial treatment. Thus, the focus is usually on the special case of (9.4.2)

XXX = TTT SSS, (9.4.3)

where TTT is a p×K real matrix.

By definition, a linear ICA representation of XXX is any pair (SSS,TTT ) such that (i) (9.4.3)
holds and (ii) the components of SSS = (S1, ...,SK) are as independent of each other
as possible, in the sense of minimizing some measure Δ(S1, ...,SK) of dependence.
Clearly, (9.4.3) is similar in spirit to (9.2.1), but the focus here is on the nonnormal
case. Moreover, the optimization in clause (ii) imposes a stringent condition. Inde-
pendence is a much stronger condition than, for instance, noncorrelation, which only
depends on the first two moments. When the components of SSS are independent, or
nearly so, the reduction from XXX to SSS is efficient since independent random variables
typically have more information than the same variables would if they were dependent.
Note that, like FA and PCA, there is some ambiguity in K. If p is given, often p = K
is chosen. Sometimes one is forced to a model with p < K. However, the focus here
will be on p≥K since this corresponds to dimension reduction; deciding how small to
make K is a separate problem not treated here, except to note that K = p is the default
value.

Representations (SSS,TTT ) are not usually unique. Indeed, from simply writing XXX = TTT SSS =
(TTT MMM)(MMM−1)SSS and setting MMM = ΛΛΛPPP, where ΛΛΛ is a full-rank diagonal matrix and PPP is
a permutation, it is seen that the representation is unchanged. That is, the variances
of the Sks cannot be specified since any scalar multiple of an Sk can be cancelled by
using its inverse in the kth column of TTT . Also, the order of the elements in SSS cannot be
determined. Without loss of generality, it is therefore conventional to “sphere” the data
(i.e., replace xxxi with Σ̂−1/2(xxxi− x̄xx) so that E(Sk) = 0 and E(S2

k) = 1, forcingΛΛΛ = IdK),
but the permutation ambiguity remains, unlike with PCs for instance. If two or more
of the Sks are normal, then choosing MMM to be orthogonal on those dimensions means
the representation is unchanged, the same as in FA.

To reduce these ambiguities, representations (SSS,TTT ) for XXX are usually assumed to be
reduced; i.e., no two columns in TTT are collinear. If a representation is not reduced,
then it is hard to obtain any kind of uniqueness because if one column is a multiple of
another, then x̄xx has a representation with only K− 1 of the Sks by combining the two
columns with arbitrary coefficients. Even worse, as noted by Eriksson (2004), if one
of the source random variables has a divisible distribution, then XXX would have repre-
sentations for many K′ > K. (A divisible distribution is one whose random variable
can be written as a sum of other distributions of the same form. Distributions such as
the normal, Cauchy, Poisson, and Gamma are infinitely divisible and so give represen-
tations for any K′ > K.) In addition, different Δs give different ICA representations
unless actual independence is achieved.
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Comon (1994), Corollary 13 established the first rigorous result ensuring model (9.4.3)
can be implemented. Eriksson and Koivunen (2003) and Eriksson and Koivunen (2004)
refined those results, defining a hierarchy of criteria for representations.

In the parlance of signal processing, the model (9.4.3) is

� identifiable if, for any two reduced representations of (9.4.3), (TTT 1,SSS1) and
(TTT 2,SSS2) for XXX , every column of TTT 1 is a multiple of a column in TTT 2 and the
reverse;

� unique if, in addition to identifiability, the sources SSS1 and SSS2 have the same
distribution, apart from location and scale;

� separable if, for every matrix WWW for which WWWXXX has independent components,
there is a diagonal matrix ΛΛΛ with all diagonal entries nonzero and a permutation
matrix PPP such that

ΛΛΛPPPSSS = WWWXXX .

Identifiability is a property of the system operator; without identifiability there is no
single well-defined mixing matrix. Here, uniqueness means that both TTT and SSS are un-
ambiguously specified. Separability essentially removes all but permutation indeter-
minacy and ensures WWW can be regarded as virtually a pseudoinverse of TTT . Trivially,
uniqueness implies identifiability; it will be seen that separability implies uniqueness.
However, the implications are not reversible. Eriksson and Koivunen (2003) gives
examples of nonidentifiability, identifiability without uniqueness or separability, and
uniqueness without separability.

9.4.2 Key Results

Eriksson and Koivunen (2003), Eriksson and Koivunen (2004) establish a series of
results that give (1) sufficient conditions for identifiability, (2) conditions equivalent to
separability, and (3) that separability implies uniqueness. To start the reasoning, recall
a result from Kagan et al. (1973) stemming from the characterization of the normal as
invariant under affine transformations.

Theorem (Kagan et al., 1973): Let (TTT 1,SSS1) and (TTT 2,SSS2) be two representations of XXX ,
where TTT 1 is p×K1 and TTT 2 is p×K2 with dim(S1) = K1 and dim(S2) = K2. If the ith
column of TTT 1 is not a multiple of any column in TTT 2, then Si is normal.

Proof: Omitted. �
Now (1) can be stated and proved.

Theorem (Eriksson and Koivunen 2004): Part (i): If XXX has no Xi that is normally
distributed, then model (9.4.3) is identifiable among all representations (TTT ,SSS).

Part (ii): If TTT is of full column rank and at most one entry in XXX is normal, then again
model (9.4.3) is identifiable among all representations (TTT ,SSS).
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Proof (sketch): Part (i) If there are no normal random variables, then the last theorem
implies each column of TTT must be linearly dependent on some column in any other
representation, so the model is identifiable.

Part (ii) By the theorem of Kagan et al., the columns corresponding to nonnormal
random variables in (TTT 1,SSS1) and (TTT 2,SSS2) are identifiable. By the assumption on the
column ranks and the fact that rank(TTT 1) = rank(TTT 2) = K, there are either K− 1 or
K columns in both representations. Since representations are assumed reduced, every
column in one representation is a multiple of a column in the other. So, both have the
same number, 0 or 1, of normal entries. If both have 0, this is Part (i).

If both have 1, then without loss of generality the first K−1 columns can be regarded
as the same. Now, let TTT−1 = (TTTT

1 TTT 1)−1TTTT
1 be the pseudoinverse of TTT 1. If the two

representations are simultaneously valid, then

SSS1 = TTT−1 XXX = TTT−1 TTT 2SSS2 = [IK−1,0SSS2,K−1,TTT
−
1 ttt2,KS2,K ],

where the right-hand side is a matrix defined by its columns: SSS2,K−1 and SSS2,K are the
first K− 1 entries and the Kth entry of SSS2, IK−1,0 is the K− 1×K− 1 identity with
K zeros attached as a Kth row at the bottom, and ttt2,K is the last (Kth) column of TTT 2,
which is nonzero because the sources are nondegenerate.

An argument with characteristic functions based on the partition TTT 1 = [TTT 1,K−1, ttt1,K ]
in which TTT 1,K−1 is the first K−1 columns and ttt1,K is the last column of TTT 1 gives that
ttt1,K is a multiple of ttt2,K ; see Eriksson and Koivunen (2004), p. 603, and Lemma A.1
in Eriksson and Koivunen (2003). �
Using (1), (2) can be stated and proved in the following.

Theorem (Eriksson and Koivunen, 2004): Model (9.4.3) is separable if and only if
TTT is of full column rank and at most one source variable is normal.

Proof: Suppose (9.4.3) is separable and that there are two normal variables in SSS. By
way of contradiction, to see that at most one variable is normal, recall that multiplying
any bivariate normal random vector by an orthogonal matrix and then by a diagonal
matrix preserves normality. So, ∃WWW of full column rank K so that WWWTTT is not of the
form ΛΛΛPPP and WWWXXX has K independent components. Thus, the model is not separa-
ble, contradicting the hypothesis. To see that TTT is of full column rank, observe that
rank(TTT )≥ rank(WWWTTT ) = rank(ΛΛΛPPP) = K and it is seen that the K× p matrix TTT is of full
rank K.

For the other direction, let TTT be of full column rank for (9.4.3) and assume that at most
one source is normal.

Suppose another matrix of full column rank separates (9.4.3); that is, there is a WWW
such that WWWXXX = RRR has independent components. Then XXX = TTT SSS = WWW−RRR. By Part II of
the last theorem, WWW− must be of the form TTT times diagonal times permutation; i.e.,
WWW− = TTTΛΛΛPPP. Now,

SSS = TTT−XXX = TTT−WWW−RRR = TTT−TTTΛΛΛPPPRRR =ΛΛΛPPP. �

Finally, (3) can be extracted from (2) as a corollary.
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Corollary (Eriksson and Koivunen, 2004): If (9.4.3) is separable, then it is unique.

Proof (sketch): The identifiability follows from the theorem and Part II of the theorem
before. If that proof is written out in detail, it will be seen that the distribution of SSS is
unique up to an affine transformation. �
Equipped with these results, it is important to define which class of measures of de-
pendence can be used as objective functions. Comon (1994) restricts to contrasts. A
contrast is any measure of dependence Δ(S1, ...,SK) that is (i) invariant under per-
mutation of the Sks, (ii) invariant under diagonal invertible transformations (that is,
Δ(SSS) = Δ(AAAXXX) for any matrix AAA) and (iii) Δ(AAAXXX)≤ Δ(SSS) for AAA invertible. Examples
of contrasts include entropy-based measures (e.g., the Shannon mutual information)
or Csiszar φ -divergences. Indeed, Hyvarinen (1999), motivated by Jones and Sibson
(1987), suggests the negentropy J(XXX) = H(XXXG)−H(XXX), where H is the usual entropy
and XXXG is a normal variable with the same variance matrix as XXX (both have mean zero).
These, however, can be hard to implement computationally. So, Hyvarinen (1999) uses
maximum entropy methods to obtain approximations of the form

J(XXX)≈
p

∑
j=1

k j[E(G j(XXX))−E(G j(ννν))]2, (9.4.4)

where k j > 0, ν is N(0,1), and G j are nonquadratic functions depending on the opti-
mization. Choices G(x) = (1/a) lncosh(ax) and G(x) =−exp(x2/2) have been found
useful.

9.4.3 Computational Approach

The intuition for identifying the SSS for a representation of XXX using TTT in a linear ICA is
that “nonnormal is independent”. To see this, suppose that all the S j are identical. Then,
to find S1, consider y = wwwTxxx, where www ∈ IRp is to be determined. If www were a row in
TTT−1, then y would actually equal one of the S js. In an effort to find www, follow Hyvarinen
and Oja (2000) in setting zzz = TTTTwww so that y = wwwTTTT SSS = zzzT. Using the principle that
a sum of variables is more normal than any of the variables in the sum, the fact that y
is a linear combination of the S js with weights given by zzz means that y is least normal
when it equals one of the S js, in which case only one entry in zzz is nonzero. So, it
makes sense to choose www to maximize the nonnormality of y, for instance by using the
negentropy J(XXX) in (9.4.4), hoping to find a www for which wwwTxxx = zzzTSSS and gives one of
the S js. There are 2K local maxima, one for each of ±S j. To help identify them, one
can insist that the estimates of the S js be uncorrelated with the previous ones found.

In practice, one needs an algorithm for maximizing contrast functions such as those of
the form (9.4.4). One popular approach is called FastICA; it is a fixed-point iteration
scheme to find a unit vector www such that the projection wwwTxxx is maximally nonnormal as
measured by J(wwwTXXX). Assume that the data have been sphered; i.e., relocated to mean
zero by subtracting the sample mean and transformed to have identity covariance by
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multiplying by Σ̂−1/2. Letting g be the derivative of G, the basic form of FastICA to
find a single component is the following.

Start with a sphered sample xxxi, i = 1, ...,n, and an index I, an initial www0.

� Find www+
1 = E(XXXg(wwwTXXX))−E(g′(wwwTXXX)www).

� Replace www0 with www1 = www+
1 /‖www+

1 ‖.
� Similarly, find www2, www3 until a convergence criterion is met.

The basic justification (see Hyvarinen and Oja (2000)) is that the maxima of the ap-
proximation of the negentropy of wwwTxxx are obtained at certain optima of E(G(wwwTxxx)).
The Kuhn-Tucker conditions give that the optima of E(G(wwwXXX)) subject to E(wwwTXXX)2 =
‖www‖2 = 1 occur when www satisfies

F(www) = E(XXXg(wwwTxxx))−βwww = 0,

where β is a Lagrange multiplier. Applying Newton’s method, the Jacobian matrix
JF(www) of the left-hand side is

JF(www) = E(XXXXXXTg′(wwwTXXX))−β Ip.

Since this matrix must be inverted, it helps to approximate the first term by

E(XXXXXXTg′(wwwTXXX))≈ E(XXXXXXT)E(g′(wwwTXXX)) = E(g′(wwwTXXX))Ip,

which is diagonal and easily inverted. Now, the Newton iteration is

www+ = www− E(XXXg(wwwTxxx))−βwww
E(g′(wwwXXX))−β ,

which can be further simplified by multiplying by β − E(g′(wwwXXX)) on both sides.
Some algebraic simplification gives the FastICA iteration above. Of course, in prac-
tice, sample-based estimates would be used for the population quantities. Also, to find
successive S js, a Gram-Schmidt-based decorrelation procedure would be imposed; see
Hyvarinen and Oja (2000) for details.

9.5 Nonlinear PCs and ICA

Aside from being more difficult, nonlinear versions of linear ideas exhibit a wider
variety. Thus, there are several definitions of nonlinear PCs and many nonlinear ICA
models. A few of these are mentioned here to indicate the range of possibilities. The
hope is that well-chosen nonlinear functions will do a better job of encapsulating the
information in a collection of random variables than linear functions of them do.
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9.5.1 Nonlinear PCs

Recall that linear PCs are based on finding eigenvalues and eigenvectors of Var(XXX) =
Σ . There are at least two ways to generalize PCs to reflect the behavior of nonlinear
functions. The most direct is due to Mizuta (1983), Mizuta (2004). The idea is to
choose real-valued functions fk of xxx for k = 1, ..., p and do the usual PC analysis on
the covariance matrix of fff (xxx) = ( f1(xxx), ..., fp(xxx)). So, in place of Σ , consider Σ ∗ =
Cov( fff , fff ) and suppose Σ ∗ has eigenvalue, eigenvector pairs (λ ∗1 ,eee∗1), ..., (λ ∗p ,eee∗p) with
λ ∗1 ≥ . . . ≥ λ ∗p . Then, the nonlinear PC vector is UUU = (U1, ...,Up), in which the jth
nonlinear principal component is

Uj =
p

∑
k=1

eee∗j,k fk(xxx) = eee∗Tj fff (xxx).

Clearly, if fk(xxx) = xk, this reduces to PCs. Quadratic PCs, QPCs, are obtained by
choosing f to have components obtained from the linear and second order terms in
the x js. For p = 2, this is five-dimensional, with f1(xxx) = x1, f2(xxx) = x2, f3(xxx) = x2

1,
f4(xxx) = x1x2, and f5(xxx) = x2

2.

Usually, the fks are assumed (i) linearly independent and (ii) continuous. Moreover
(iii), for any orthogonal matrix TTT , it is assumed that there is a matrix WWW such that
fff (TTT xxx) = WWW fff (xxx); this is useful for understanding how orthogonal coordinate transfor-
mations affect the results. It can be shown (see Mizuta (1983), Mizuta (2004)), that
orthogonal transformations of the XXX coordinates do not affect the new, UUU coordinates,
and this is typically the case under the three standard conditions.

A second way to define nonlinear PCs is due to Karhunen et al. (1998) and introduces
the nonlinearity via the objective function. Let fff : IRp → IRp be a nonlinear function,
WWW a p× p real weight matrix, and ‖ · ‖ a norm such as L2. Set

J(WWW ) = E‖XXX −WWW fff (WWWTXXX)‖. (9.5.1)

Now, J can be optimized, by gradient descent for instance, to find WWW . (With learning
rate c, one update is ΔWWW = c(xxx−WWW fff (WWWTxxx)) fff (xxxTWWW ).) The goal is to find UUU = WWWXXX ,
where WWW depends on fff . Sensible fff s are usually odd functions with domain and range
IR. In practice, (9.5.1) is usually optimized using estimates in place of population val-
ues, and the data are usually sphered.

A variant on this (see Fodor (2002)) is to use the usual sequential optimization in the
PC procedure on the variance of f (wwwTxxx). So, the first PC is

www1 = arg max
‖www‖=1

Var( f (wwwTxxx)).

The procedure can be repeated to find www2 among vectors orthogonal to www1. It is unclear
how this method works. A further variant would be to insist that subsequent PCs be
defined as in (9.1.2) but with the orthogonality between f (wwwT

1 xxx) and the next f (wwwTxxx).
More recently, de Leeuw (2005) has given a different perspective on the general prob-
lem of nonlinear PCs.
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9.5.2 Nonlinear ICA

Nonlinear ICA is more complicated than nonlinear PCs and amounts to treating (9.4.2)
assuming only the memoryless property and noiselessness. Eriksson (2004) describes
a nonlinear mixture model

Xj = f j

(
K

∑
k=1

a jkSk

)
= f j(AAASSS),

in which each Xi is a linear model distorted by f j. In this case, a separating structure is
a pair (GGG,WWW ), where GGG is also a componentwise nonlinear function such that WWWGGG(XXX)
has K mutually independent components. The model is separable if and only if, for any
separating structure (GGG,WWW ), the random vector WWWGGG(XXX) is a permuted scaled version
of SSS. This notion of separability is satisfied when (i) K = p, (ii) AAA is invertible and has
at least two nonzero entries in each row and column, (iii) the f js are differentiable and
invertible so that Gk ◦ fk has nonzero derivative, and (iv) the density of each S js is zero
at least at one point; see Taleb et al. (1999) for a formal proof.

Eriksson (2004) established that if the class of system operators of which T is a mem-
ber is restricted to being a group, then a separable ICA model results. The idea is to
write T as a function fff (SSS) = ( f1(SSS), ..., fp(SSS)), where each f j is a group action on
SSS. Sometimes these are called addition theorem models because the group operation
is built up from continuous, strictly increasing functions tied together by several steps
involving composition and inversion.

More general nonlinear ICA models often do not admit unique solutions. Indeed, if
the space of the nonlinear mixing functions f j is not limited, multiple solutions will
always exist; see Karhunen (2001), who discusses the problem more generally.

There are other nonlinear dimension reduction techniques such as that in Globerson
and Tishby (2003), which uses Shannon information; latent semantic indexing which
uses a singular value decomposition; and a variety of maximum entropy methods along
with techniques such as multidimensional scaling and self-organizing maps, to be dis-
cussed later in this chapter, as visualization techniques. All of these methods are cur-
rently under development, including efforts to kernelize them to help escape the Curse
of Dimensionality; see Scholkopf et al. (1998).

9.6 Geometric Summarization

The goal here is to reduce the dimension of the space of explanatory variables by
finding lower-dimensional structures, usually submanifolds, within it. If the real-
ized values of the explanatory variables concentrate on those submanifolds, then the
space of explanatory variables can be recoordinatized with fewer dimensions. The
paradigm example would be collinearity in linear regression. For instance, if p = 2
and X1 = αX2 +η , where Var(η) is small, then it makes sense to model a response Y
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as Y = β0 +β1X1 + ε instead of Y = β0 +β1X1 +β2X2 + ε . In effect, X1 parametrizes
a one-dimensional submanifold of (X1,X2) space on which the explanatory variables
concentrate. More generally, the problem is finding the lower-dimensional submani-
fold and verifying that the dimension reduction provides a good summarization.

One way to frame this problem is in terms of algebraic shapes. An algebraic shape is
the set of zeros of a set of polynomials. Specifically, consider a function fff : IRp → IRK ,
where fff = ( f1, ..., fK) and each fk is a polynomial in xxx ∈ IRp. A (p,K) algebraic curve
or surface is the zero set of the fks. That is,

Z( fff ) = {xxx ∈ IRp| f1(xxx) = ... = fK(xxx) = 0}

is a (p,K) algebraic shape. If p−K = 1, it defines a curve in IRp; if p−K = 2, it
defines a surface in IRp. In general, K constraints on p variables gives a solution set
of dimension p−K. Clearly, most curves and surfaces in any dimension can be well
approximated by an algebraic shape since polynomials can be used to approximate any
function. When the fks are parametrized as well (i.e., each fk is of the form fk(xxx|θk)),
then θ = (θ1, . . . ,θK) parametrizes a collection of submanifolds and the result is a
parametrized class of (p,K) algebraic shapes. Below, some of the geometric properties
of these shapes are discussed. Then, some of their statistical properties are given. It will
be seen that these areas admit substantial further development because techniques for
evaluating the adequacy of the summarization are not yet available.

9.6.1 Measuring Distances to an Algebraic Shape

Consider using a parametrized class of (p,K) algebraic curves or surfaces to summa-
rize a data set xxx1,...,xxxn. The adequacy of summarization depends on the distance of the
data points to the curves or surfaces; i.e., the distances from the xxxis as elements of IRp

to any shape Z( fff θ ) in the class. An empirical optimality criterion for fit is, for fixed θ ,

L(Z( fff ),xxx1, ...,xxxn) =
n

∑
i=1

dist(xxxi,Z( fff )) =
n

∑
i=1

infzzz∈Z( fff )‖xxxi− zzz‖, (9.6.1)

where Z( fff ) = Z( fff θ ). A second minimization would be required to find the θ indexing
the manifold giving the empirically optimal data summarization.

Unfortunately, it can be hard to identify the distance from a given point xxxi /∈ Z( f ) to the
closest point xxx in Z( fff ) in closed-form expressions. For instance, Mizuta (2004) Section
6.3.2.3 gives a direct technique based on partial differential equations; this is hard to
use because such equations are not easy to solve and the parameters they introduce
must be estimated. Fortunately, several other approximations have been proposed. The
crudest is the algebraic distance

dist(xxx,Z( f ))≈
K

∑
k=1

fk(x)2,
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which makes sense because it gives zero if xxx ∈ Z( fff ). The Taubin approximation (see
Taubin (1988), and Taubin et al. (1994)) rests on writing f (xxx)− f (x̂xx) = (xxx− x̂xx)∇ f (xxx),
where xxx is a given point and x̂xx is the point in Z( fff ) closest to it. Since f (x̂xx) = 0, rear-
ranging gives

dist(xxx,Z( fff ))≈ ∑K
k=1 fk(xxx)2

‖∇ fff (xxx)‖2 , (9.6.2)

which can be used in (9.6.1). Since (9.6.2) gives anomalous results when ∇ fff (xxx) is near
zero, a further refinement is found in Taubin et al. (1994), exp. 4.

Minimizing (9.6.1) for various classes of Z( fff ) is not stochastic: It finds a minimum
irrespective of any distributional structure, just like least squares fitting of a hyperplane
in linear regression. Indeed, minimizing in (9.6.1) is a sort of generalization of least
squares fitting. To see this, note that, in principle, minimization can be done directly
on the distance or approximate distance in (9.6.1) or (9.6.2). In this case, the class of
Z( fff ) comes from the zero sets of a collection of polynomials fk(Sxxx|θk) in which θk is

multidimensional and represents the coefficients of monomials xd1
1 ...x

dp
p appearing in

fk, θθθ = (θ1, ...,θK). Now, the content of (9.6.1) can be expressed in a more familiar
form. Let x̂xxi be the point in Z( fff ) closest to xxxi for i = 1, ...,n. Then the x̂xxis depend on θθθ
and the natural squared error is

R =
n

∑
i=1

(xxxi− x̂xxi)T(xxxi− x̂xxi). (9.6.3)

Clearly, R depends on θθθ , the data, and Z( fff ).

Like the linear regression case, the partial derivatives of R with respect to the compo-
nents of θθθ can be found, and used to give a set of equations that can be solved; see
Mizuta (2004). This is called the Levenberg-Marquardt method. See Faber and Fisher
(2001a) and Faber and Fisher (2001b) for a detailed description and comparative ex-
amples. Taubin et al. (1994) proposed a representation of the space of polynomials that
enables fitting to be done more readily. More recently, Helzer et al. (2004) refined the
Taubin approximate approach to get better robustness with noisy data.

One limitation of this approach is that the estimates obtained by minimizing (9.6.3),
or expressions like it, do not have a sampling distribution. So, inferences from an
algebraic approach do not have confidence or credibility associated with them. Never-
theless, the results can be suggestive and effective. The next section reports on several
efforts to stochasticize algebraic fitting.

9.6.2 Principal Curves and Surfaces

Principal curves and surfaces were invented by Hastie (1984); they represent a curve
or surface as the expectation of a conditional population. This is one way to include an
error structure in (9.6.1).
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Consider curves first. A curve in p dimensions is the image of a function fff : IR→ IRp

of the form fff = ( f1(s), ..., fp(s)); it is conventional to use s to mean the arclength
parametrization of the curve (i.e., s is the length of travel from f (0) to fff (s) along the
curve and, for all s, ‖ fff ′(s)‖ = 1). Now, suppose a p-dimensional random variable XXX
with distribution q is mean zero and has finite second moments. The projection of a
value XXX = xxx onto the curve fff can be written as

s f (xxx) = sup{s : ‖xxx− fff (sss)‖= infu‖xxx− fff (u)‖}; (9.6.4)

i.e., xxx is associated with the value of s for the point fff (s) that is closest to xxx, and ties are
broken by choosing the largest. In well-behaved cases, a hyperplane of points xxx gets
projected to the same s f .

It is now reasonable to define the curve fff as a principal curve of q if it can be rep-
resented as the conditional expectation of XXX over such xxxs. Formally, fff is a principal
curve of q if and only if

fff (s) = Eq(XXX |s f (xxx) = s). (9.6.5)

This says that, for each s, averaging over the points in the (p−1)-dimensional manifold
s f (xxx) = s defined by s gives the point on the curve at distance s. Empirically, one
would be tempted to average over xxxis in the ε-envelope at s, {|s f (xxx)− s| < ε}, as
an approximation to (9.6.5), with ε chosen to ensure a sufficient number of xxxis were
included; this would give a piecewise approximation to the curve defined by fff .

Hastie and Stuetzle (1989) note that, for any spherically symmetric distribution, any
straight line through its mean vector is a principal curve; e.g., in a standard two-
dimensional normal, any line through the origin is a principal curve. More generally,
for ellipsoidal distributions, the principal curves include the principal components. The
inclusion may be proper because for spherically symmetric distributions a circle of ra-
dius E‖X‖ is also a principal curve. Furthermore, if a version of (9.6.5) is applied to
surfaces, these properties generalize. A further complication is that Carreira-Perpinan
(1997) observes that if a straight line satisfies (9.6.5), then it is a principal component,
but that in a model of the form XXX = ggg(s)+ ε , where g : IR→ IRp and ε is spherically
symmetric, fff seems not to be a principal curve. The bias, though, may be small and
decrease to zero if Var(ε)/κ( f )→ 0, where κ is the radius of curvature of fff . (The
radius of curvature of fff (s) is the radius of a circle that would be tangent to the curve
at fff (s); it gets large as fff gets closer to a straight line, which has infinite radius of
curvature.)

Hastie and Stuetzle (1989) propose a simple algorithm for finding principal curves.
The idea is to start with the first PC, use it to define the projection in (9.6.4), and
then use this projection on the right-hand side of (9.6.5) to calculate a new curve onto
which points can be projected, cycling until convergence is observed. Applying this
“expectation-projection” algorithm data is not hard but involves numerous subjective
choices. To state the procedure, represent the principal curve by lines determined from
n points (si, fff i). Mizuta (2004) gives the following template:

Start with xxxi for i = 1, ...,n.
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� Initialize by setting fff 0(s) = x̄xx+uuus, where uuu is the first PC.

� Expectation Step to update fff (s): For j = 1,2, ..., smooth over the entries of XXX
separately given s. Call the result fff j(s). That is, for each s, set

fff j(s) = E(XXX |s f j−1(xxx) = s).

� Projection Step to update s as a function of xxx: For each xxxi, search for the point on
the curve fff j(s) closest to it and assign it the corresponding s. That is, for each xxx,
set

s j(xxx) = s f j(xxx)

and transform the left-hand side to get the new arclength parametrized curve.

� If a convergence criterion is met, stop. Otherwise repeat from the expectation
step.

One natural criterion for the convergence is to set

D(h, fff j) = Es j

(
E‖XXX − f (s j(XXX))‖2| s j(xxx)

)
,

where h = h j is the distribution of the XXX satisfying s f j−1(xxx) = s and require
(D(h, f j−1)−D(h, f j))/D(h, f j−1) to be suitably small.

In practice, in this E step, one calculates the expectation with respect to h and uses
f j(s) as an estimate for it. Likewise, in the P step, one projects the data to the curve
f j(s) and assigns s j(xxx).

This procedure automatically fits a line. It can be generalized, more or less directly, to
fit a 2D surface or a hypersurface. Choosing which geometric shape to use as a data
summary is a difficult matter for model selection; there is no obvious metric to permit
comparisons across dimensions.

A variety of conceptual problems remain with principal curves and surfaces. How-
ever, Delicado (2001) has carefully reformulated the definition while retaining its in-
tuition and has a general result ensuring that principal curves exist. This treatment
ensures that the theoretical problems from conditioning on sets of measure zero im-
plicit in (9.6.5) are resolved. Moreover, Delicado (2001) proposes algorithms that seem
to produce curves appropriately. Principal surfaces remain more difficult, but Chang
and Ghosh (2001) have a computational method called probabilistic principal surfaces
based on applying (9.6.4) at specific points, and LeBlanc and Tibshirani (1994) have
a treatment of surfaces using MARS, effectively replacing the p univariate smooth-
ings in the E step with a single multivariate smoother. Amato et al. (2004) extend
probabilistic principal surfaces to an ensemble setting using bagging and stacking in
a classification, or prediction, context. A more complete listing of references can be
found at http://www.iro.umontreal.ca/˜kegl/research/pcurves/
references/.
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9.7 Supervised Dimension Reduction: Partial Least Squares

One of the obvious criticisms of unsupervised dimension reduction is that it explains XXX
but there is no reason to be sure that the result explains a response Y . In addition, since
supervised techniques use the extra information in Y , it is reasonable to believe they
will usually do better than unsupervised techniques. Therefore, supervised techniques
may define a standard for assessing how well an unsupervised technique performs. For
both of these reasons, among others, it is worthwhile to look at unsupervised dimension
reduction as well.

One of the most important supervised dimension reduction techniques is called partial
least squares (PLS). In fact, PLS is a collection of techniques with two common prop-
erties: (i) PLS maximizes correlation between Y and XXX (rather than maximizing the
variance of XXX only, for instance) and (ii) PLS can be interpreted, somewhat like FA, in
terms of seeking underlying factors of XXX that are also underlying factors of Y . Some
PLS techniques are defined by procedures; others have a theoretical justification.

There are two versions of PLS presented here. The first presents PLS as a variant of
PCs but using correlation in place of variance. The second identifies the model and
gives a procedure explicitly. In this context, some general properties of PLS can be
stated easily.

9.7.1 Simple PLS

Given data (Yi,XXXi) for i = 1, ...,n, let

Σ̂ΣΣ =
1
n

n

∑
i=1

(xxxi− x̄xx)(xxxi− x̄xx)T

and

ŝx,y = Ĉov(Y,XXX) =
1
n

n

∑
i=1

(yi− ȳ)(xxxi− x̄xx).

Let d ≤ p be the number of linear combinations of XXX believed necessary to model
the response, and denote them ttt j, j = 1, ...,d. To find the ttt js, write them in terms of a
matrix WWW so that ttti =WWWxxxi, where WWW =WWW d is a d× p weight matrix, WWW = [www1, ...,wwwd ]T.

Now, the simple PLS factors for the xxxis are given by the www js, where

www j = argmax
{

Cov(Y,wwwT)| ‖www‖= 1,∀k = 1, ..., j−1 : wwwTΣ̂ΣΣwwwk = 0
}

. (9.7.1)

Note that the first PLS maximizes the correlation between Y and XXX , the second one
maximizes the correlation subject to being orthogonal to the first, and so on. That is,
the PLS dimensions are linear combinations of the Xjs whose vectors of coefficients
have norm 1 and are orthogonal to the earlier PLS linear combinations.
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Once found, Y can be regressed on the ttt js; see Hinkle and Rayens (1994). Typi-
cally, the resulting variances of the regression coefficients are smaller than under least
squares. However, they can be biased. Even so, this often leads to a lower MSE over-
all. One standard algorithm for finding the PLS coefficients is in Rosipal and Trejo
(2001); Wegelin (2000) provides another variant in the factor analytic setting. Hastie
et al. (2001) provides a slightly different formulation of the procedure and a different
statement of the optimality PLS vectors satisfy.

9.7.2 PLS Procedures

The most popular way to find PLS dimensions is Wold’s nonlinear iterative partial least
squares (NIPALS) procedure. It rests on a model similar to FA in which both the ex-
planatory variables XXX and a q-dimensional response, YYY = (Y1, . . . ,Yq), are represented
in terms of underlying related factors. The relationship is seen in the second step of the
procedure below.

9.7.2.1 The PLS Model and NIPALS

At its root, the idea is to use one FA on XXX and another FA on YYY but tie them together by
the procedure used to identify the factors. So, following Rosipal and Kramer (2006),
write the joint � factor model for XXX and YYY as

XXX = TTT PPP+EEE

YYY = UUUQQQ+FFF , (9.7.2)

but regard XXX = (XXX1, . . . ,XXXn)T as an n× p data matrix and YYY = (YYY 1, . . . ,YYY n)T as the
corresponding n× q response matrix; both XXX and YYY are assumed to be relocated to
have mean zero. In (9.7.2), TTT and UUU are both n× � matrices of the � factors. The PPP,
p× �, and QQQ, q× � are the factor loadings in the two FA models and the EEE and FFF are
the n× p, n×q residual matrices.

The goal is to find � linear combinations from XXX and � linear combinations of YYY to use
as new dimensions. Write the first of these as ttt = XXXwww and uuu = YYY ccc; these will give the
columns of TTT and UUU . Parallel to (9.7.1), the NIPALS procedure is to find www and ccc such
that

Cov2(ttt,uuu) = Cov2(XXXwww,YYY ccc) = max
‖rrr‖=‖sss‖=1

Cov2(XXXrrr,YYY sss). (9.7.3)

NIPALS is an iterative procedure that produces a solution to (9.7.3) in two parts. The
first part is called deflation; it sets up the optimization problem that will yield a single
factor. The second part solves the optimization problem to find the single factor. Thus,
the two parts must be used � times to get � factors.
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The second part of the NIPALS procedure is much easier than the first and so is better
to explain first. It can be expressed in two steps, one that produces an iterate of ttt and
one that produces an iterate of uuu. Now, the procedure for the second part of NIPALS
(i.e., finding a single PLS factor) is the following.

Given a mean zero n× p data matrix XXX and a mean zero n× q response matrix YYY ,
choose an initial uuu to start the procedure.

� Set www∗ = XXXTuuu/(‖XXXTuuu‖), www = www∗/‖www∗‖, and use this to find ttt = XXXwww.

� Using ttt, do the same procedure to find uuu: Let ccc∗ = YYYTttt/(tttTttt), ccc = ccc∗/‖ccc∗‖, and
use this to find uuu = YYY ccc.

� Cycle by replacing the uuu in the first step with uuu = YYY ccc from the last step.

Note that it is in the second step that the underlying factors of XXX are related to the
underlying factors of YYY by the expression for ccc∗ and that, if q = 1, then UUU = YYY and the
procedure converges after one iteration.

The first part of the PLS procedure is harder; it gives the sequence of maximization
problems to be solved. The first of these maximization problems has already been
identified: It is (9.7.3). Later iterates, to find successive PLS linear combinations, are
more difficult and can be found in several ways.

• The simplest way to iterate over the minimization problems is to compute the load-
ing vectors at the kth iteration and use them to form a rank one approximation to XXX
and YYY based on ttt and uuu. Then XXX and YYY are “deflated” by the approximation and the
result used to find the next single PLS factor. That is, write the column of PPP and QQQ
in (9.7.2) as

ppp =
XXXTttt
tttTttt

and qqq =
YYYTuuu
uuuTuuu

and replace XXX and YYY in (9.7.3) with the deflated forms

XXX − ttt pppT and YYY −uuuqqqT. (9.7.4)

Then find the next single factor using the same procedure as used to find the last. In
this way, hopefully, XXX and YYY are accurately approximated by � dimensions. This is
called PLS Mode A (see Rosipal and Kramer (2006)) and was the original formu-
lation.

• An alternative way to deflate XXX and YYY that is more true to the model is to assume

UUU = TTT DDD+HHH

at the kth stage, where DDD is k×k diagonal and HHH is the residual matrix. Using (9.7.5)
assumes the tttm for m = 1, . . . ,k are good predictors of YYY , see Rosipal and Kramer
(2006). Now, the score vectors, the tttms, can be used to deflate YYY as well as XXX . Thus,
at each iteration,
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XXX = XXX − ttt pppT and YYY = YYY − ttttttT

tttTttt
= YYY − tttccc.

This guarantees the mutual orthogonality of the tttms and is called PLS1 (unidimen-
sional YYY ) or PLS2 (multidimensional YYY ).

• It can be shown that the first eigenvector of the eigenvalue problem XXXTYYYYYYTXXXwww =
λwww is www. Computing all the eigenvalues of XXXTYYYYYYTXXX at the start of the procedure
can be used to define another form of the PLS procedure.

• A simpler form of PLS arises if the deflation step is omitted. There is some evidence
that this gives reasonable results. This coincides with PLS1 but differs from PLS2.

9.7.3 Properties of PLS

The original solution to the correlation maximization in (9.7.1) was as an eigenvalue
problem to be solved sequentially for the tttis. Different from the NIPALS algorithm,
a singular value decomposition is used on the matrices XXX and YYY . This can be seen
informally by using ttt = XXXwww and uuu = YYY ccc to derive

www ∝ XXXTuuu ∝ XXXTYYY ccc ∝ XXXTYYYYYYTttt ∝ XXXTYYYYYYTXXXwww,

giving
XXXTYYYYYYTXXXw = λwww

and
XXXXXXTYYYYYYTttt = λ ttt with uuu = YYYYYYTttt

for the first eigenvalues and first PLS. Expressions for the cccs and wwws follow, and sub-
sequent PLSs emerge by appropriately deflating the matrices; see Rosipal (2005) or
Abdi (2007) for more details.

A second important property of PLSs is that, like PCs and independent components,
they can be used in regression. As noted in Rosipal and Kramer (2006), using (9.7.2)
and (9.7.4) gives the regression model

YYY = TTT DDDQQQT +(HHHQQQT +FFF) = TTTCCCT +FFF∗, (9.7.5)

where CCCT = DDDQQQT is �× q and FFF∗ is the residual. Expression (9.7.5) is formally the
same as the usual least squares regression model since TTT = XXXWWW (PPPTWWW )−1 can be de-
rived and plugged into (9.7.5) to give

YYY = XXXBBB+FFF∗,

in which BBB = WWW (PPPTWWW )−1CCCT = XXXTUUU(TTTTXXXXXXTUUU)−1TTTTYYY after some derivations.

Third, PLS is similar to PCA and CCA. First, the choice of � in all three techniques
is not clear. The same sort of techniques as discussed for PCs can be used with PLS.
Second, in contrast with (9.7.1) or (9.7.3), CCA and PCA find
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max
‖α‖=‖β‖=1

Corr(XXXααα ,YYYβββ ) and max
‖β‖=1

Var(XXXβββ ),

respectively. Thus, t is seen that PLS is a weighted form of CCA but that both differ
from PCs in that they seek linear combinations highly correlated with the response
rather than seeking directions with large variability. Also, as written, CCA and PLS
are supervised, while PCA is unsupervised. However, XXX can be partitioned into XXX =
(XXX1,XXX2), and both CCA and PLS can be described in terms of two matrices, XXX = XXX1

and YYY = XXX2, so that no actual response is used. In this way, PLS or CCA can be made
unsupervised, although the interpretation would change.

Finally, like PCs and ICA, PLS can be extended. Nonlinear PLS can be defined by
extending the linear model to UUU = g(TTT ) + hhh = g(XXX ,www) + hhh. Another sort of nonlin-
earization of PLSs – and PCs and ICA – is via the kernel trick. As before, this uses a
function Φ to give a transformation of the original space into an RKHS that becomes
a higher-dimensional feature space. The NIPALS method extends to this case as well.

9.8 Supervised Dimension Reduction: Sufficient Dimensions
in Regression

In regression models for a single response Y as a function of a p-dimensional XXX , the
goal of sufficient dimension reduction (SDR) is to replace XXX with its projection onto
a subspace S of IRp without loss of information about the conditional distribution
(Y |XXX). If the subspace is as small as possible, then optimal dimension reduction can
be achieved. When a model with relatively few predictors is true and can be found, the
Curse is avoided.

The minimal S is often denoted S (Y |XXX) and called the central subspace. It is

S (Y |XXX) =
⋂

{S : Y⊥(XXX |PS XXX)}
S , (9.8.1)

where ⊥ indicates stochastic independence and PS is the projection in the Euclidean
inner product of IRp onto S . In (9.8.1), the idea is that when Y is independent of
(XXX |PS XXX), then, parallel to the concept of sufficiency, PS XXX has all the information
about Y that was in XXX . The central subspace (CS) is unique and permits reduction
of Y = XXXβββ + ε to Y = UUUγγγ + εT, where UUU can be regarded as RRRXXX , in which RRR is
p× dim(S (Y |XXX)), whose columns RRR j for j = 1, . . . ,dim(S (Y |XXX)) form a basis for
S (Y |XXX). The linear combinations RRR jXXX are called the sufficient predictors. In general,
linear transformations of XXX lead to linear transformations of S (Y |XXX). Indeed, for ZZZ =
Σ−1/2(XXX−EXXX), S(Y |XXX) = Σ−1/2S (Y |ZZZ); see Cook and Ni (2005).

Expression (9.8.1) is an instance of the more general concept of a dimension reduction
subspace, which is any S with the property that

Y ⊥ (XXX |RRRXXX) (9.8.2)
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for some p×K matrix RRR. The CS is the dimension reduction subspace of the smallest
dimension. Arguably, a more important reduction is to the subspace of the CS that
contains the mean as a function of the predictors. Its definition differs from (9.8.1) in
only requiring a subspace of the predictor space that can express the mean of Y , not
necessarily the whole distribution of Y . Thus, in parallel with (9.8.2), S is a mean
dimension reduction subspace if

Y ⊥ (E(Y |XXX)|RRRXXX), (9.8.3)

where S is spanned by RRRXXX . Note that (9.8.2) implies (9.8.3), so every dimension
reduction subspace is a mean dimension reduction subspace (see Cook and Li (2002))
and leads to a central mean dimension reduction subspace (CMS) by intersection as in
(9.8.1). Fortunately, for location regressions, the CMS and CS coincide.

A standard way to estimate the CS is by inverse regression, trying to model XXX as a
function of Y rather than Y as a function of XXX . This approach is presented in detail in
Cook and Ni (2005) and is followed closely here. To make a link between the CS and
inverse regression, the linearity condition

E(ZZZ|PS (Y |ZZZ)ZZZ) = PS (Y |ZZZ)ZZZ (9.8.4)

is often imposed. Condition (9.8.4) is equivalent to requiring that E(XXX |RRRXXX) be a linear
function of RRRXXX , where the columns of RRR form a basis for S (Y |XXX). When (9.8.4) holds,
E(ZZZ|Y ) ∈S (Y |ZZZ) and this implies

Span(Cov(E(ZZZ|Y )))⊆S (Y |ZZZ).

When Y is discrete, E(XXX |Y = y) can be estimated by averaging the xxxis that corre-
spond to y. When Y is continuous, discrete approximations of the same form can be
used. Specifically, sliced inverse regression (SIR) as developed by Li (1991), uses a
discretized version Ydisc of Y by partitioning the range of Y into h slices. In gen-
eral, S (Ydisc|XXX) ⊆ S (Y |XXX) and, when h is large enough, equality is achieved; i.e.,
S (Ydisc|XXX) = S (Y |XXX). Consequently, for the rest of this section, Y is assumed dis-
crete, taking H values h = 1, . . . ,H called slices.

In Chapter 4, the SIR methodology was presented. The core result can be restated here
as follows. First, the design condition in Li (1991), which applies to the marginal distri-
bution of the predictors rather than to the conditional distribution (Y |XXX), is also equiv-
alent to (9.8.4). Then, if dim(S (Y |ZZZ)) is known, Span(Cov(E(ZZZ|Y ))) = S (Y |ZZZ),
and a consistent estimate Ĉov(E(ZZZ|Y )) of Cov(E(ZZZ|Y )) is available. Specifically, the
span of the eigenvectors from the dim(S (Y |ZZZ)) largest eigenvalues of Ĉov(E(ZZZ|Y ))
is a consistent estimator for S (Y |ZZZ). Thus, SIR, like PCs, rests on a spectral decom-
position of the covariance matrix. Note that the number of eigenvectors used is the
dimension of the subspace to which the p variates in XXX = (X1, . . . ,Xp) is reduced and,
in principle, one can choose fewer than dim(S (Y |XXX)) of them.

To go beyond SIR to get better estimates of the CS, consider the parameter

Sξ = Span{ξ1, . . . ,ξH},
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in which

ξy = Σ−1/2
E

(
Σ−1/2(XXX−E(XXX))

∣∣∣∣Y = y

)
= Σ−1/2

E(ZZZ|Y = y).

Under linearity (i.e., (9.8.4)), Sξ ⊆S (Y |XXX); sometimes Sξ = S (Y |XXX), a condition
called coverage.

Inference about Sξ does not depend on linearity or coverage, however. Estimates of a
basis for Sξ are also estimates of a basis for the CS. For d = dim(Sξ ), denote a basis
of Sξ by the matrix βββ = (β1, . . . ,βd), where βk ∈ IRp. Then βββ is an estimate of the
basis of the CS. In terms of the ξ js whose span defines Sξ , one can define a matrix γγγ
with columns given by the vectors γy by ξy = βββγγγy so that

ξξξ = (ξ1, . . . ,ξH) = βββγγγ.

By the definition of conditional expectation, this gives ξξξ (P(Y = 1), . . . ,P(Y = h))T =
0, the intrinsic location constraint.

The natural way to estimate Sξ is to estimate the ξks. Given a sample (Yi,XXXi) for
i = 1, . . . ,n, Cook and Ni (2005) suggest writing XXXy, j to mean the jth observation of XXX
in slice y for j = 1, . . . ,ny, where n1 + · · ·+ nh = n. Then X̄XX ·,· is the overall mean and
X̄XXy,· is the mean on the yth slice containing ny points with Y = y. Provided the estimate
Σ̂ of Σ is positive definite, one can set ξ̂y = Σ̂−1(X̄XXy,· − X̄XX ·,·) so that

ξ̂ξξ = (ξ̂1, . . . , ξ̂H) ∈ IRp×H .

The problem is that, for large H, the case of greatest importance for continuous Y , this
estimate may have more than d dimensions purely by chance. Thus, even though it
is reasonable to estimate Sξ by the column space of ξ̂ξξ , it is unclear how to obtain a
d-dimensional estimate of Sξ .

Cook and Ni (2005) resolve this problem by proposing a quadratic discrepancy func-
tion. The idea is to define two matrices BBB∈ IRp×d and CCC ∈ IRd×� to express the optimal
reduction to d dimensions and then to minimize

Fd(BBB,CCC) = ‖vec(ξ̂ξξQQQ)− vec(BBBCCC)‖VVV (9.8.5)

over BBB and CCC for fixed d. In (9.8.5), the p�× p� matrix VVV defines the inner product giv-
ing the sense in which the reduced column space of ξ̂ξξ is to be found. The H×� matrix
QQQ can be absorbed by replacing CCC with CCCQQQ−1. So, without loss of generality, (9.8.5)
only depends on BBB, CCC, VVV , and ξ̂ξξ . The columns of BBB represent a basis for Span(ξξξQQQ),
and CCC represents the coordinates of ξξξ relative to BBB. Note that the choice of d < H is
what makes the product BBBCCC force a reduction in dimension; the role of � only appears
to help indicate how CCC or QQQ organizes the columns of ξ̂ξξ .

One procedure for finding the minimizing values of BBB and CCC is an alternating least
squares method; see Cook and Ni (2005).
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Let ζ̂ζζ = ξ̂ξξDDDUUU , where UUUTUUU = IH−1 and UUUT1H = 0 and DDD is diagonal with ny/ns on
the main diagonal. Then set ζζζ = βββγγγDDDUUU .

The idea of the procedure is to fix VVV , absorb QQQ so it can be ignored, and then start
with a guess BBB0 of BBB, obtaining CCC0 as the least squares coefficients from the regression
of ζ̂ζζQQQ on BBB. This gives an initial value Fd(BBB0,CCC0). Redo the regression of ζζζ on BBB0,
but with the kth column of BBB0 deleted to get the residual (a column vector formed
from the matrix of residuals). A new kth column for BBB0 can be found by minimizing
Fd(BBB0,−k,CCC0,−k) subject to the constraint that the new kth column be orthogonal to all
the columns of BBB0,−k. With this new BBB1, reminimize Fd(BBB1,CCC) over CCC to get the new
CCC1. Then repeat the procedure with BBB1 and CCC1 and continue until Fd(BBB,CCC) no longer
decreases. Now, Span(BBB∞) is the estimate of Sξ , where BBB∞ is the final value of BBB from
the alternating least squares procedure.

Each choice of VVV and d gives a dimension reduction scheme. However, it is desirable
to find an estimate V̂VV of VVV that will result in the smallest discrepancy. To develop this,
Cook and Ni (2005), Theorem 1 establish that

√
n(vec(ξ̂ξξDDD))− vec(βββγγγdiag(P(Y = 1), . . . ,P(Y = H)))→ N(0,Γ ),

whereΓ = Cov(vec(Σ−1/2ZZZεεεT)). The vector εεε = (ε1, . . . ,εH)T is a collection of resid-
uals obtained as follows. Consider H indicator functions for the slices of Y . That is,
let Ih(XXX) = 1 when XXX is in the hth slice and zero otherwise. Then E(Ih(XXX)) = fh, the
frequency of the slice, P(Y = h), and for h = 1, . . . ,H,

εh = Ih−E Ih−ZZZE(ZZZIh)

are the population residuals from an OLS fit of Ih on ZZZ.

Cook and Ni (2005) also establish that

√
n(vec(ζ̂ζζ )− vec(βββγγγ))→ N(0,Γζ̂ ),

whereΓζ̂ is p(H−1)× p(H−1) and that a consistent estimate Γ̂ζ̂ ofΓζ̂ can be obtained

from Γ . (In fact, Γζ̂ = (UUUT⊗ III)Γ (UUU⊗ III).)

The best VVV to use in Fd (i.e., the one giving the smallest variances for estimates of any
function of vec(ζζζ )) is a consistent estimate Γ̂−1

ζ̂
for Γ−1

ζ̂
, so it remains to provide an

estimate of Γ . This can be done by using sample versions of Σ , the zzzis, and εεε . The
standard estimate of Σ and the resulting zzzis suffice, and a sample version of εεε can be
found by substituting sample means for E(Ih) and EZZZIh for each εh. This gives the
sample version ε̂h,i = Ih,i−nh/n− (xxxi− xxx·.·)Tξ̂h(nh/n) for i = 1, ...,n. Using these, Γ̂
can be found and therefore so can γ̂ζ̂ .

To choose d, a testing procedure is often used. Let Fire
d (BBB,CCC) denote the optimal ver-

sion of Fd , using Γ̂−1
ζ̂

in place of VVV . That is,

Fire
d (BBB,CCC) = (vec(ζ̂ )− vec(BBBCCC))TΓ̂−1

ζ̂
(vec(ζ̂ )− vec(BBBCCC)).
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Also, let F̂d = minFd(BBB,CCC), where the minimum is over BBB and CCC as found by the
alternating least squares procedure. Then, nF̂ire

d has a limiting chi-squared distribution

with (p− d)(H − d − 1) degrees of freedom, where d = dim(Sξ ) and Span(β̂ββ ) is

consistent for Sξ , where β̂ββ = argminFire
d (BBB,CCC). Given this, for testing nulls of the

form H0 : d = k vs. H1 : d > k, one can compare the sample value nF̂k with the
1−α percentile from the chi-squared distribution with (p−d)(H−d−1) degrees of
freedom and reject if nF̂k is too large. If H0 is rejected, increment the null by 1 and
test again, stopping when rejection at level α is no longer possible. This final test gives
the appropriate value of d.

An important special case of the quadratic discrepancy function in (9.8.5) sets VVV =
diag(n/n1, . . . ,n/nH)diag(Σ̂) which gives the SIR procedure. SIR is therefore poten-
tially suboptimal in the sense that it limits the class of procedures substantially. It is
unclear how bad the suboptimality is or when it matters most.

Finally, another variation on SDR is sliced average variance estimation (SAVE). The
core idea of SAVE is to apply the SIR procedure to the matrix E(III−ΣZZZ|Y )2 instead of
Cov(E(ZZZ|Y )). Under linearity and other conditions, Span(E(III−ΣZZZ|Y )2) ⊆S (Y |ZZZ),
so that if dim(S (Y |ZZZ) is known and Span(E(III−ΣZZZ|Y )2) = S (Y |ZZZ), then the subspace
spanned by the eigenvectors from the dim(S (Y |ZZZ)) largest eigenvalues of an estimate
of E(III−ΣZZZ|Y )2 is a consistent estimate of S (Y |ZZZ).

9.9 Visualization I: Basic Plots

Imagine a continuum of variability such that statistical problems can be ordered by
increasing uncertainty about the data generator. At the low end are unimodal, univari-
ate, IID data sets, with largish sample sizes, that can be explained by a parametric
family with a small number of parameters. Next would come data sets with the num-
ber of parameters increasing with n, or data sets with simple dependence structures,
more elaborate modal structures, or larger ps. After that would come data generators
that required some of the classes studied in Chapter 4 with potentially infinitely many
parameters: neural nets, trees, MARS, projection pursuit, and so forth, possibly with
large p, small n, and dependence structures. Another more complicated step would
be problems in which even these methods were ineffective and one would have to
use clustering or dimension reduction just to find enough regularity to model. Finally
would come the classes of problems in which only nonparametric classes of models
would be effective.

Within the penultimate class in the continuum of variability, there are many ways a
data set can be complicated. The dimension p may be large; the joint density of the
components of XXX may be rough, with many local modes giving unusual dependencies
and strange marginals; the sample size may be so small relative to the variability in
the data that inferences are weak at best; and there may be substructures or subsam-
ples of the data that are so important that they should be modeled separately. It is not
hard to imagine other sorts of complexity as well – the data might have been gathered
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sequentially, with the experiment changing from time to time, as in Internet data. The
consequence is that model uncertainty in all its forms dominates so that for many data
sources only approximate models can be proposed and used for inference up to the
limit of their reliability.

Aside from their obvious role in displaying results, visualization techniques are most
important for this penultimate class in which no parametric family can be proposed
a priori. Underneath all the variability there may in fact be a very intelligible model;
however, teasing it out from the data in the absence of physical knowledge may be
exceedingly difficult. In such cases, visualization, like dimension reduction and clus-
tering, can be regarded as a collection of search strategies to find some regularity in
the data strong enough that modeling can say something about it. Indeed, there is
great subjectivity in how the boundaries among visualization, clustering, and dimen-
sion reduction are drawn. This is so because clustering and dimension reduction find
properties of the data to visualize; visualization can be used to find effective dimen-
sion reductions or to find clusters; and clustering can lead to dimension reduction and
conversely.

To see the importance of visualization in a simple context, consider Fig. 9.1, which
depicts the pairs (Yi,Xi) for n = 97, with 27 points on a straight line and 70 points gen-
erated with noise. It is easy to see that there are two subsets of points, which should be
modeled separately. However, any naive modeling attempt, by regression for instance,
will miss both subsets, defaulting to an average solution.
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y=3*x+11
y = 3*x+2 + error

Fig. 9.1 The 97 bivariate data points plotted visually segregate into two clusters, easily seen by the
different symbols dots and circles.

For cases such as Fig. 9.1, it would be nice to be able to cherry-pick. In practice, this
might mean using a clustering technique to find (hopefully two) clusters. Then, choose
the largest cluster and fit a regression model. Provided the model fits well, remove
outliers from the cluster according to some reasonable criterion and search the other
clusters for points that fit the model well, putting them into the first cluster if they
improve the fit or at least do not worsen it much. Reclustering the remaining points
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and repeating the procedure might reveal the two-cluster structure that is obvious in
Fig. 9.1, even though in more complicated settings lower-dimensional substructures
could be hard to discern. In general, there are the usual caveats, among which are: (i)
The goodness-of-fit measure should not depend on the sample size or p (e.g. adjusted
R2); (ii) the modeling within a cluster should use some trade-off between sample size
and number of variables (e.g., Mallows’ Cp); and (iii) the number of clusters is subject
to uncertainty.

If this kind of procedure were used with the data from Fig. 9.1 and the first cluster
with 70 points had been found, the graph of most reasonable assessments of fit would
look something like Fig. 9.2 as data points from the smaller cluster were added. This
plot is based on using R2 for fitness with the data from Fig. 9.1. The total sample size
used here is 80; the first 70 observations are from the noisy cluster and the last 10
observations were generated exactly on the line, as indicated by the knee in the curve.
Although this procedure is not formal, it does accurately reveal the structure of the data
in a suggestive way. In principle, one could propose a model for how adding wrong
model data affects statistics such as R2, generate a curve like that in Fig. 9.2 that has
an abrupt change in direction at the knee, and test whether the points added beyond the
knee were sufficiently different to reflect a different model.
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Fig. 9.2 This figure shows how accumulating data within a model affects fit. The first 70, data points
fit the model. Past 70 the data points were from the smaller cluster, a different model, and the fit drops
off suddenly. FM indicates where the sequentially fitted model begins to include wrong model points.

Just as estimating a variance leaves one fewer degree of freedom for estimating a nor-
mal mean or performing a hypothesis test on a parameter “uses” a degree of freedom,
so making diagrams from data uses degrees of freedom. This means that the probabil-
ity of type I error in subsequent testing will be larger than the stated α and the actual
standard errors of estimators will be larger than those found by most procedures. In
short, inferences after data snooping by visualization, like those after dimension reduc-
tion and clustering, will necessarily be much weaker. As tempting as these techniques
are, they gobble degrees of freedom faster than calculating individual statistics and
really should be done selectively if downstream inference is of great importance and
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multiple comparison procedures are not available. This degrees of freedom argument
does not preclude extensive visualization to present inferences or to search for struc-
ture to model, only formal inference procedures. In practice, the cost of these caveats
is usually imprudently ignored.

The rest of this section is taken up with a listing of a variety of visualization tech-
niques for revealing the structure within data. It is assumed that the reader is generally
familiar with the usual residual plots from regression analyses and exploratory data
analysis as presented in, for instance, Neter et al. (1985), Tukey (1977), du Toit et al.
(1986), Cleveland (1993), Tufte (2001), and many other texts. So, the first collection
of techniques here is easy, based on familiar quantities, but not routine. Accordingly,
these are listed and only briefly explained. The challenge is to use them ingeniously in
examples – or develop new representations that are better suited to a particular appli-
cation. While the present list is far from exhaustive – the extensive graphics associated
with quality control and time series are omitted – the intent is to focus on graphics
that represent the data faithfully so as to bring out features that would not otherwise be
obvious. Techniques that include transformations are deferred to the next section.

9.9.1 Elementary Visualization

There is a large and growing body of literature devoted to representations of data with
the intent of underscoring their key qualitative features. Key features include whether
the data are numeric or categorical; scalar, vector, or more complex; discrete or con-
tinuous; ordered or unordered; dependent or independent, and so forth. Such features
of the data must have corresponding features in the key aspects of diagrams. Impor-
tantly, the physical meaning of geometric aspects of a representation should not mis-
lead a viewer into incorrect inferences. Geometric aspects include position along a
scale (common or not, aligned or not); length, direction, and curvature of lines; and
angle, area, and volume for shapes. Nongeometric aspects such as coloring, choice
of symbol, motion, and adjacency on the page or screen of different components also
affect the message a viewer will perceive. Again, the basic rule is that these choices
should not lead to incorrect inferences.

The program GGobi, available from www.ggobi.org, described in Cook and Swayne
(2007), is one important contribution to visualization; another collection of packages
is available in R at seewww.r-project.org. There are many others.

Below is a listing of several common ways to represent data with little or no processing.
These techniques are most useful when the dimension is between 4 and, say, 20 or so.
Once the dimension gets too high, visualization methods cannot help understand the
patterns very well unless some dimension reduction is used first. In the remainder of
this section, descriptions are cursory because the methods are easy to visualize and
the figures tell the story better. One technique that is not described here is the parallel
coordinate plot; it was already introduced in Chapter 7 to explain polythetic clustering.
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9.9.1.1 Profiles and Stars

A profile in p dimensions is a representation of a vector of the form (x1, ...,xp) in
which the values x j are plotted adjacent to each other. This can be presented as a bar
graph with p bars on a common axis or as a polygonal line. Often this is done for all n
points in a data set giving n graphs. Profiles can be smoothed to give a polygonal line.
Like the parallel coordinate plots used in Fig. 7.4, this can reveal patterns but is highly
dependent on the ordering of the variables.

A star in p dimensions is a representation of (x1, ...,xp) in which the values x j are
plotted on axes drawn from a center point. Any two adjacent axes have the same angle
between them. The values x j are noted on the axes and then connected to form a p-
gon. Doing this for a data set gives n p-gons that may exhibit characteristic patterns,
depending on the ordering of the x js.

The typical appearances of stars and profiles can be seen in Fig. 9.3. Using data on 17
classes of household expenditures from nine Canadian cities for 2006, the top panel
in Fig. 9.3 shows one star with 17 points for each city. Household expenditures means
dollars per year spent on food, shelter, clothing, and so forth. The data, along with
precise definitions, can be found at http://www40.statcan.ca/l01/cst01/
famil10d.htm. Note that the absolute number of dollars per year is not shown,
although all the dimensions of the stars are comparable. The bottom panel in Figure 9.3
shows the profiles for the cities plotted on the same axis. The four peaks are suggestive,
but a little misleading if read too closely: The four largest peaks at 2, 6, 9, and 15
correspond to shelter, transportation, recreation, and taxes. However, the first variable,
food, should be a peak: It is higher than all the other variables, except for shelter,
transportation, and taxes, which is the biggest expense. The real use of this graph is
to see that despite differences suggested by the stars, the distribution of expenditures
looks fairly similar across the cities.

The commands used to create the plots were:

library(Hmisc)
library(aplpack)
xx<-read.csv(file="canada.csv",head=TRUE,sep=",")
postscript("CanadaStars.eps")
stars(xx, labels = xx[,1], full = FALSE,
main="Canadian Household Expenditures")
postscript("CanadaProfile.eps")
ts.plot(t(xx[,-1]), gpars=list(xlab = "Type of
Expenditure", ylab="Amount Spent", lty=c(1:17)))

9.9.1.2 Trees

A tree is a graph that has one root node with branches coming off it. These branches
may split into further branches. If each node has either zero or two branches coming
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Canadian Household Expenditures
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Fig. 9.3 It is seen in the top panel that Calgary’s star fans out the most uniformly over all expen-
diture classes, while Quebec City’s star has only five points of any real size; they are food, shelter,
transportation, insurance and pensions, and taxes. The lower panel shows the profiles. There are four
peaks, but the point is that across Canadian cities the distribution of expenditures is fairly similar.
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off it, the tree is binary. If each node has k branches coming off it, the tree is k-ary.
Binary trees were seen in a clustering context and called dendrograms; the branching
corresponded to splitting or uniting collections of points so the sequence of branches
summarizes an inclusion relation. Tree structures were also used in recursive partition-
ing. In these cases, the branching also reflected an inclusion relation but on the domain
of the explanatory variables. The length of the branches sometimes has a meaningful
interpretation for clustering. In single linkage, for instance, it is the minimal distance
between clusters or the distance between their centroids. However, in recursive par-
titioning, it is not clear that the length of the branches has any interpretation. On the
other hand, when trees are used for regression or classification, the tree structure rep-
resents a function whose structure may indicate relationships among the variables.

Often when p is large and n is small it is useful to form a fully connected graph of
n points in IRp. If distances can be assigned to the edges, one can delete edges se-
quentially to minimize the sum of distances while retaining a connected graph. The
result is a minimal spanning tree, as discussed in Chapter 8, which may indicate new
relationships. The cuts of a spanning tree essentially define graph-based clustering.

9.9.1.3 Graphs

Graphs generalize trees. Formally, a graph is a collection of points, called nodes or
vertices, and a collection of links between them, called edges. The structure of feed-
forward neural nets is a graph: Each input variable is a vertex, and these p vertices feed
forward to the first hidden layer. If the first hidden layer is the only layer, the outputs
of that layer are combined to give a model for the response. If there is a second hidden
layer, the nodes of the first hidden layer feed forward into it. The connectivity of the
NN is therefore a graph structure in which the vertices represent sigmoid functions and
the edges indicate how the sigmoid functions are composed.

As has been seen in the clustering context, graphs can be weighted. That is, each
edge may have a number assigned to it, intuitively representing its length. Optimizing
pathlengths and graph partitions are common ways to represent and solve numerous
problems, including clustering.

Graphs also model the dependence structure among variables. This is particularly use-
ful for categorical data. In graphical models, vertices represent variables. Two vertices
have no edge between them if the two variables they represent are independent; other-
wise there is an edge. In undirected graphical models, two sets of vertices A and B are
conditionally independent given a third set C if there is no path between the vertices in
A and B that doesn’t pass through C. Directed graphical models are more complicated.
Techniques for estimating parameters, probabilities, and selecting a graphical model
in the first place are specialized and beyond the scope of this text.

Graphs similar to those in Fig. 8.4 can be used to indicate the structure of other models,
like Markov chains that represent chemical reactions, networks of genes, population
models, random walks, and so forth. The idea is that each node represents a state and
each edge coming out of a node represents a move that can be made in one time step
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with the conditional probability specified by the chain. The lower diagram in Fig. 9.4
is the state diagram for a ten state Markov chain with one source on the left and one
sink on the right, with the allowable transitions indicated by edges.

Multidimensional scaling, a visualization technique to be discussed in the next section,
takes data points in a high-dimensional space and compresses them down to a lower-
dimensional space, representing them as a fully connected weighted graph. Thus, MDS
and graphical models are two ways to generate graphs to represent the structure among
data points.

9.9.1.4 Heatmaps

A heatmap is a matrix of values that have been color coded, usually so that higher val-
ues are brighter and lower values are darker, in analogy with temperature. The columns
and rows of the matrix typically have an interpretation. In genomics, the columns and
rows may represent genes and subjects so that a bright color in a cell means the given
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Fig. 9.4 The top panel shows the (directed) graph corresponding to a generic single-output feedfor-
ward neural net. The vertices, indicated by circles, indicate functions with arguments from the previ-
ous layer and each edge indicates that the output of a vertex feeds into the next layer. The jth layer has
q j vertices, or nodes, for j = 1, . . . ,L; all nodes in a layer feed into the next layer. The bottom panel
shows a graph for a hypothetical discrete time, discrete space Markov chain: The vertices, indicated
by circles, represent states, and the edges represent the allowed transitions between states in a time
step. The graph is directed, but if there are two edges between two vertices, with opposite orientations,
then both transitions are allowed (though possibly with different probabilities). The leftmost vertex is
a source; the next five form a cycle, the next three are fully connected, and the last vertex is a sink.
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gene has a high expression in the given subject. Usually the rows and columns are
grouped so that those in the same group are next to each other; this leads to figures
comprised of homogeneous rectangles. Heatmaps are often good for presenting data
once they have been analyzed, but as a practical matter they often do not reveal much
initially because the patterns in the data tend to be weak.

A related concept is that color can indicate density of points. In a scatterplot of a large
data set, points may accumulate densely in some regions and sparsely in others. In
these cases, a local density of data points per unit area can be associated with rectan-
gular regions and the density values discretized and represented by colors, bright for
high density and dark for low density. This is much like a contour plot for a distribution
but has sides parallel to the axes and usually a lower resolution.

Figure 9.5 depicts a heatmap for data extracted from the 1974 US magazine Motor
Trend. It comprises 11 aspects of automobile design and performance for 1973–1974
models. The variables were: mpg, miles/(US) gallon; cyl, number of cylinders; disp,
displacement (cu.in.); hp, gross horsepower; drat, rear axle ratio; wt, weight (lb/1000);
qsec, 1/4 mile time; vs, the engine’s V/S ratio; am, transmission (0 = automatic, 1 =
manual); gear, number of forward gears; and carb, number of carburetors.

The commands were

x <- as.matrix(mtcars)
hv <- heatmap(x, col=colorpanel(7, "white", "grey10"),
scale="column", margin=c(5, 10),
xlab="specification variables",
ylab= "Car Models", main="Heatmap for MTcars data")

Both the models and the measurements on them have been clustered; this is typical
for a heatmap. Roughly, the models of cars are in three clusters: The bottom cluster
(Duster to Maserati) consists of cars that are heavy or have big engines; the top cluster
(Honda Civic to Toyota Corona) consists of lighter cars with smaller engines; and
the middle cluster (Valiant to Mercedes 450SL) is in between. The clustering on the
measurements on the cars is less clear: The pair on the right are measures of power and
the next two are measures of performance, but it is unclear what the block of seven (cyl
to gear) on the left represents.

The heatmap itself shows a clear dividing line between the Honda Civic and the Mer-
cedes 450SL: In each column, if the top part is light, the bottom part is dark, or vice
versa. This suggests that the middle cluster has more in common with the lower cluster
than the upper and that the small group from Honda Civic to Fiat 128 really belongs
to the top half. It is left as an exercise to rearrange the rows and columns (ignoring the
clustering) to get two dark blocks on the main diagonal and two lighter blocks off the
main diagonal, the ideal way to try to present a heatmap. In fact, typical heatmaps of-
ten look much more random than that in Fig. 9.5. In practice, heatmaps are suggestive
but little more despite their use (or overuse).
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Fig. 9.5 Heatmap for the MTcars data, with clustering on the models and variables done separately.
Darker regions correspond to higher values, lighter regions to lower values.

9.9.1.5 Composite Plots

This is a generic term for visualizations that combine two or more representations. For
instance, a heatmap may have its columns or row values grouped by the dendrogram of
a clustering procedure as in Fig. 9.5. As another instance, multivariate data from dis-
tinct locations may be represented as a sequence of stars at those locations as depicted
on a map. If each location has measurements over time, the stars for each location form
a trajectory with features having some interpretable structure.

Composite plots are efforts to compress huge amounts of data into a single diagram
by representing many variables with different geometric or compositional features.
Charles Minard’s 1869 graphic indicating the fate of Napoleon’s Russian campaign re-
mains a classic, see http://en.wikipedia.org/wiki/Charles_Joseph_
Minard. The flowmap includes a map and scale for physical distances, line thickness
for the size of the army, calibrations for time, and other features of that folly.
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9.9.2 Projections

Although elementary, it is important to remember that the search for structure in data
almost always devolves to representing features of p dimensions on a two dimensional
surface. That is, p dimensional data are, in effect understood by inferring structure
from their projections. As noted in Chapter 1, projections along many directions will
look like an undifferentiated point cloud. So, insight is required to find the directions
along which the projection of the data will reveal its features. For instance, consider
projecting p-dimensional data points of the form (xi,1, ...,xi,p) for i = 1, ...,n using a
(p× p)-dimensional idempotent matrix D. It is possible that a value xi, j0 is an outlier
in the (xi,xi′) plane but not in the (xi,xi′′) plane – think of a curve in the horizontal
plane and one point several units above it. Projected to the plane, there are no outliers,
but projected into any vertical plane, the extra point is seen to be an outlier. One way
to search for outliers is through all pairwise scatterplots from projections into the co-
ordinate planes: p(p−1)/2− p scatterplots of (x j,x j′) for j′ > j can be displayed as
an upper triangle of a matrix of scatterplots.

Another way to do this is to spin the data. The idea is to project the data points in a
three-dimensional subspace and then rotate the projections. Rotation can be interac-
tive (user controlled) or automated. Systematically doing this so that all representative
projections of the data are seen is called a Grand Tour. When the data are sparse for
their dimension, such cycling through projections often gives more insight than other
methods. In particular, watching the rotations in continuous time reveals the context
of informative projections as well as the projected points themselves. So, interesting
structure in one projection can be related to the overall structure of the data cloud.
Ideally, the shape of clusters or other formations in the data cloud can be identified. In
principle, a Grand Tour can be used to help find directions most useful in a projection
pursuit modeling sense.

Sometimes a technique called brushing is used in conjunction with projections. The
idea is that points conjectured to have some common feature (e.g., forming a clus-
ter or boundary) can be tagged with a color or symbol and tracked through a variety
of projections to see if the conjectured feature is retained from other perspectives.
Combining brushing with a Grand Tour provides a visual way to explore and test for
possible structure of high-dimensional data. From an esthetic standpoint, the resulting
movies are an important contribution to modern art.

Although low-dimensional projections from large, high-dimensional data sets often
look normal, it is easy to cluster by eye in one, two, or even three dimensions. How-
ever, lifting a lower-dimensional clustering of a projection of p-dimensional data back
up to its p-dimensional space is problematic. In this context, byplots, where a sequence
of scatterplots of two variables is indexed by the values of a third, check that the de-
pendence of a relationship between two variables on a third is not illusory.

Importantly, there are problems in which, even after dimension reduction, one is left
with many more than three dimensions. If the statistics cannot be assumed indepen-
dent, thereby ruling out many procedures, such as multiple comparisons, visualization
may be one of the few approaches available.
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To see a little of how this works in practice, consider the Australian crab data available
from www.ggobi.org/book/. The data consist of 200 measurements on a sample
of crabs from Australia. Each measurement is five-dimensional: frontal lobe length,
FL; rear width, RW; carapace length, CL; carapace width, CW; and body depth, BD.
To understand the data, one might start by plotting the projections into the coordinate
planes just to see if there is any structure worth exploring. These are shown in Fig. 9.6.
It is seen that in some of the projections the data form an elongated vee shape, while
in others the data seem to form a line.

FL
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10 15 20 15 25 35 45 10 15 20
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Fig. 9.6 Coordinate plane plots for the five variables in the Australian crab data.

Since the data are five dimensional, one can load them into the ggobi or rggobi visual-
ization system, which can be downloaded freely from www.ggobi.org. GGobi can
generate Grand Tours and other visualizations. Doing this, one can watch the way the
data forms change shape as the perspective is rotated. GGobi can be paused at interest-
ing projections. Since GGobi also gives the unit vectors defining each projection, it is
easy to identify the projection matrix and apply it to the data already loaded in R and
regenerate the figure found from the Grand Tour.

The three panels on the right in Fig. 9.7 were generated in this way. First, the upper left
was found just by watching the Tour and stopping it at a clearly delineated shape. Then
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the picture was rotated by dragging the cursor over the window with the projection
and watching it change appearance. This generated the other two panels on the right.
The next step would be to color one of the arms of the vee in the upper left and do the
rotation again to see how the points changed their relative positions. Doing this permits
separation of each arm of the vee. After some work, it can be determined that the data
look roughly like four long thin cones coming out of the origin in four directions that
are only seen to separate clearly past about 20 units. Two of the cones that are next to
each other are longer than the other two cones.

In fact, this can be confirmed by looking at the right-hand panels in Fig. 9.7. The four
cones actually correspond to two species of crabs, one for each sex. The shorter two
cones are the females and the longer two are the males. The panels on the right are the
same as the panels on the left except that the four classes are labeled (brushed) with
different shapes. The top right panel shows that the circles and triangles form the lower
arm of the vee and the squares and diamonds form the upper arm. The rotation to the
middle panel on the left brings the circles alone to the top, the squares and triangles
to the middle region, and the diamonds alone to the bottom. Continuing the rotation,
the third panel on the left shows that the circles and squares are on the top and the
triangles and diamonds are on the bottom. It is left as an exercise to use GGobi to find
a direction (down the center) in which the cones collapse into four blobs, one for each
species-sex pair.

9.9.3 Time Dependence

Essentially, the idea is to plot the data points versus their observation number. If the
data are believed to be exchangeable, then this plot should have no information and
hence reveal no patterns. However, there often is information in the sequence of the
data points. While there are extensive graphics associated with time series, the point
here is merely to represent the data to suggest its structure. So, with minimal pro-
cessing of the data, it is natural to look at plots such as (Xi,Xi+1), (Xi,(Xi−Xi−1)/σ̂)
(σ̂ is a suitable estimate of a scale to make the fraction approximate a derivative),
(i,Xi−Xi−1), or (Xi,Xi−Xi−1). Sometimes these are called phase portraits in analogy
with plots such as ( f (x), f ′(x)) in differential equations. Of course, there are many
other similar plots that might be appropriate for particular data sets, especially when
searching for structure in multivariate data. One can imagine plotting, for instance,
stars or Chernoff faces (see below) from data over time. Indeed, as with projections,
one can look at time-dependent plots for statistics obtained from dimension reduction.

Here, Fig. 9.8 shows a series of plots for the sunspot data set for the period 1770–1869.
The time period was chosen to include some of the largest changes in amplitudes of the
readings since 1700. Sunspots themselves are vortices of gases at or near the surface
of the sun that follow a cycle of about 11.1 years and are counted by a technique
developed in 1849 by R. Wolf in Zurich. The full data set is available in R.
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Fig. 9.7 The three left panels show views found from GGobi. The three right panels are the same
views but with the cones labeled.

First, the upper left panel in Fig. 9.8 shows the standard visualization of the sunspot
time series. Letting Xi denote the sunspot number for year i = 1, ...,100 for 1770–1869,
the upper right panel in Fig. 9.8 shows a plot of (Xi,(Xi−Xi−1)). It is seen that the first
difference is a coarse derivative ratio (the denominator is i−(i−1) = 1) at Xi. The plot
itself is seen to be cyclic over time, rotating around a point near (30,0), with orbits
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Fig. 9.8 Four plots to show the sunspot time series and the analogs of the ( f , f ′), ( f , f ′′), and ( f ′, f ′′)
phase portraits. It is seen that the lower left panel is more regular than the other two phase plots.

much tighter on the left than on the right. A similar plot but for the second difference
(i.e., (Xi,Xi−2Xi−1 +Xi−2)) in the lower left panel of Fig. 9.7, corresponds to ( f , f ′′).
It shows the same kind of pattern. Finally, the lower right panel in Fig. 9.7 shows the
plot of the first and second differences as i increases. It is seen to be similarly cyclical,
though more tilted and flattened.

The commands used to obtain these plots were as follows.

x<-as.ts(read.table("sunspots.dat"))
postscript("Sunspots.eps")
plot(x, main="Sunspots observations")
y<-diff(x,1)
postscript("SunspotsPhase1.eps")
plot(x,y, xlab=’original series’,
ylab=’first difference’)
# Pre-processing the data
xm1 <- x[-1]
xm2 <- xm1[-1]
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xm2[99]<-0
x11<-diff(x,1)
xp <- x
yp <- 0.5*(x11+(xm2-xm1))
postscript("SunspotsPhase2.eps")
plot(xp,yp, xlab=’original series’,
ylab=’second difference’)
postscript("SunspotsPhase12.eps")
plot(diff(x,1),yp, xlab=’first difference’,
ylab=’second difference’)

9.10 Visualization II: Transformations

In contrast to the techniques of the last section, here the data points are processed in
some substantial way. That is, the data are not just represented, functions of them,
possibly complex, are chosen and visualized. This is a sort of modeling, but the goal is
not to do formal inference, but to search for patterns in the data for which, hopefully,
inferential models can be proposed.

Among the numerous ways to do this, three are discussed here. Chernoff faces are an
entertaining way to map vectors to facial features. Multidimensional scaling (MDS) is
a way to represent a p-dimensional data set as a collection of points in K dimensions,
where K is user-chosen. Thus, MDS is a dimension reduction technique as well. It
is included here because when K = 2,3, reconfiguration of the p-dimensional points
represents the distances between them so the relationships can be seen. Finally, self-
organizing maps, (SOMs) are actually a sort of vector quantization. Crudely, they help
identify likely modes of a high-dimensional density.

9.10.1 Chernoff Faces

This is the kind of idea that emerges at happy hour as a joke. Except that it works.
Chernoff (1973) recognized that people are exquisitely sensitive to small differences
in faces and proposed that this be harnessed to visualize high-dimensional data. Thus,
under a mapping, a p-dimensional data point is converted to a list of values that specify
features of a human face. For instance, the values of x1,i may represent the height
of a face, the values of x2,i might represent the width of a face, and so forth. Then,
each face generated from the data points has a unique expression. Since people can
discriminate very finely across facial expressions, characteristic patterns of the data
set can be readily seen. Like profiles and stars, Chernoff faces depend on how the Xjs
are converted to facial features and are subjective.
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Using the Canadian household expenditure data for which stars and profiles were plot-
ted in Fig. 9.3, gives the Chernoff faces in Fig. 9.9. The command is

postscript("CanadaChernoff.eps")
faces(xx[,-1], labels = xx[,1],
main = "Canadian Expenditure")

The R package automatically transforms the data into 15 facial features. Each variable
is scaled so it is between 0 and 1; here this is accomplished by looking at the propor-
tion of income spent on each category. For instance, the first variable, food expenditure
as a proportion of total household expenditures, was converted into the height of the
face; the second variable, shelter expenditure as a proportion of total household ex-
penditures, was converted into the width of the face; and so on. In fact, there were 17
variables, but R only permits 15, so the last two were omitted.

Ottawa Toronto Montreal

Quebec Vancouver Edmonton

Saskatoon Calgary Victoria

Canadian Household Expenditures

Fig. 9.9 Chernoff faces for household expenditures for nine Canadian cities. Note that food and shel-
ter primarily determine the size of the face. It is great fun to try to match the expression on the face
to the character of the city. This shows how exquisitely sensitive we are to facial expressions, under-
scoring the strength of the method.

9.10.2 Multidimensional Scaling

Multidimensional scaling (MDS) is a class of techniques that converts the set of dis-
tances between n given points in IRp to a collection of n points in IRK for a prespecified
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K << p. The conversion is done by minimizing a criterion that measures the distance
between the given proximity matrix in p dimensions and the proximity matrices that
might arise from a distance in K dimensions. Since the configuration of the points in
IRp tends to be distorted when embedded in IRK , the criterion is called a stress, in anal-
ogy with mechanical stress. Nevertheless, the output of an MDS procedure is a fully
connected, weighted graph that can be examined.

More formally, let xxxi, i = 1, ...,n be points in IRp and let D = Dn = (di, j)i, j=1,...,n, where
di, j = d(xxxi,xxx j), be the proximity matrix in p dimensions. It will be seen that the xxxs only
affect the minimization through the n(n−1)/2−n values di, j for i < j. Fix a K and a
measure of distance, say δ , in IRK . Parallel to the data XXXi, let zzzi ∈ IRK for i = 1, ...,n,
and write δi, j = δ (zzzi,zzz j) and Δ = (δi, j)i, j=1,...,n. To be general, let g : IR → IR be a
fixed, nondecreasing function. The MDS task is to minimize a function of the form

S = Stress(zzz1, . . . ,zzzn) =∑
i< j

wi, j(δi, j−g(di, j))2

scale
(9.10.1)

to find the zzzis. The denominator in (9.10.1) indicates the scaling of distances and is
usually based on either d or δ . Sometimes

scale =∑
i< j

wi, jδ 2
i, j or ∑

i< j
wi, jd

2
i, j

is chosen, in which case Stress is a little like a weighted chi-square distance; i.e., like
a goodness-of-fit criterion. Thus, (9.10.1) can be regarded as if it were a norm on real
n× n matrices and MDS is seeking a matrix of distances for points in IRK as close
as possible to the matrix of p-dimensional distances. In particular, this means every
reasonable distance on matrix space gives an MDS representation for a data set. In
other words, MDS representations depend substantially on the choice of Stress. Often,
g is the identity function, or a linear function g(x) = ax, in which case Stress is usually
minimized over a as well; it may be important to allow g to be nonlinear in cases where
only the ordering relations among the xxxis are reliable.

Because of the minimization, the K-dimensional points have a configuration that
matches the distances as closely as possible, apart from the dimension. Points that
are close together or far apart in p dimensions usually lead to points that are close to-
gether or far apart in K dimensions, but the relative positions may change. This arises
because MDS depends on distances only and so does not distinguish among the orien-
tations of the angles between line segments joining the points in p dimensions. So, the
configuration of points in K dimensions will necessarily be distorted. The benefit is
that if K << p it is often easier to recognize patterns in the lower-dimensional points.
In this sense, MDS is a (nonlinear) dimension reduction technique. However, the goal
is usually limited to visualizing the relationship between high dimensional data points
by their lower-dimensional analogs because the lower-dimensional representations are
typically only weakly representative of any other information in the data points.

There are two main problems to overcome in using MDS. First is finding the zzzs
and second is assessing them. Assessment includes choosing K, determining how
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representative of the xxxs the zzzs are, and identifying the patterns in the zzzs that lift up
to give patterns in the xxxs.

There are numerous methods for finding an MDS representation. Given K, the simplest
is to choose d and δ to be Euclidean, g the identity, and scale = wi, j = 1, so the criterion
becomes

S(zzz1, . . . ,zzzn) =∑
i< j

(δi, j−di, j)2. (9.10.2)

In this case, the optimization problem reduces to finding the first K eigenvectors of
the empirical variance matrix and using the coordinates of the points with respect to
them. That is, the p-dimensional data points are projected to the space spanned by the
principal components corresponding to the K largest eigenvalues. Sometimes this is
called Classical MDS.

One step that is more complicated is Newton-Raphson. In this case, differentiate
(9.10.1) to get a Hessian matrix HHH. Then, as in the neural network setting where
weights are updated, each zzzi can be updated. Essentially this finds directions in which
to tweak the entries of the zzzis to reduce the stress. Basalaj (2001) explains several more
techniques, including genetic algorithms, simulated annealing, and a majorization ap-
proach somewhat like EM.

Assuming zzzis can be found for a range of K, the usual procedure is to form the scree
plot (K,Smin(K)) over K and look for a knee in the curve. The value of K at the knee
is a common choice since it represents a trade-off between keeping K small, which is
the point, and ensuring that enough of the information in the data has been included in
the zzzis that including more would be diminishing returns.

Assessing representativity is harder because it is not easy to obtain a standard error for
the zzzis even though they are functions of the xxxis. In addition, the axes of the zzz space are
meaningless. They are only constructs to find a minimum: The zzzs are moved around
unpredictably to approximate the distances in IRp. The distances in IRK therefore are
distorted representations of the configuration of the data; the greater the stress, the
greater the distortion. As a consequence, usually all one seeks in the lower-dimensional
representation is the dimension and any clustering. This is reasonable because large
distances are typically relatively less distorted than small distances. So, distinct clusters
are often valid, but within clusters the relative positioning may be an artifact of the
optimization. Given a clustering obtained for an MDS representation, a good check
is to rerun MDS for the elements of each cluster individually to see if the apparent
clustering is borne out.

Another check on the reasonableness of an MDS is a 2D Shepard plot. The idea is to
examine how closely the input and output distances match. The input distances in IRp

are on the horizontal axis and the output distances in IRK are on the vertical axis. The
plot consists of the collection of points (d(xxxi,xxx j),δ (zzzi,zzz j)). If the scatter around the
y = x line is tight, the plot indicates that over the range of the original dissimilarities,
the MDS gave a faithful representation. The ranges where the scatter deviates from the
y = x line indicate the regions most subject to distortion. In essence, the Shepard plot
examines the size of each possible error, neglecting scale. Often there are patterns in
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this plot; seeking explanations for them may yield insight. Once structure is found, the
corresponding points can be removed and the remaining points searched for secondary
structures, or the entire MDS can be rerun. In this way, it may be natural to combine
MDS with other procedures, such as clustering, perhaps sequentially.

MDS has limitations aside from possible distortions. MDS depends on the choices
of distances and can be highly nonrobust. A small perturbation in p dimensions can
easily be in a direction for which the small changes in the p coordinates add up to a
large effect in the K coordinates. Also, because outliers give unusually large distances,
they can distort the lower-dimensional representation. Taken together, this can reduce
the interpretability of an MDS plot. Computationally, MDS may not scale up well to
large p or moderate n. When MDS does not reduce to PCs, the computing required
may be enormous or have convergence problems.

MDS is implemented in the R package SMACOF (Scaling by MAjorizing a Compli-
cated Function), which implements a procedure based on majorizing a stress. The ma-
jorization is accomplished using a complicated version of the majorization principle,
which can be generically stated as follows. If the goal is to minimize a function f (x),
then it is enough to find a more tractable function g(x,y) for which g(x,y) ≥ f (x) for
some well-chosen supporting point y and g(x,x) = f (x). The minimizing xmin should
satisfy

f (xmin)≤ g(xmin,y)≤ g(y,y) = f (y).

The usual strategy is to find a starting y0, find xk such that g(xk,y)≤ g(y,y), and iterate
until f (y)− f (xk) falls below a threshold. To see how this procedure is implemented
in SMACOF for MDS, see de Leeuw and Mair (2008). The package also gives a Shep-
ard plot for the residuals. The command used in the code below, smacofSym, is the
basic version of the procedure for symmetric dissimilarity matrices using Euclidean
distance, scale = 1 and all wi, j = 1 as in (9.10.2); the form of the command used below
takes an object of class dist – a distance matrix found using a distance measure to give
the distances between the rows of a data matrix. Other forms of the command permit
more detailed specification of the arguments directly.

Figure 9.10 shows the results of using MDS on the vertices of cubes and simplices in
four and five dimensions to get a two-dimensional visualization. The commands that
generated Fig. 9.10 are

library(MASS)
library(gtools)
library(smacof)
dc <- 5 # Dimension of cube
nbp <- 2ˆdc # Number of vertices
dcube <- NULL # Matrix of generated points
sigma <- 2 # SD of normal distribution
ns <- 5 # Number obs per component
Sigma <- diag(rep(1,dc))
muse <- permutations(n=2,r=dc,v=0:1,
repeats.allowed=TRUE)
for(i in 1:nbp){
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dcube <-rbind(dcube,mvrnorm(mu=muse[i,],
Sigma=Sigma,ns)) }
x11()
mds.cube<-smacofSym(dist(muse,method= "manhattan"))
plot(mds.cube, main = paste("MDS for Hypercube in
dimension", dc, sep=""))
x11()
simp.id <- which(apply(muse, 1, sum) <= 1)
mds.simplex <- smacofSym(dist(muse[simp.id,],
method="manhattan"))
plot(mds.simplex, main = paste("MDS for Simplex in
dimension", dc, sep=""))

In Fig. 9.10, the top pair of panels shows that groups of four points representing two-
dimensional faces form clusters; recall that the cube in four dimensions has 16 vertices
and the cube in five dimensions has 32 vertices. On the left, each pair of these four-
point sets represents a cube that is the projection of the four dimensional cube into
two dimensions. On the right, the four-point sets group into eight-point sets and each
pair of them represents the projection of a four dimensional cube into two dimensions.
The bottom pair of panels in Fig. 9.10 shows how the five or six vertices of simplices
in four or five dimensions, respectively, appear in two dimensions. In both cases, the
axial vertices become points equally spaced around the vertex at the origin, which is
unchanged.

There are numerous variations on the basic MDS template. First, the optimization in
(9.10.1) corresponds to metric MDS. Nonmetric MDS is intended for data where the
numerical values are unreliable but the ordering on distances is reliable. This occurs
when measurements are preferences of one option over another, for instance. In these
cases, only di j > dk� or di j < dkl can be taken as known. To get useful solutions, the
function g must be monotonic, satisfying g(di j) > g(dk�) when di j > dk�. Minimizing
the stress in this case is more difficult; however, the Shepard-Kruskal algorithm gener-
ally provides solutions. The basic idea is to start with an initial guess about the δ 0

i js –

possibly from metric MDS – and update the guesses to δ 1
i j, δ 2

i j, and so forth.

The updating finds δ 1
i js by finding a monotone regression relationship between the

δ 0
i js and the di js under the constraint that di j < dk� ⇔ δ 0

i j < δ 0
k�. Specifically, the δ 1

i js
are found as follows. For i, j = 1, ...,n, the distances between pairs of xxxs (i, j) can be
ranked. Write

(i1, j1) > (i2, j2) > .. . > (iu, ju),

where u = n(n−1)/2, to mean that the distance between xxxiv and xxxiv is greater than the
distance between xxxiw and xxxiw when v > w; i.e., div, jv > diw, jw for v > w. The idea is to
make the ranks of the δi js match those of the di js. So, violations of the monotonicity
can be found by examining a plot of the ordered di j versus their respective δ 0

i js. The
strategy for reducing violations of the ordering is to start at the smallest di, j, say diu, ju ,
and find the first order violation. For this violation, average the violating di j with the
most recent nonviolating di j; this gives a δ 1

i j. Then, proceed to the next violation, where
the same procedure can be used. Doing this for all the violations and leaving the δi js
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Fig. 9.10 The top pair shows the MDS output for a cube of sidelength one in four and five dimensions,
respectively. The bottom pair shows the MDS output from a simplex in dimensions 4 and 5.

that respect the ordering of the di js unchanged gives a new collection of distances, δ 1
i j,

which are closer to the di js than the δi js were.

Another variation on the MDS procedure is to seek a lower-dimensional geometry as
well as finding representations of the data points within it. The idea is that the points
xxxi might lie in a low-dimensional submanifold in IRp and that this manifold can be
uncovered if its intrinsic geometry is used to give the di js instead of deriving them
from how the low-dimensional submanifold is embedded in p-dimensional Euclidean
space. The procedure called ISOMAP (see Tenenbaum et al. (2000)) uses a sequence
of nearest-neighbor regions to assign distances between points that are not neighbors;
this represents the intrinsic, within-submanifold distance better than the raw Euclidean
distances. With this alternative assignment of the di js, the usual MDS optimization
may give zzzs that are more reasonable.

A third variation on MDS, invented by Roweis and Saul (2000), is called locally linear
embedding. The idea has two steps. First, find weights wi j by minimizing
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E1 =
n

∑
i=1
|xxxi−∑

j∈Ii

wi jxxx j|.

The index set Ii is usually chosen to be the nearest neighbors of xxxi so that each xxxi

is reconstructed optimally from its neighbors as a convex combination, enforced by
requiring∑ j wi j = 1 for each i. Quadratic optimization problems like this can be solved
relatively effectively. The second step is to choose a lower dimension K and then use
the wi js to define a new error,

E2 =
n

∑
i=1
|zzzi−∑

j∈Ii

wi jzzz j|,

which can be minimized over the zzzis to give the lower-dimensional representation.
Again, minimizing E2 is a quadratic optimization that can be done readily. The net
effect of these two related optimizations is to transform the nearest-neighbor relations
from the p-dimensional space to the K-dimensional space. It is locally linear in the
sense that points are represented as a convex combination of their neighbors. Despite
the local definition, the lower-dimensional representation often captures important re-
lationships among nonneighboring points as well.

Finally, if the distances in (9.10.1) are Euclidean, then there are variations on MDS
in which the Euclidean norms are replaced by (Euclidean) inner products; see Buja
et al. (2001) for a discussion and implementation. The properties of this criterion do
not seem to have been fully investigated.

9.10.3 Self-Organizing Maps

For electrical engineers, vector quantization is the effort to choose a collection of K
canonical representatives, say zzz1,...,zzzK in IRp, such that any future XXX = xxx will be closest
to a unique zzz j. Then, if the zzz js are chosen well (i.e., there is enough of them and they
are spread evenly over the range of XXX) one can approximate XXX as a function by using
the zzz js. For computer scientists, vector quantization is incorporated in what is called
competitive learning: Units within a formal structure compete for the exclusive right to
respond to a particular input pattern. For instance, a neuron or small set of neurons in a
neural network might specialize in detecting and processing certain classes of inputs.
Statisticians would regard vector quantization as a sort of partitional clustering (on the
grounds that the input patterns a unit represents optimally are similar to each other and
amount to a cluster) followed by choosing a canonical representative for each cluster.

Among the numerous techniques developed for vector quantization, self-organizing
maps stand out as a visualization technique, a dimension reduction technique, and a
clustering or mode-seeking technique simultaneously. SOMs were introduced in Ko-
honen (1981) and became popular for visualizing data because the canonical repre-
sentatives output by the SOM procedure typically exhibited an interpretable structure
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in low dimensional (p = 2,3) examples. See Kohonen (1989) for a full description.
SOMs find these canonical representatives by bootstrapping.

The basic structure of an SOM is as follows. Imagine a collection of units, say Uk for
k = 1, ...,K; each unit is located at a point in a lattice of dimension � << p that remains
fixed throughout the procedure. Usually the lattice points that have units located at
them form a square or other regular-shaped grid. To each unit associate an initial vector
rrrk(0) ∈ IRp, typically p >> �. At the tth iteration, the rrrk(0)s will be updated to rrrk(t).
For each t, these are called reference vectors. Let Nk(t) be the neighborhood around
unit k at iteration t. If the units form a square in a 2D lattice, then one choice for
the neighborhood around a unit is the unit itself with its eight neighbors (unless the
unit is on the edge of the square, in which case its neighborhood has six units, or
four if the unit is on a corner). Note that the time dependence in the Nk(t)s permits
the neighborhoods at different iterations to vary. Usually it is better to choose large
neighborhoods for early iterations and let them shrink as t increases.

Given this notation, the SOM procedure is as follows.

Given data xxx1,..., xxxn in IRp, choose one at random and denote it xxx.

� Find the unit Ukopt with rrrkopt = argmink ‖xxx− rrrk‖.
� Choose a learning rate, α(t) ∈ [0,1], to control how much the reference vectors

are permitted to change at the t +1 iteration.

� Update all K reference vectors rrrk(t) to rrrk(t +1) using the neighborhood Nkopt (t)
by

rrrk(t +1) =

{
rrrk(t)+α(t)(xxx− rrrk(t)) if k ∈ Nkopt (t),
rrrk(t) if k /∈ Nkopt (t).

(9.10.3)

� If the set rrrk(t + 1) for k = 1, ...,K satisfies a convergence criterion stop. Other-
wise, draw another xxx and repeat.

The random reselection of the xxx in the first step is a draw from the empirical distribution
of the data, which is the effective input to an SOM. The idea is to use the xxx to choose
which rrrk, and hence Nk, to update. The updating moves the reference vectors in Nk

closer to the drawn xxx. The output of the whole bootstrapping procedure is a set of K
vectors rrrk(∞) of dimension p. These vectors are indexed by the points on the grid, in
the lattice of dimension �, and, subject to that, summarize the information in the data.
The intent is that if two regions are close in the original high-dimensional space they
should map to gridpoints that remain close in the SOM in the low-dimensional space.

The interpretation of an SOM can be given only roughly. As can be guessed from the
procedure, the rrrk(∞)s will tend to accumulate around modes of the empirical distribu-
tion, one or more at or near each mode, and the others spread over regions to reflect
their relative probability. The question becomes how to summarize the information in
the vectors associated with the units; if two or more reference vectors are quite close
to each other, it may be reasonable to rerun the SOM with fewer reference vectors to
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prevent different units from representing the same information. Thus, the output of an
SOM may be interpreted as a collection of canonical representatives from a clustering
procedure. As such, the SOM can be regarded, weakly, as putting together modes so
as to represent a density from a high-dimensional space in a low-dimensional space.
Also, the SOM can be regarded as a submanifold-seeking procedure trying to identify
a low-dimensional submanifold embedded in a high-dimensional space and represent
the density on it. Neither of the interpretations are entirely accurate, but the SOM
output grid can often be interpreted in terms of them, at least locally. Also, trying to
determine, simultaneously, a submanifold and a density on it is an extraordinarily dif-
ficult problem, not least because estimates of a density and the manifold supporting it
likely converge at different rates (probably slow and very slow, respectively).

Since the SOM procedure depends on the choice of so many subjective features – the
value of �, the collection of units, the Nk(t)s, the α(t), and the norm and the initial
reference vectors – it is worthwhile looking at the typical behavior of a few choices
and the idealized cases they imply. So, suppose p = 2 and � is chosen to be one so the
lattice is just the integers. After the SOM procedure converges, the rrrk(∞) are on a line
of units that can be identified with points in the XXX space by the reference vectors. If the
distribution of XXX is uniform over an equilateral triangle, for example, the line of units
typically ends up being identified with a space-filling curve in the triangle because no
regions of XXX can be meaningfully distinguished from other regions. In other words, the
line of units reconstructs, as best it can, a uniform distribution.

If p = 2 and � = 2, there is no dimension reduction. If the lattice is all pairs of integers
and the rrrk(∞) are on a rectangle of units, then the grid itself, not just the reference
vectors, can be identified with points in the XXX-space. Now, if the distribution of XXX is
uniform on a rectangle, the grid of units typically ends up matching the rectangle.

If p = 3 and � = 2, there is dimension reduction. The lattice may be regarded again as
pairs of integers and the reference vectors rrrk(∞) can be on a rectangle of units. Now,
as with the � = 1 case above, the grid of units can no longer be identified with points in
the XXX-space. However, the reference vectors will converge, typically, to the modes of
the p = 3 dimensional distribution, if there are any, and will become evenly spread out
over any uniform regions. In between, the reference vectors will accumulate roughly
in line with the density. One example in this context that may indicate the structure
is to regard the XXXs as proportions of red, green, and blue light in a beam. Then the
reference vectors indicate a color. It is then natural to color the K units with the color
identified by their reference vectors. In this way, the modal colors, if any, may be seen.
In general, interpreting an SOM requires some way to visualize the reference vectors.
Kohonen (1990) gives further examples.

There seems to be little theory for SOMs, partially because they are defined by a class
of procedures rather than by an optimality principle (which would be much more strin-
gent and informative). It is well known that SOM procedures need not converge at all;
aside from actually diverging, SOM outputs often cycle around a weak representa-
tion of the higher-dimensional structure, never settling down to a limit. Much of what
is known about SOMs is heuristic, based on many examples or analogies with other
methods thought to be similar. For instance, there is the suggestion that there is a sense
in which SOMs escape the Curse of Dimensionality. Kohonen (1990) states that the
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number of iterations typically needed for convergence is independent of p. However,
since SOMs are an extremely general procedure, this statement is necessarily tentative,
perhaps only holding under restrictive conditions.

SOMs are expected to behave like other similar vector quantization techniques. In
particular, as was noted in the three low-dimensional instances above with uniform
distributions, vector quantization methods are well known to approximate the distri-
bution of the input XXX . For a class of vector quantization techniques related to neural
modeling, Ritter (1991) shows that in one-dimensional cases the asymptotic density
q of the quantization in terms of p(x) follows a power law q(x) = Cp(x)α , where
α = αN depends on the number N of neighbors on each side of a unit. As N increases,
α → 2/3, which is consistent with uniform XXXs leading to uniform grids, p = � = 2, or
approximations to uniform distributions from the reference vectors, p = 2, � = 1 and
p = 3, � = 2.

Some argue that SOMs are related to K-means clustering. For instance, the first step in
an SOM iteration, finding kopt , is like assigning an outcome to the cluster represented
by rrrkopt . More generally, if the partition from a vector quantization procedure can be
summarized by the means of its partition elements, it resembles a clustering procedure
that is similar to K-means. This kind of reasoning is heuristic but is often borne out in
examples and deserves development.

SOMs are also similar in spirit to principal curves. Recall that a principal curve is
the conditional expectation over a level set. In SOMs, the reference vectors can also
be exhibited as conditional expectations of the data (see the batch map algorithm in
Kohonen (1995)). Thus, SOMs can also be regarded as a discrete version of principal
curves.

Finally, another analogy made for SOMs is with unsupervised neural networks. How-
ever, this is somewhat more distant than analogies with vector quantization, clustering,
and principal curves. The reason is that although one can regard the updating from
neighbors as a connectivity between nodes, this is to update the grid as opposed to
feeding the output of one unit into another unit to get an overall output. Thus, SOMs
may have some vague relation to the architecture of a network, but neural nets and
SOMs are fundamentally different procedures.

In the absence of good theoretical characterizations for SOMs there are practical de-
faults in various settings. Kohonen (1990), p. 1469 explains several. The number of
iterations, for instance, should be on the order of 500K or more. The choice of α is
fairly broad. As long as α(1) ≈ ... ≈ α(1000) ≈ 1 its later behavior is not very im-
portant provided it eventually is less than .01. Setting α(t) = .9(1− t/1000) is one
recommended choice. Likewise, there are a broad range of neighborhoods that work
well. Usually, Nk(t)s should be large for small t, up to over half the grid, shrinking
possibly linearly down to a single nearest neighbor.

To see what kind of representations SOMs give, it’s worth looking at two examples.
The first is simulated data from a uniform distribution on the three-dimensional region
formed by the union of two unit cubes, one at the origin with edges parallel to the
positive axes and the other a copy of it but shifted by adding (2,2,2). The second is
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the Australian crab data visualized earlier using projections. SOMs can be generated
for both of these data sets using the contributed R package som.

The commands used to generate the panels in Figs. 9.11 and 9.2 were

gr <- somgrid(topo = "hexagonal")
cube.som <- SOM(dcube, gr,
alpha = list( seq(0.0005, 0, len = 1e4),
seq(0.0002, 0, len = 1e5) ),
radii = list(seq(4, 1, len = 1e4),
seq(2, 1, len = 1e5)))

The first command indicates the neighborhood structure Nk and tells som to use its
default for the size of the map. Often this is a rectangle with 5

√
n gridpoints for a

medium-sized map. The second command generates the SOM for the cube data, called
cube.som. The arguments of the SOM command are the data (dcube), the grid (gr),
the learning rate α , and the radius of the map, which controls how the neighborhoods
of shape hexagonal (in this case) shrink. The default number of iterations is rlen =
10,000; the default initial assignments to the gridpoints are random from the data
(without replacement); the default SOM representation of the reference vectors uses
stars at each of the gridpoints. The learning rate depends on the iteration; i.e., α =α(t)
in (9.10.3). The default in som is for α(t) to decline linearly from 0.05 to 0 over
rlen updates. Even though the form of the neighborhood is chosen, its size must be
specified. Thus, radii gives the length in gridpoints of the neighborhood to be used
for each iteration. The default is for this to decrease linearly from 4 to 1 over rlen
iterations. Note that, in the command above, two sequences are used for α and radii.
This is to provide a more effective search over SOMs. Roughly, the first sequence is
to explore the space and the second is to converge to a good SOM. This helps reduce
dependence on initial conditions as well as stabilize the limiting behavior of the SOM
as a function of more iterations. In Figs. 9.11 and 9.12, variations on α , radii, and rlen
were done as part of the tuning.

For the pair of cubes data, Fig. 9.11 shows six SOMs generated by different values of
the tuning parameters. The gridpoints are the locations of the stars, giving the reference
vector for their gridpoint. In all cases, it is seen that the unit cube at the origin gives
the medium stars in the SW corner and the other cube gives the large stars spread
over the remainder. The tiny stars seem to represent the intercube region that has no
data; they are scattered to a greater or lesser degree throughout the region representing
the cube with vertex at (2,2,2). The panels of Fig. 9.11 only hint at the range of
SOMs generated by som under a variety of reasonable choices of tuning parameters.
Indeed, it is quite easy to get SOMs that do not represent any aspect of this simple
data set accurately. With practice, however, one can become more adept at choosing
tuning parameters and interpreting the patterns in SOMs in terms of densities and
submanifolds.

For the Australian crab data, Fig. 9.12 gives two SOMs. Recall that this data set looks
(very roughly) like four cones coming out of the origin in five dimensions. The left-
hand SOM barely picks this up, vaguely looking like three regions: a SW region, a
vacant NE region, and a string of largish stars separating them. The string of largish
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Fig. 9.11 All of these SOMs were formed using 100 data points from each of the cubes, excpt the
one at the bottom right, which used 100 data points from the unit cube at the origin and 200 from the
other cube.

stars actually has thickness two, which it is tempting to interpret as representing two
different regions in the data space. The right-hand SOM correctly suggests four re-
gions: There is a NE cluster of large stars (i), a string of very small stars, suggesting a
vacant region, another string of large stars (ii), another string of tiny stars, a string of



9.10 Visualization II: Transformations 559

largish stars (iii), and finally, in the SE corner, a group of medium-sized stars (iv). As
with the cube data, it is easy to obtain SOMs that are either uninterpretable or lead to
incorrect interpretations (for instance, a smooth gradient across the map).

Fig. 9.12 Two SOMs for the Australian crab data. Note that they are quite different. This suggests
that, even among SOMs that are reasonably well tuned, a lot of variation is to be expected.

Overall, these examples suggest several caveats when using SOMs. First, SOMs seem
to represent disjoint regions separated by edges better than regions where the density is
a gradient. This means SOMs may be useful for some image segmentation problems.
Second, SOMs are exquisitely sensitive to initial conditions, the number of iterations
used, the radius, the neighborhood function, and the weight α . In practice, tuning so
many choices is very complex, indeed nearly impossible, unless the expected pattern
is at least roughly known in advance or a user can guide the SOM interactively to a
solution thought to be reasonable. That is, automatic procedures don’t seem to work re-
liably. Even so, SOMs probably only give interpretable answers that are not far wrong
(over repeated usage) more often than truly wrong answers. Perhaps SOMs are best
regarded as offering a rough guide in the most complicated problems (although the
supervised version of SOMs, not presented here, provides much better results).

Finally, the contrast between SOMs and MDS must be made. Both are techniques
defined by procedures, so all the nonrobustness problems (sensitivity to perturbations,
outliers, subjective choices of inputs) with MDS carry over to SOMs. However, SOMs
are often easier to compute after allowing for a greater number of choices that must
be made to specify the algorithm. With MDS, the distortions arise from dimension
reduction, whereas with SOMs the question is how well the reference vectors provide
an interpretable visualization of the modal structure.

A second difference is that the optimization in MDS tries to preserve interpoint dis-
tances and tends to distort smaller distances more than larger distances. SOMs are
somewhat the reverse. SOMs tend to be locally valid but otherwise tend not to pre-
serve interpoint distances. The reason may be that it’s as if SOMs cluster first and
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then identify representatives for the clusters, thereby preserving topological proper-
ties, whereas MDS tries to preserve metric properties, ignoring clustering.

A final problem with most methods like SOMs and MDS that are defined by a com-
putational procedure is that there is no obvious way to specify uncertainty. While this
makes it possible to get answers – indeed many answers, often incompatible – it means
there is little basis, apart from robustness or modeling, that can be done to evaluate how
good the answers are. In these settings, however, modeling is usually difficult, whence
the default to an algorithmic approach, and robustness can only be checked informally,
by rerunning the procedure with variants of the inputs. These can be part of an uncer-
tainty analysis, but they often are exceedingly difficult to do well, and it is generally
unclear how well they can substitute for a proper uncertainty analysis.

9.11 Exercises

Exercise 9.1 (Multivariate normal warm-up). Consider n independent outcomes, YYY i

for i = 1, ...,n, drawn form N(μi,Σ) where the normal is q-variate and μi = BTxxxi,
in which B is a q× p matrix and xxx is p-dimensional. Observe that B is a matrix of
regression parameters and that the vector xxxi is the i-th design point for the q-variate
response. Let X be the design matrix; i.e., the n× p matrix with rows given by xxxT

i .
Assume X is full-rank.

1. Identify a criterion under which BTxxx0 is a good point predictor for YYY 0, for a given
design point xxx0. Verify the criterion is satisfied.

2. Show that, even in the multivariate setting, B̂ = (X ′X)−1XTY , where Y = (yyy1, ...,yyyn)
is an n×q matrix, remains a good estimator for B.

3. Find the covariance matrix of B̂Txxx0.

4. Give a confidence interval for a linear combination of the form cccTyyy0, where c =
(c1, ...,cq).

Exercise 9.2 (Special cases for PCs). Here are two simple special cases where the
PCs can be readily found.

1. Let X1 and X2 be random variables with mean zero, variance 1, and suppose their
correlation is ρ . Find the PCs of the vector response XXX = (X1,X2).

2. Let YYY be a q-variate normal, N(0,Σ), and write Σ = σ2I + δ 2111111T. What are the
PCs of YYY ?

Exercise 9.3 (PCs and other procedures). One of the strengths of PCs is that they
are well understood and relatively easy to implement. As a consequence, they can
be readily combined with other analytic methods. Recall that the essence of the PC-
reduction is to replace the data points xxxi, for i = 1, . . .n, with new vectors uuui, where
uuui = AAAxxxi, and then project onto the first K entries of the uuuis to reduce the dimension.
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To see how well this works when combined with other analytic methods, consider the
following comparisons that can be done using the contributed R package princomp.

1. Variable selection: Define PC-based variable selection as follows. From a PC analy-
sis, find the eigenvector corresponding to the smallest eigenvalue. Find the entry in
this eigenvector that has the largest coefficient and drop the corresponding variable.
This can be repeated for the second-largest eigenvalue and so forth. Compare PC-
based variable selection with backwards elimination in a standard linear regression
problem. Use any regression data set with, say, p≥ 3.

2. Clustering: Use one of the data sets described at the end of Section 8.8 – flea beetles,
olive oils, or PRIM7 – and apply any of the clustering techniques first to the data
set and then to the PC-reduced version of the data set for several choices of K. As
K increases to p, the reduced dimension clustering should approach the unreduced
clustering. Can you relate the number or location of clusters to the choice of K?

3. Classification: The same type of comparison as above for clustering can be done
with classification data. That is, the reduced dimension data can be used to develop
a classifier. So, reanalyze the data sets from Section 8.8, or any other data set with
large enough dimension (say p ≥ 4), using, for instance, SVMs. Again, as K in-
creases, the SVM classification for the dimension-reduced data should approach
the SVM classification for the unreduced data. Do the support vectors change? If
RVMs are used, do the relevant vectors change?

4. Regression: As with clustering and classification, dimension reduction techniques
can be used to preprocess data for a regression analysis. Using any data set with a
reasonably large p and a univariate Y , compare the pure unreduced regression with
the results for K = p−1, p−2, . . . in terms of, say, MSE or R2

ad j.

5. Thresholding: Finally, consider a shrinkage form of PCs. In a regression analysis
based on PCs, choose a threshold value c > 0 for the components of the matrix AAA.
When a component ai j of AAA has absolute value below c, set it to zero. Otherwise
leave it unchanged. Call the resulting matrix AAAs, as in Section 9.1. How does this
shrinkage form AAAs of AAA compare with AAA itself in the clustering, classification, and
regression cases above? In particular, how are the results affected by the choice of
c?

Exercise 9.4 (Simple case of classical FA model). Consider n independent outcomes
YYY i, i = 1, ...,n of the form YYY i ∼ N(μi,Σ), where the normal is q-variate. Form a factor
analysis model for Σ with K = 1 by using

Σ = Var(YYY i) = ΓΓ T +σ2Iq

in place of (9.2.5), where Γ is the vector (γ1, . . . ,γq).

1. Derive the MLE, Γ̂ , for Γ .

2. Find the first eigenvector of Σ and show that ˆGamma is proportional to it.

Exercise 9.5 (Latent trait model). In item response theory, a manifest property is a
quantity that can be directly measured and called a trait. This is in contrast to a latent
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trait that cannot be measured directly. An example would be test scores as a way to
evaluate mathematics ability. Often, the trait that can be measured is attributed to a
latent trait. One way to express this is

Xj = CjF +D je j (9.11.1)

for j = 1, ..., p, in which the Cjs and D js here can be taken as known constants, the
F is the latent variable, and the e js are error terms. To be definite, fix p = 3, group
the unobserved quantities into the vector YYY = (F,e1,e2,e3)T, and group the observed
quantities into the vector XXX = (X1,X2,X3)T.

1. Find a matrix A so that XXX = AAAYYY .

2. If Cov(YYY ) = I4, find Cov(XXX).

3. An obvious estimator for F is the average F̂ = (X1 +X2 +X3)/3. Find the Corr(F̂ ,F).
When |Corr(F̂ ,F)| is high, is it reasonable to regard F̂ as good? Explain.

4. Suppose that p increases in (9.11.1) but that all the other assumptions are main-
tained. How is Corr(F̂ ,F) affected by increasing p?

Exercise 9.6 (FA with rotation). The point of this exercise is to use FA, with a factor
rotation. Consider the following data analyzed in Abdi (2003). There are five wines
and seven measurements are made on each by a panel of experts: how pleasing it is,
how well it goes with meat or dessert, its price, sweetness, alcohol content and acidity.
Thus, much of the information in the data is subjective.

Wine Hedonic Meat Dessert Price Sugar Alcohol Acid
1 14 7 8 7 7 13 7
2 10 7 6 4 3 14 7
3 8 5 5 10 5 12 5
4 2 4 7 16 7 11 3
5 6 2 4 13 3 10 3

1. First, verify that a PC decomposition gives four PCs (with eigenvalues 4.76, 1.81,
.35, and .07).

2. Argue that a factor analytic dimension reduction to two factors is appropriate, and
give the 2×7 matrix of factor loadings. The contributed R package factanal is one
way to do the computations, as is factor.pa.

3. It was seen in Section 9.2 that FA solutions are only determined up to an orthogonal
transformation. So, practitioners often use a “varimax” rotation to maximize the
variance of the squared elements in the columns of the matrix of factor loadings.
The idea is to find the linear combination of the original factors such that

V =
p,K

∑
j=1,k=1

(λ 2
j,k− λ̄ 2)
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for a given K, where λ 2
j,k is the squared jth loading for the kth factor with mean (over

j and k) denoted λ̄ 2. The linear combination is a rotation and hence is orthogonal.
Use the varimax command in R, or any other software that does FA, to find the new
2×7 matrix of factor loadings that maximize V . (The optimal rotation is 15◦.)

4. Justify the varimax criterion, and explain its typical effect. (Are there other criteria
for choosing an orthogonal transformation that are reasonable?)

Exercise 9.7. Projection pursuit as a technique for dimension reduction has not been
as fully explored as other techniques. Its potential is suggested by the following.

1. In what sense can you argue that both SIR from Chapter 4 (and its generalization in
Section 9.8) and projection pursuit regression (also from Chapter 4) can be regarded
as special cases of the projection pursuit procedure presented in Section 9.3?

2. Consider the model

Y = (X1 +5X2)2 +(X3−5X4)4 + ε

where ε ∼ N(0,σ2) and (X1,X2,X3,X4) ∼ N(0, I4). Simulate data from this model
(use σ = .1, .3, .5) and use the SIR procedure to find the effective dimension reduc-
tion dimensions. How does the size of σ affect the results?

3. (Not for the faint of heart.) Estimate a basis for the space Sξ defined in Section 9.8
following the Cook and Ni (2005) procedure.

4. Derive Icum(X) = κ2
3 +(1/4)κ2

4 for univariate X by approximating Ient(X). Using
the Gram-Charlier expansion

f (x)φ(x) = 1+κ3H3(x)/6+κ4H4(x)/24+ . . . , (9.11.2)

where Hk is the kth Hermite polynomial, assume f (x) = (1+ ε(x))φ(x) and
∫
φ(u)ε(u)ukdu = 0 f ork = 0,1,2, . . . .

(See Jones and Sibson (1987) for the argument.)

5. Finally, use a gradient descent approach on Icum in the procedure in Section 9.3 to
find good directions for the data simulated from (9.11.2). Compare the results of
the three methods (EDR from SIR, the estimated CS from the Cook-Ni technique,
and the projections from Icum).

Exercise 9.8 (ICA and the uniform distribution). Here is an example worked out
in detail in Hyvarinen and Oja (2000). Consider two independent Uni f orm[−

√
3,
√

3]
random variables S1 and S2, with mean zero and variance one. Let

(
X1

X2

)
=
(

2 3
2 1

)(
S1

S2

)
.

Now suppose that both (S1,S2) and AAA are unknown and only outcomes of (X1,X2) are
available.
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1. It is easy to see that XXX = (X1,X2) is uniform on a parallelogram. How would you
estimate the edges of the parallelogram and use them to uncover (S1,S2)? What is
the limitation of this approach?

2. Consider functions of the form YYY =WWWXXX and consider the Shannon mutual informa-
tion of YYY , I(Y1,Y2) = E ln p(Y1,Y2)/p(Y1)p(Y2). Show that if the Yis are uncorrelated
(Corr(Yi,Yj) = 0 for i 	= j) and have unit variance (∀i Var(Yi) = 1)then det(WWW ) must
be constant. (Hint: Observe that

I(Y1,Y2) =
n

∑
i=1

H(Yi)−H(XXX)− ln |detWWW |,

where H indicates the entropy of a random variable.)

3. Let the negentropy of a random variable Z be

J(Z) = H(ZG)−H(Z),

where ZG is a Gaussian random variable with the same mean and variance as Z.
Now obtain

I(Y1,Y2) = C−
2

∑
i=1

J(Yi),

where C is a constant.

4. Argue that ICA ,by minimizing mutual information, is formally equivalent to max-
imizing non-Gaussianity when the estimates are uncorrelated.

5. (Not easy.) Use ICA defined by mutual information to recover S1 and S2 from X1

and X2. How different is the ICA solution from the uniform inputs?

Exercise 9.9 (Identifiability, uniqueness, and separability in ICA). These examples
are taken from Eriksson and Koivunen (2003) to demonstrate that nonidentifiability is
nontrivial, identifiability can hold without separability or uniqueness, and that unique-
ness can hold without separability. Verify the following for ICA representations:

1. If SSS is normal, then multiplying it by any orthogonal or diagonal matrices shows it
is nonidentifiable.

2. Let Si for i = 1,2,3,4 be independent and nonnormal and Z1 and Z2 be standard
normal and independent. Show that XXX = (X1,X2) is identifiable but not separable or
unique when X1 = S1 +S3 +S4 +Z1 +Z2 and X2 = S1 +S3−S4 +Z1−Z2; i.e., find
two choices of SSS that produce SSS using the same TTT .

3. Let S1, S2, and S3 be independent with nonvanishing characteristic functions and
let XXX = (X1,X2) = (S1 +S3,S2 +S3). Show that the representation is unique but not
separable.

Exercise 9.10 (Principal curve summarization). This example is treated in Hastie
(1984), Hastie and Stuetzle (1989), and Delicado (2001). Generate 100 independent
data points by setting S ∼Uni f orm[0,2π], ε j ∼ N(01) (for j = 1,2) and finding out-
comes of the form
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(
X1

X2

)
=
(

5sin(S)
5cos(S)

)
+
(
ε1

ε2

)
. (9.11.3)

Apart from noise, this gives points scattered around a circle of radius five.

1. Verify that (9.11.3) uses the arc-length parametrization.

2. Use the contributed R-package pcurve to generate a principal curve to summarize
the data.

3. What is the estimated length of the curve, and how does this compare to the popu-
lation length of the curve?

4. What is Var(S)?

5. What is the estimated total variability along the curve?

6. What is the average residual variance in the orthogonal directions to the curve? Is it
valid to compare this to Var(ε)? Explain.

Exercise 9.11 (Wine data and PLS). Reconsider the wine data from Exercise 9.6,
but let YYY = (Y1,Y2,Y3) be the subjective measurements Hedonic, Meat, and Dessert,
respectively, and let XXX = (X1,X2,X3,X4) be the objective measurements Price, Sugar,
Alcohol, and Acid. As before, n = 5. Using the contributed R package pls, which
does partial least squares regression (and principal components regression), analyze
the wine data. Find the TTT , UUU , PPP, and QQQ matrices. How many latent vectors should a
good model retain?

An earlier analysis (see Abdi (2007)) used one, two, and three latent vectors and found

Latent vector PE XXX CPE XXX PE YYY CPE YYY
1 70 70 63 63
2 28 98 22 85
3 2 100 10 95

where PE is the percentage of the variance explained and CPE is the cumulative
percentage of the variance explained. Thus, two latent variables are reasonable. Fur-
ther analysis of the regression coefficients shows that Sugar is mainly responsible for
choosing a dessert wine, Price is negatively correlated with the perceived quality of
the wine, and Alcohol is positively correlated with the perceived quality of the wine.
Thus, the latent vectors reflect Price and Sugar. Does your output confirm this?

Exercise 9.12 (PLS with large p, small n). One of the most important features of
PLS-1 is that it can be used when p >> n. Here is a simple version (see Garthwaite
(1994)) that is a variant on the method of Section 9.7. Consider expressing a univariate
Y as a function of X1, ..., Xp. The idea is to do a search over linear functions of the Xjs
to find a small collection of linear combinations of the Xjs to use as in a regression
function for Y . That is, the task is to form a predictor Ŷ = b1T1 + ...+ bKTK for some
K, in which each Tj = c1X1 + ...+cpXp. In fact, the regression function in terms of the
Tjs reduces to the form Ŷ = a1x1 + ....+ apxp (the data are assumed centered so that
a0 = 0) but the goal is to find Tjs on the grounds that they might be meaningful in their
own right.
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Start by finding T1 (i.e., the c js for a candidate T1) by p univariate regressions of the
Xjs on Y . Write X̂ j = α̂ j + β̂ jY , and choose c j = β̂ j. Given this T1, find b1 by regressing
Y on T1 and take the least squares optimal coefficient of T1 as b1. Now examine the
residuals from this regression. Call them Y1. Find T2 for Y1 as T1 was found for the
original Y . Then, refind b1 and b2 from the regression of Y on both T1 and T2. The Tjs
are the latent factors that can be used to predict Y .

1. Verify that this procedure really is a variant on the technique of Section 9.7. (Recall
that least squares coefficients can be expressed in terms of Cov(Xj,Y ).)

2. Consider the p = 9, n = 4 data set on protein consumption from four European
countries from 1973.

Country RM WM Egg Mk F Cer St N FV
France 18.0 9.9 3.3 19.5 5.7 28.1 4.8 2.4 6.5
Italy 9.0 5.1 2.9 13.7 3.4 36.8 2.1 4.3 6.7

USSR 9.3 4.6 2.1 16.6 3.0 43.6 6.4 3.4 2.9
W. Germany 11.4 12.5 4.1 18.8 3.4 18.6 5.2 1.5 3.8

The coding is Red Meat, White Meat, Eggs, Milk, Fish, Cereal, Starch, Nuts, Fruit
and Vegetables; the full data set is available from http://lib.stat.cmu.
edu/DASL/Datafiles/Protein.html or Hand et al. (1994). Use the sim-
plified procedure above to do a PLS regression analysis on these data. How many
latent factors are reasonable? Can you interpret them?

3. Redo the analysis using software such as pls. Do you get the same result?

Exercise 9.13. Since projection matrices arise frequently in the visualization and anal-
ysis high dimensional data, here are some facts from linear algebra that are useful to
remember.

1. Let X be a matrix. Verify that XXT is symmetric.

2. Show that the eigenvalues of a XXT are the squares of the singular values of X . (It
is a fact that symmetric real matrices have a full set of eigenvalues.)

3. Let v1 and v2 be two PCs from a variance matrix with different eigenvalues. Show
that if you project normal data onto the span of a v1 and separately onto the span of
v2 then the correlation between the projected data is zero. Explain how to choose
the basis vectors of an eigenspace so that even when the eigenvalues are the same,
this property holds.

4. How can you use PCs to choose projections to visualize high dimensional data?
What are the limitations of PCs for this purpose?

5. What other choices of directions for projection would be reasonable? For each
choice of directions, indicate what kind of structure the directions would detect and
what type of structure they would miss. (PCs, for instance, would likely detect sin-
gle modes quite well but would probably break down if there were two cigar-shaped
modes parallel to each other.)
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Exercise 9.14. MDS can sometimes be used to represent heuristically the vague belief
that some objects are more or less similar to other objects. Consider the following data
extracted from Kaufman and Rousseeuw (1990) attempting to represent (in a unidi-
mensional summary) how 9 different countries (Belgium, Brazil, China, Cuba, Israel,
France, India, USA, and Zaire) are from each other on the basis of their social and
political environments.

BEL BRA CHI CUB ISR FRA IND USA
BRA 5.58
CHI 7.00 6.50
CUB 7.08 7.00 3.83
ISR 3.42 5.50 6.42 5.83
FRA 2.17 5.75 6.67 6.42 3.92
IND 6.42 5.00 5.58 6.00 6.17 6.42
USA 2.50 4.92 6.25 7.33 2.75 2.25 2.75
ZAI 4.75 3.00 6.08 6.67 4.83 5.58 6.17 5.67

1. Using software such as GGobi or R (the cmdscale function), produce a two-
dimensional (metric) MDS plot for these data. Identify the form of the stress used
in the program, and generate a Shepard plot to evaluate the distortion.

2. Cluster the MDS version of the data (in two dimensions). Do the clusters have an
obvious interpretation?

3. Repeat items 1 and 2, but use a three-dimensional embedding. How would you
validate a clustering in this context?

4. Arguably, robustness is a key desideratum of an MDS visualization. So consider
adding two more countries (USSR and Yugoslavia) one at a time after the USA
line:

BEL BRA CHI CUB ISR FRA IND USA USS YUG
USS 6.08 6.67 4.25 2.67 6.92 6.17 6.92 6.17
YUG 5.25 6.83 4.50 3.75 5.83 5.42 5.83 6.67 3.67
ZAI 4.75 3.00 6.08 6.67 6.17 5.58 6.17 5.67 6.50 6.92

How does adding each of the extra countries affect the embedding in two or three
dimensions and their Shepard plots? Can you construct a scree plot for the distortion
as a function of dimension and find the knee?

Exercise 9.15. To see how self-organizing maps behave, consider a cube in four di-
mensions with edgelength 10 situated in the positive orthant with one corner at the
origin. Choose the line of points uuu = (u,u,u,u) for u = 0,1,2, ...,10 and for each uuu
assign a four dimensional normal with mean uuu and variance (1/16)I4. Generate 110
tetradimensional points from the equally weighted mixture of the 11 normals.

1. Consider a one-dimensional grid with points at −5,−4, . . . ,15 at which the SOM
units will be located. Use the neighborhood function that looks only at the closest
neighbor for each unit; i.e., for units between −4 and 14 there are two neighbors,
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but for −5 and 15 there is only one neighbor. Try α(t) = .9(1− t/1000). Run the
SOM procedure, for instance in R (command som or use the contributed package
kohonen); there are other software packages, too. Does the result look like 11 equal
bins as intuition would suggest? What if the variance is increased to, say, I4?

2. Redo item 1, but use a grid of units in the plane. Try the grid generated by
{−5, . . . ,15}×{−5, . . . ,15}. Do you get a line of equal-sized units on the points
(0,0), ..., (10,10)?

3. If the original data points are regenerated with unequal weights on the normals, are
the modes accurately reflected in the size of the units on the line or plane? Explain.
(What would you expect if the weights on the normals are chosen so that the mixture
they generate in four dimensions has a single mode?)

4. Now, generate data from a collection of normal distributions with means located
at the corners of the 10-cube using variance (2.5)2I4 and repeat items 1 and 2. Do
your SOMs detect the difference between the data from a line through the center of
the cube and the data from the corners of the cube?



Chapter 10

Variable Selection

So far, the focus has been on nonparametric and intermediate tranche model classes,
clustering, and dimension reduction. So, the modeling techniques presented have been
abstract and general. The perspective has been to search for a reasonable model class
via unsupervised learning or dimension reduction or to assume a reasonable model
class had been identified. In both cases, the goal was understanding the model class so
the problem could become finding elements of the class that fit reasonably well and
gave good predictions. The focus was on the model class as a whole more than on the
models in the class. In this chapter, the focus is on the models themselves rather than
the general properties of the class they came from.

Variable selection is distinct from model selection in that it focuses on searching for
the best set of variables to include in a model rather than necessarily finding the best
function of them. Best often means parsimonious. Since identifying covariates that
predict well may result in a great many serviceable models, variable selection is a key
way to winnow down a large number of covariates to relatively few.

Of course, variable selection is usually done in the context of a specific model class.
So, finding the best collection of variables can be much at one with finding the right
functional form. When this is not the case, finding the best collection of variables typ-
ically reduces the range of possible models considerably. The reduced range may be
amenable to some of the techniques presented here or in earlier chapters. In addition,
sometimes uncertainty about the model can be reduced by asking how variables inter-
act with each other and what they mean physically. However, it is important not to let
the desire for interpretability of models reduce the model class so much that it can no
longer adequately represent the complexity of the data. This is a common predilection
of subject matter specialists.

In general, the sequence of choices an analyst must make are: (i) the model class to
use, (ii) the variables to include, (iii) the correct functional form within the class for
those variables, and (iv) the correct values for any parameters estimated. Assigning a
meaningful variance and bias expression to each of these choices is another layer of
complexity. Having looked at a variety of model classes, the main topic of this chapter
is (ii). Since (ii) and (iii) are closely related, some aspects of (iii) will necessarily
arise here as well. However, (iv) will be neglected because estimation of parameters

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 569
in Statistics, DOI 10.1007/978-0-387-98135-2 10, c© Springer Science+Business Media, LLC 2009
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is comparatively better understood, usually presenting computational difficulties more
than statistical impediments.

As before, assume a data set {(XXXi,Yi), i = 1, · · · ,n} is available where XXXi ∈ Rp is the
p-dimensional covariate vector and Yi is the response. To reduce modeling bias, it is
common to start with more covariates than are actually believed to be required. This
may necessitate a substantial search to determine which variables are most important
to include, especially when there is a true model that is relatively sparse. Subject matter
specialists prefer parsimonious models on the grounds that they are easier to interpret;
statisticians prefer parsimonious models because they give smaller variances.

Most of the early work on variable selection was done in the context of linear models,
and many of the core ideas can be seen most easily in this context. Many of the later
developments in variable selection owe much to these early contributions. For instance,
the idea of ranking variables or subsets of variables in terms of importance of inclusion
in a linear model recurs in settings like information methods and shrinkage. For this
reason, it is important to begin with some familiar material from linear models before
describing the main topics of this chapter.

10.1 Concepts from Linear Regression

Consider the linear regression model

Yi = XXXT
i βββ + εi, i = 1, · · · ,n, (10.1.1)

where βββ = (β1, . . . ,βp)T is the vector of linear regression coefficients and ε1, . . . ,εn

are IID mean-zero errors with constant variance σ2. Let yyy = (y1, . . . ,yn)T be the ob-
served response vector and X = (XXX1, . . . ,XXXn) = (xi j) for i = 1, · · · ,n, j = 1, . . . , p be
the design matrix, taken as nonstochastic. Without loss of generality, the response Y
is assumed centered (i.e., ∑n

i=1 yi = 0) by subtracting ȳ and the predictors are similarly
standardized so that, for j = 1, . . . , p, ∑n

i=1 xi j = 0 and ∑n
i=1 x2

i j = 1. For the present,
also assume that n > p. Now, the ordinary least squares (OLS) estimator of βββ can be
defined and is

β̂ββ
ols

= argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ ) = (XTX)−1XTyyy. (10.1.2)

If OLS is used to fit a linear model, it is well known that as the number of variables
included in the model increases, the variance of the predicted values increases mono-
tonically. In parallel, the bias decreases monotonically until the true model is contained
in the fitted model.

indexvariable selection To see this in more detail, observe that variable selection in the
context of (10.1.1) is equivalent to the problem of selecting a best subset model from
a class of models, say M . This can be represented by choosing the correct nonvoid
subset of A = {1, · · · , p}. Without loss of generality, let A0 = {1, · · · , p0} be the index
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set for the true model for some p0 ≤ p. Then, the design matrix is

X =
(

XA0 ,XAc
0

)
,

and the true coefficients are βββ ∗ = (βββ ∗TA0
,0T)T. If the correct choice of variables were

known, the OLS estimator of βββ ∗A0
would be

β̂ββ
ols

A0
= argmin

βββ
(yyy−XA0βββA0

)T(yyy−XA0βββA0
) = (XT

A0
XA0)

−1XT
A0

yyy. (10.1.3)

It is not hard to show (see Exercise 10.1) that, for any xxx ∈ IRp,

E(xxxTβ̂ββ
ols

) = xxxTβββ ∗ = xxxT
A0
βββ ∗A0

= E(xxxT
A0
β̂ββ

ols

A0
) (10.1.4)

and

Var(xxxTβ̂ββ
ols

)≥ Var(xxxT
A0
β̂ββ

ols

A0
), (10.1.5)

where xxxA0 are the first p0 elements of xxx. Thus, the inclusion of extraneous variables
can be detrimental, leading to inflated estimates of coefficients and wider confidence
and prediction intervals. In practice, a perfectly true model is rarely known, so as
more variables are added to the model, reduced bias is traded off against increased
variance. Unfortunately, if the added variable is not in the true model, then the increase
in prediction variance does not permit a reduction in bias.

Let S be a variable varying over subsets of A. Then any given S defines a linear
model

E(Y |XXX = xxx) = ES (Y |XXX = xxx) = ∑
j∈S

β jx j. (10.1.6)

Classical subset selection seeks an S of a certain size that achieves a relatively small
residual sum of squares or SSE. One important measure of how well a given model
defined by S describes the data is the coefficient of determination R2,

R2 = R2(S ) = 1− SSE
T SS

, (10.1.7)

where SSE = SSE(S ) = ∑n
i=1(yi − ŷi)2 is the sum of squared errors from fitting

(10.1.6), and T SS = ∑n
i=1(yi− ȳ)2 is the total sum of squares. Sometimes when the

permitted sets S are understood, SSEk is used to mean the fitted model contains k
variables. Usually, R2 is interpreted as the proportion of variability in the data that is
explained by the model. It is seen that values of R2 close to one indicate a good fit and
values close to zero a poor fit.

One main disadvantage of R2 is that it favors large models unduly because its value
decreases monotonically as variables are added to the model. To correct for this but
retain the advantages of R2, the R2 value can be corrected by dividing the residual
sums of squares by their degrees of freedom, giving
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[
R2

ad j

]
k
= 1− SSE/(n− k)

T SS/(n−1)
, (10.1.8)

in which k is the size of the fitted model. For most variable-selection purposes, R2
ad j is

more effective than R2.

Mallows (1964, 1973) proposed a useful criterion to determine the optimal number of
variables to be retained in a model. The idea is to search for the correct S by finding
the best model of the best size k. For any model of size k, Mallows’ criterion is

Ck =
SSEk

s2 − (n−2k), (10.1.9)

where s2 = SSEp/(n− p) is the residual mean square from the full model containing all
p covariates. The intuition is that, for the full model of p variables, SSEp/(n− p)≈σ2,
even when the true model only uses a proper subset of the p variables. Given this, if a
particular model of size k is correct, then, for this model, SSEk/(n− k) ≈ σ2 as well.
Consequently, for a good k,

Ck ≈
(n− k)σ2

σ2 − (n−2k) = k.

Mallows (1964) recommended plotting a graph of Ck against k for various ks and
models of size k and noted that models with small values of Ck are desirable.

Standard variable-selection procedures typically fall into one of two categories: subset
selection and variable ranking. It will be seen that in subset selection the best S s are
those with relatively small SSEs. At their root, general subset selection methods are
just slightly more sophisticated than using R2

ad j, MSE, or Mallows’ Ck directly. Such
methods can be very suggestive, but it must be remembered that while SSE is a good
assessment of fit, it says little directly about prediction. By contrast, variable ranking
tries to assign a worth to each variable Xj for j = 1, . . . , p, traditionally its association
with Y . Although this is a univariate approach, there are some recent extensions that
are promising.

10.1.1 Subset Selection

In principle, an exhaustive search could be done by fitting all 2p− 1 candidate mod-
els and selecting the best one under some criterion, such as the smallest R2

ad j, MSE,
or Mallows’ Ck. However, this can be computationally expensive if p is large. Conse-
quently, a variety of algorithms have been developed to speed the search over sets S .
Usually, the main idea is to identify the best subsets by a greedy procedure so large
numbers of suboptimal subsets can be ruled out efficiently.

One of the earliest procedures achieving improved computational efficiency is due
to Hocking and Leslie (1967). They described a method for identifying parsimonious
models by eliminating entire subsets of variables from further consideration when they
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are demonstrably inferior to other subsets already evaluated. The basic idea is to start
by fitting the full regression model and using it to reorder and relabel the variables
according to the magnitudes of their t-statistics. This means that variables with larger
absolute t-statistics, which are marginally worse than those with smaller absolute t-
statistics, will have lower indices.

The efficiency gains are based on the observation that when the SSE due to eliminating
a set of variables for which the maximum subscript j is less than the SSE due to
eliminating the variable ( j +1), then no subset including any variables with subscripts
greater than j can result in a smaller reduction. To see how this principle helps, let j = 3
and consider identifying the best set of three variables to be deleted. Let SSE−(123)
denote the SSE for the model in which the (relabeled) variables 1, 2, and 3 are not
used and SSE(−4) is the SSE if only variable 4 is deleted. If SSE(−123) < SSE(−4), then
the deletion of any other set of three variables will have SSE > SSE−(123), so there is
no need to evaluate the other subsets of size three. On the other hand, if SSE−(123) ≥
SSE(−4), then it is necessary to examine other subsets of size three taken from the first
four variables. However, if the smallest SSE from that group is less than SSE(−5), again
one can stop since there is no need to evaluate other sets of size three. Continuing in
this way allows us to find the optimal set of three variables to delete. Simulation studies
suggest that only 20–30% of the 2p−1 models have to be examined.

Furnival (1971) proposed a computationally efficient implementation of the Hocking
and Leslie (1967) procedure called “leaps and bounds”. The algorithm, which uses
sophisticated matrix routines, is developed in Furnival and Wilson (1974). It is based
on the principle that

S1 ⊂S2 ⇒ SSE(S1)≥ SSE(S2) (10.1.10)

for subsets S1 and S2. It is seen that inequality (10.1.10) is a variant on the Hocking
and Leslie observation about SSEs. Both the Hocking and Leslie (1967) and Furnival
and Wilson (1974) procedures assume that the explanatory variables are independent,
even though they are often used in the dependent case as well.

Both procedures are also instances of a class of optimization methods called branch
and bound. In these methods, large numbers of candidates are ruled out en masse by
using estimated upper and lower bounds on the quantity being optimized, in this case
SSE or some variant of it such as Ck or R2

ad j. This type of algorithm works well when
there are a small number of important variables that dominate the regression and so
can easily be found. While branch and bound type procedures scale up better than
all subsets procedures, they still have exponential running time. They are really only
effective for up to 50 or so variables.

As a consequence, sequential search methods such as forward selection, backward
elimination, and stepwise regression are widely used. Forward selection begins with
no variables in the model and at each step adds the variable that results in the maximum
decrease in SSE to the current model. If there are k variables in the current model, then
the new SSE from adding another variable is
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SSEk+1( j) = SSEk−
[yyyT(I−Hk)xxx j]2

xxx j(I−Hk)xxx j
,

where xxx j is the vector of inputs for the new variable and Hk = Xk(XT
k Xk)−1XT

k is the
projection matrix for the k-variable model.

Adding the variable that gives the maximum decrease in SSE is equivalent to selecting
the variable Kk+1 whose partial correlation with the response, given the current vari-
ables, is maximum. (The partial correlation is the usual correlation but between two
sets of residuals from regressing on the same variables. In this case, it is the correla-
tion between the residuals from regressing Xk+ on X1, . . . ,Xk and from regressing the
response Y on X1, . . . ,Xk.) The method stops when adding the next variable does not
give a significant improvement in the fit under some criterion. A common stopping
criterion is the critical value of the F-statistic for testing the hypothesis H : βk+1 = 0
in the (k +1)-variable model. Thus, the variable Xk+1 is added to the current model if

Fk+1 = max

(
SSEk−SSEk+1

SSEk+1/(n− k−1)

)
> Fin, (10.1.11)

where Fin = F(α;1,n− k−1), the “F-to-enter” value.

Backward elimination is the reverse of this. It begins with all p variables in the model
and at each step removes the variable making the smallest contribution. Suppose there
are k variables, k ≤ p, in the current model, and the corresponding design matrix is
Xk. Then the new SSE from deleting the jth (1 ≤ j ≤ k) variable from the current
k-variable model is

SSEk−1( j) = SSEk +
(β̂ j)2

s j j , (10.1.12)

where β̂ββ k = (β̂1, . . . , β̂k)T is the vector of current regression coefficients and s j j is the
jth diagonal element of (XT

1 X1)−1. (Equation (10.1.12) is Exercise 10.2 at the end
of the Chapter.) Deletion of variables continues until it starts harming the fit. As with
forward selection, a common stopping criterion is based on the F-statistic: The variable
Xj is deleted from the current model if

Fj = min

(
SSEk−1−SSEk

SSEk/(n− k)

)
< Fout , (10.1.13)

where Fout = F(α;1,n− k), the “F-to-delete” value.

One problem with forward selection and backward elimination is that once a decision
has been made to include or exclude a variable, it is never reversed. Stepwise selection,
proposed by Efroymson (1960), overcomes this drawback – at a cost. Stepwise selec-
tion begins like forward selection with no variables in the model. Then variables are
added sequentially until a stopping criterion such as (10.1.11) is met. Once there are
variables in the model, one or more of them may be deleted if they satisfy (10.1.13).
Once this deletion step is complete, the variables not in the model are examined again;
the ones that satisfy (10.1.11) are added one at a time to the model. The procedure
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stops when all variables in the model pass the F-test for staying in and all the other
variables fail the test for being added.

Stepwise selection can dramatically reduce the computational cost of the best sub-
set selection. However, it has have two costs: First, it is not guaranteed to find the
global optimal set. Almost as bad is its instability. Because variables are either added
or dropped, subset selection is a discrete process. As noted in Breiman (1996), a rel-
atively small change in the data may cause a large change in which variables are se-
lected. This is partially due to the fact that the criteria for adding or dropping are based
on squared errors, which can be oversensitive to the data. Thorough reviews on subset
selection procedures can be found in Linhart and Zucchini (1986), Rao and Wu (2001),
and Miller (1990).

10.1.2 Variable Ranking

As p increases, traditional variable selection procedures become more onerous com-
putationally. When p > n, they break down completely because OLS estimates are not
defined. In these cases, it is helpful to screen variables to eliminate those that are redun-
dant or noisy. Sometimes, this can reduce the dimension of the model from p to q < n.
If this can be done, then, in principle, traditional selection procedures can be applied.
Such screening is often done by ranking the variables on the basis of some criterion
and eliminating all variables that do not have a high enough score. For instance, the Xjs
can be ordered by using some measure of association strength to Y . The hope is that
the magnitude of such a measure will reliably identify the most important variables.

To overcome the Curse of Dimensionality, most ranking methods are based on marginal
models for the response; that is, on a univariate model for Y using a single Xj. For in-
stance, in linear models, p univariate models may be fitted, each assuming a single
Kj is linearly related to the response. In this case, the predictors can be ordered by
their individual associations with Y . Various coefficients reflecting association have
been proposed as the ranking criteria, including the Pearson correlation coefficient,
the t-statistic (proportional to the correlation for individual variables), the p-value, and
more generally Kendall’s τ (see Kendall (1938)) and Spearman’s ρ .

In the classification context, variable ranking is also important and is often done by
similar methods. One of these is based on sums of squares familiar from two sample
t-tests. It is called the BW ratio – between-class variation versus within-class variation.
Consider a binary classification problem with response Y ∈ {+1,−1}. Let n1 and n2

be the sample sizes for two classes +1 and −1, respectively. The BW ratio is

BW( j) =
n1(x̄ j,+1− x̄ j)2 +n2(x̄ j,+1− x̄ j)2

∑yi=1(xi j− x̄ j,+1)2 +∑yi=−1(xi j− x̄ j,−1)2 ,

where x̄ j,+1 and x̄ j,−1 are the sample means of the jth predictor for classes +1 and −1
respectively and x̄ j is the overall sample mean for the jth predictor. Variables with high
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BW ratios tend to be more homogeneous within the two classes and heterogeneous
between the two classes and so are more useful for discriminating between them.

The ideal ranking technique for dimension reduction would retain all the important
variables and discard all the unimportant ones. One way to formalize this is called
sure independence screening (SIS; see Fan and Lv (2008)) which, asymptotically in
n, identifies the correct variables for a model. Essentially, this is consistent model
selection. Since SIS is based on the marginal correlations of individual variables Xj

and Y , it is easy to describe. Suppose the n× p design matrix X = (XXX1, . . . ,XXXn) is
standardized columnwise; i.e., the explanatory variables have been centered to have
mean zero and rescaled to have variance one. The vector of marginal correlations of
individual variables Xj and Y scaled by the standard deviation of yyy is ωωω = XTy.

For a given γ ∈ (0,1), SIS sorts the p componentwise magnitudes of ω = (ω, . . . ,ωp)
into decreasing order to define submodels of the form

Sγ = {1≤ j ≤ p : |ω j| is one of the �γn� largest entries in ω},

where �γ� is the integer part of γn. Clearly, as γ increases, S increases, so smaller γs
give smaller models. Under several regularity conditions, Fan and Lv (2008) (Theo-
rem 2) showed that if the distribution of Z = XCov(X)−1/2 is spherically symmetric
for normal data having a concentration property (essentially that the eigenvalues of any
n×q submatrix of (1/q)ZZ′ are bounded away from zero and infinity with high prob-
ability), then SIS really is sure in the sense that it captures all the important variables
with probability tending to one as n increases.

Unfortunately, variable ranking based on marginal correlation may not work well in the
presence of collinearity, often found in high-dimensional data. It is possible that many
unimportant variables are highly correlated with important ones and so may be likely
to be selected over important predictors having weaker marginal correlation with the
response. Also, marginal correlation ignores the interaction effects among variables:
It is possible that an important predictor that is marginally uncorrelated but jointly
correlated with the response will be filtered out.

One technique to help get around this is the Dantzig selector (see (Candes and Tao,
2007)) which is a ranking method that tries to find estimators βββA with minimal norms
subject to constraints on residuals of the form y−XAβββA. Overall, it is as yet un-
clear how univariate marginal procedures, usually based on independence, compare
with these procedures. More procedures like this will be presented in Section 10.3 on
shrinkage methods.

A separate problem is that when the predictors have nonlinear effects on the response,
the linear correlation coefficient is not likely to work well. For instance, in an additive
model

Yi =
p

∑
j=1

f j(Xj,i)+ εi, i = 1, · · · ,n,

each f j may have an arbitrary functional form, making the model highly nonlinear. It
seems to be an open question what a proper measure of association between individual
Xjs and Y should be so that the ranking will reflect the relative importance of individual
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predictors to the response. One natural solution may be to fit a univariate smoother for
each Xi and use a goodness-of-fit statistic or measure of association on it.

10.1.3 Overview

There is a huge body of literature on variable selection, and only a fraction of it can be
presented here. This is so because variable selection is extremely broad, going far be-
yond linear models, which themselves have been extensively studied. The wide range
of techniques stems largely from the fact that the various classes of nonlinear mod-
els have very different properties. Moreover, transformations of the original variables
can be important, and this too is a wide range of possibilities going far beyond using
a product of two variables to model an interaction. Indeed, transformation includes
general functions of one or more explanatory variables and may require using sets of
basis functions for some model space. These cases must be borne in mind even though
they are not treated extensively here. However, the focus will be on complex models
as much as possible.

To begin, Section 10.2 introduces a few classical and recently developed informa-
tion criteria. These include Mallows’ Cp, Akaike’s information criterion (AIC; Akaike
(1973, 1974, 1977)), and Schwartz’s Bayesian information criterion (BIC; Schwarz
(1978); Hannan and Quinn (1979)) widely used to gauge the number of variables to
include in a model. Another type of criterion is cross-validatory, evaluating model
performance by internal prediction. Section 10.2 also covers CV as a technique for
variable selection, model evaluation, and parameter tuning.

In Section 10.3, the wide variety of regularization methods that have been proposed
and studied intensely will be surveyed. These methods are based on linear models but
impose penalties on regression coefficients to shrink them toward zero. Popular ex-
amples include ridge regression, the least absolute selection and shrinkage operator
(LASSO; Tibshirani (1996)), and their generalization to bridge regression (Frank and
Friedman (1993); Fu (1998)) which uses an Lp penalty on the coefficients with p≥ 0.
An important penalty term, different from norm-type penalties on the coefficients, is
the smoothly clipped absolute deviation (SCAD; Fan and Li (2001)) which is also
presented. It can give better fits than bridge regression. Other recent developments dis-
cussed here are least angle regression (LARS) which is primarily a computational pro-
cedure generalizing LASSO in a different direction from bridge, and boosted LASSO,
in which the boosting idea from Chapter 6 is used to improve LASSO fits. Variable
selection in the context of other penalization methods such as for trees, generalized
linear models, smoothing splines, basis pursuit, and SVMs is also discussed.

For contrast, Section 10.4 presents Bayesian approaches, which treat variable selec-
tion as a model selection problem. Assume the entire model space associated with
p covariates consists of models indexed by γ = {1, ...,2p}, so that each model cor-
responds to a distinct subset of variables. Bayesian methods take model uncertainty
into account by putting a prior distribution on both γ and the associated coefficient
β s. The posterior P(γ|Y ) is then used to identify good models. Prior selection, and the
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computational methods to find the posterior, are the main tasks that must be accom-
plished to implement Bayesian variable selection. Prior selection will be discussed
here, but the extensive computational techniques required are too specialized for sub-
stantial discussion in the present treatment.

10.2 Traditional Criteria

Recall that for any subset index S ⊆ {1, ..., p}, the linear model

E(Y |XXX) = ∑
j∈S

β jXj

can be fit and best subset selection means finding the S to minimize some criterion.
The first class of criteria will be informational – based on penalizing a log likelihood
by a complexity – rather than based on residual error as in the traditional techniques,
although the SSE is much the same as the log likelihood for normal errors. Another
type of criterion is cross-validatory, evaluating model performance using internal val-
idation on the data set. Interestingly, the criteria from these two classes are closely
related and asymptotically equivalent under some conditions.

Unsurprisingly, numerous information criteria have been proposed for selecting the
most parsimonious yet correct model. Mallows’ Cp can be regarded as being in this
category (Mallows (1973, 1995)). More typical members are Akaike’s information cri-
terion (AIC; Akaike (1973)), the Bayes’ information criterion (BIC; Schwarz (1978)),
and the HQ criterion (Hannan and Quinn (1979)). Likewise, there are many versions
of cross validation.

To begin, consider the linear model (10.1.1), and let g(y|xxx,βββ ) be the density of the
response y. For a sample of n observations (xxxi,yi), i = 1, · · · ,n, the log-likelihood is

logL =
n

∑
i=1

logg(yi|xxxi,βββ ).

Typically, an information criterion is of the form

ICk =−2[log(Lk(β̂MLE))−φ(n)k], (10.2.1)

where log(Lk(β̂MLE)) is the maximized log likelihood of a subset model containing a
choice of k variables and φ(n) is a factor specifying the penalty on the model dimen-
sion. Two models of the same size can have different ICk values because their Lks may
differ. In general, the function φ(n) is increasing in n and takes different forms for
different criteria. The information number ICk can be interpreted as a combination of
goodness of fit and model complexity or bias and variance.

In particular, if Yis are assumed to be independently distributed with N(XXXT
i βββ ,σ2),
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logL(βββ ) =−n
2

log(2πσ2)−
n

∑
i=1

(yi− xxxT
i βββ )2/(2σ2) =−n

2
log(2πσ2)−SSE/(2σ2).

(10.2.2)
This leads to

ICk =
SSEk

σ2 +2φ(n)k. (10.2.3)

When σ2 in (10.2.3) is unknown, it is often estimated by s2 = SSEp/(n− p) under the
full model. Recall that Mallows’ Cp was defined in (10.1.9) as

Ck =
SSEk

s2 − (n−2k),

so Ck is an information criterion with φ(n) = 1.

Under a criterion such as (10.2.1), one chooses the best model having size k̂ defined as

k̂ = arg min1≤k≤pICk. (10.2.4)

To evaluate how good a choice of k this is, assume the true model has size p0 ≤ p.
Models with k < p0 parameters are misspecified and models with k > k0 parameters
are correctly specified (at least for the number of terms) but overparametrized. An
information criterion is consistent if

lim
n→∞

IP(k̂ = p0) = 1. (10.2.5)

As long as limn→∞ φ(n)/n = 0, the information criterion in (10.2.1) is unlikely to lead
to a misspecified model asymptotically. Indeed, as n → ∞ it is not hard to see that
IP(k̂ < p0)→ 0. This follows by noting that limsupn→∞ IP(k̂ < p0) is bounded from
above by

limsup
n→∞

IP(ICp0 > ICk for some k < p0)

= limsup
n→∞

IP(−2logLp0/n+2p0φ(n)/n >−2logLk/n+2k logφ(n)/n

for some k < p0)
= limsup

n→∞
IP(logLp0/n− logLk/n < (p0− k)φ(n)/n for some k < p0)

= ∑
k<p0

limsup
n→∞

IP(logLp0/n− logLk/n < 0) = 0,

(10.2.6)

where the third equality holds because logLp0/n− logLk/n is Op(1), while (p0 −
k)φ(n)/n is o(1). AIC, BIC, and HQ all satisfy this one-sided property.

Note that consistency of model selection also requires P(k̂ > p0)→ 0 as n→∞. How-
ever, only some choices of φ(n) satisfy this extra one-sided property; a variety of cases
are covered in a unifying theorem stated at the end of this section. Although they will
not be developed here, two important points to bear in mind are that (i) asymptotic
results do not guarantee a satisfactory performance for finite data and (ii) the standard
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errors for parameter estimation and prediction following model selection will neces-
sarily be increased due to the sampling distribution of the model selection. This extra
variability is usually ignored, even though it can have a big impact on inference.

10.2.1 Akaike Information Criterion (AIC)

Akaike (1973, 1974, 1977) proposed a selection criterion by seeking the model that
best explains the data with the fewest variables. The AIC score is

AICk =−2[log(Lk(β̂MLE))− k], (10.2.7)

where k is the number of variables included in the model and Lk is the maximized value
of the likelihood function for the chosen model. It is easy to see that AIC corresponds
to setting φ(n) = 1 in (10.2.1) and the preferred model is the one with the lowest AIC.
Since the model complexity penalty in AIC is simply the number of parameters, AIC
not only rewards goodness of fit, but also discourages overfitting, though not strongly.

The most typical form of (10.2.7) is for normal data. With the normal likelihood from
(10.2.2), the maximal log likelihood for fitting a k-variable model occurs when

σ̂2
k = SSEk/n,

where SSEk is the residual sum of squares. So, the maximum value of the log likelihood
for this model is

log(Lk(β̂MLE)) =−n
2

log(2πσ̂2
k )− n

2
,

and the AIC for normal data becomes

AICk = n log(2πσ̂2
k )+n+2k = constant+n log(σ̂2)+2k. (10.2.8)

Minimizing (10.2.8) gives the desired value of k.

The AIC procedure and its variations are information-theoretic because they can be
derived from the relative entropy or Kullback-Leibler number. It is easy and worth-
while to outline this argument. Suppose g(yyy|XXX ,βββ ) is the true conditional density of yyy
given XXX , and let h be the density of an approximating model. By definition, the relative
entropy between g and h is

D(g || h) =
∫

g(yyy) log

(
g(yyy)
h(yyy)

)
dyyy =

∫
g(yyy) log(h(yyy))dyyy−

∫
g(yyy) log(h(yyy))dyyy.

(10.2.9)
When using D(g || h) for fixed h and variable g to identify the minimal relative entropy
distance model, it should be enough to maximize the comparative term

CD(g,h) =
∫

g(yyy) log(h(yyy))dyyy. (10.2.10)
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Akaike (1974) suggests that the central issue for getting a selection criterion is to
estimate the expected form of CD in (10.2.10),

EYYY EYYY ∗
[
log(ĥ(YYY ∗))|ĥ

]
, (10.2.11)

for a candidate ĥ, where YYY and YYY ∗ are independent random samples from g and ĥ
is the MLE. The inner, conditional expectation in (10.2.11) represents the predictive
behavior of ĥ; the outer expectation represents the overall performance. Akaike (1973)
argues that

EYYY EYYY ∗
[
log(ĥ(YYY ∗))|ĥ

]
≈ log(L(θ̂ |YYY ))− k,

which essentially gives the AIC. The argument is that (1/n) log(L(θ̂ |YYY )) using ĥ is a
reasonable estimator of (10.2.10) but has a bias that is corrected by using

bias = Eg

(
1
n

n

∑
i=1

logh(xxxi|θ̂)

)
−Eg logh(xxxi|θ̂) =

n(k +1)
n− k−2

≈ k (10.2.12)

(see Bozdogan (1987)), in which the exact expression n(k + 1)/(n− k−2) is derived
by Sugiura (1978). In essence, although maximizing log(L(θ̂ |yyy) is natural for estimat-
ing (10.2.11), the maximized log nlikelihood is biased upward, and the bias can be
approximated by the model size k.

AIC is not consistent, as shown in Shibata (1983), because it often gives models with
too many terms. Indeed, if k > p0 the likelihood ratio test for testing the true model
against a model with k variables gives

2(logLk− logLp0)−→d χ2
k−p0

as n−→ ∞ (10.2.13)

by Wilks’ theorem, where, henceforth, logLk = log(Lk(β̂MLE)). Therefore,

AICp0 −AICk = 2(logLk− logLp0 − (k− p0))−→d χ2
k−p0

−2(k− p0),

leading to
lim
n→∞

IP(AICp0 > AICk) = IP(χ2
k−p0

−2(k− p0)) > 0.

This implies that the AIC-selected model asymptotically satisfies

lim
n→∞

IP(k̂ ≥ p0) = 1 but lim
n→∞

IP(k̂ > p0) > 0,

which means that AIC tends to choose models that are too complex as n→ ∞.

Note that the penalty in AIC is relatively small – not dependent on n, for instance. This
means that the AIC tends to permit larger models and therefore is better for prediction
than other variable selection techniques. This is especially true when robust prediction
is important but model identification is not. This arises because the SSE is roughly
the sum of a squared bias and a variance. Since the penalty has the same order as the
model dimension, the whole AIC value remains of the same order as the sum of the
squared bias and the estimation error (model dimension over the sample size), which
is most important when the number of models is bounded. Using this observation, the
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AIC has been shown to be minimax-rate optimal over linear regression functions under
a squared error type loss, as in Barron et al. (1999) and Yang and Barron (1999).

In particular, Yang (2005) gives a bound on the risk in terms of a bias and variance. To
state this result, consider the average squared error over the design points for estimating
a function f ∈F using a selection criterion δ giving a model f̂k̂. This is

ASE( f̂k̂) =
1
n

n

∑
i=1

(
f (xxxi)− f̂k̂(xxxi; β̂k̂)

)2
=
‖ f − f̂ (· ; β̂k̂)‖n

n
, (10.2.14)

where β̂k̂ is the OLS estimate of the parameter in the model, giving the empirical risk

R( f ;δ ;n) =
1
n

n

∑
i=1

E
(

f (xxxi)− f̂k̂(xxxi)
)2 =

‖ f − f̂ (·)‖n

n

for f̂k̂(xxxi) = f̂k̂(xxxi; β̂k̂). A model selection criterion δ is minimax-rate optimal over a
class of regression functions F if

sup
f∈F

R( f ;δ ;n)" inf
f̂

sup
f∈F

1
n

n

∑
i=1

E
(

f (xxxi)− f̂ (xxxi)
)2

,

meaning that the left and right sides converge at the same rate, where f̂ ranges over all
estimators based on y1, · · · ,yn. Now, suppose M is the collection of all the candidate
models at most countable, and let Mk ⊂M be the collection of models of size k with
cardinality Nk assumed to be subexponential in the sense that Nk ≤ expck for some
c > 0. Let δAIC = fk̂(xxx; β̂ββ k̂), the estimator of f , where k̂ is selected by the AIC. Letting
Pk denote the projection matrix down to Mk with rank(Pk) = rk, Yang (2005) showed
the following.

Proposition (Yang, 2005): There exists a constant C > 0 depending only on c so that
for every f ∈F ,

R( f ;δAIC;n)≤C inf
k∈M

(
‖ f −Pk f‖2

n

n
+

rk

n

)
, (10.2.15)

where ‖a‖2
n is the Euclidean norm of an n dimensional vector a. Furthermore, if k∗ ∈

M indicates the correct model of size k∗, then

sup
f∈Mk∗

R( f ;δAIC;n)≤ CNk∗

n
. �

From this it is seen that when the true model is in M , the worst-case risk of δAIC

converges at the parametric rate 1/n, which is minimax-optimal. More generally, if
the true regression function is infinite-dimensional, ‖ f −Pk f‖2

n/n is nonzero for all k
but often decreasing. For smooth classes such as a Sobolev ball, with an appropriate
choice of the candidate models, it can be shown that the term on the right in (10.2.15)
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also converges at the minimax rate. Expressions (10.2.15) and (10.2.16) are Oracle
inequalities similar in form to those given in Chapter 6.

10.2.2 Bayesian Information Criterion (BIC)

Recall that in the decision-theoretic Bayes formulation, the mode of the posterior is
the point estimate for the parameter under zero-one loss and that, similarly, the Bayes
factor is the Bayes action for a binary decision problem such as hypothesis testing
under generalized zero-one loss. Putting these together leads to the BIC, which is to
minimize

BICk =−2[logLk− log(n)k] (10.2.16)

over k, where logLk = log(Lk(β̂MLE)). This corresponds to setting φ(n) = log(n)
in (10.2.1). Though BIC looks similar to AIC, the difference in their penalty terms
has a big effect on the number of variables selected because the BIC punishes high-
dimensional models more than AIC does.

The BIC follows from the Bayesian formulation of the model selection problem. Given
p covariates, there are K = 2p−1 candidate models denoted, say, Sk for k = 1, · · · ,K
with corresponding model parameters βββ k. Write the prior over the model space as
W (Sk) and the prior distribution for the parameters within model Sk as P(βββ k|Sk).
Then the posterior probability for a given model is

IP(Sk|yyy) ∝ W (Sk)IP(yyy|Sk) (10.2.17)

∝ W (Sk)
∫

IP(yyy|βββ k,Sk)IP(βββ k|Sk)dβββ k. (10.2.18)

The model achieving the mode of the posterior is the one best supported by the data;
in a zero-one loss sense, this is the natural estimate to take for the true model.

An asymptotic form can be derived for the modal model. With only slight loss of
generality, assume the prior on the model space is uniform so w(S ) is a constant. A
standard Laplace approximation on the integral in (10.2.18) ( see Walker (1969) or
de Bruijn (1959)) gives that

logIP(yyy|Sk) = logIP(yyy|β̂ββ k,Sk)−
k
2

log(n)+O(1),

where β̂ββ k is the maximum likelihood estimate. So (10.2.16) follows by taking the
leading terms multiplied by two, and choosing the model with a minimum BIC is
equivalent to choosing the model with the largest posterior probability.

The BIC is information theoretic in that it has a close relationship to D(Pθ ||Mn), where
Mn is the mixture distribution from the n-fold parametric family Pθ and the prior
W (θ). Indeed, the penalty term in BIC comes out of the approximation D(Pθ ||Mn) ≈
(p/2) logn + constant + op(1), and close examination of constant reveals how it
comes from the limit of log p(xn|θ̂); see Clarke and Barron (1990, 1994).
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From (10.2.17), it is also seen that the BIC is also a sort of MLE since it maximizes
IP(yyy|Sk), which can be regarded as a sort of likelihood. Indeed, it can be seen that the
BIC approximation gives

exp{−BICk/2}
∑K

k=1 exp{−BICk/2}
as an approximation to the posterior distribution across the models. It can be readily
verified that the effect of the prior drops out at rate O(1/n) and so can be safely ignored
in many settings.

From a hypothesis testing standpoint, (10.2.16) has been justified by comparing two
models Sk and Sk′ via their Bayes factor,

BF =
IP(yyy|Sk)
IP(yyy|Sk′)

=
IP(Sk|yyy)/IP(Sk′ |yyy)

w(Sk)/w(Sk′)
.

Schwarz (1978) uses this approach to provide a strictly Bayesian derivation of the BIC.
In addition, the BIC is a minimum description length, apart from a minus sign (see
Barron and Cover (1991)) and has other interpretations in Shannon coding theory (see
Clarke and Barron (1990)). However, minimum description length is a more general
concept not treated here.

Like most Bayesian procedures, consistency almost always holds when the true model
is in the support of the prior. Indeed, a heuristic consistency proof for the BIC can be
seen as follows. Since φ(n)→ ∞, (10.2.13) gives that

limsup
n→∞

−2(logLp0 − logLk)/φ(n) = 0.

Therefore,

limsup
n→∞

(BICp0−BICk)/φ(n)= limsup
n→∞

−2(logLp0−logLk)/φ(n)+2(p0−k)= p0−k,

which is less than or equal to −1. This gives

lim
n→∞

IP(BICp0 ≥ BICk+1) = 0,

implying that limn→∞ IP(k̂ > p0) = 0. Coupled with (10.2.6), consistency follows.

In fact, the validity of this argument is limited: Stone (1979) provides examples where
the BIC in (10.2.16) is not consistent. Berger et al. (2003) demonstrate that, in certain
contexts with many parameters, the hypotheses for the derivation of the BIC are not
satisfied. The exact Bayes procedure is consistent; however, the approximations to
it are not always accurate enough to reflect this. In contrast to AIC, the BIC is not
minimax-rate optimal. Foster and George (1994) show that, in parametric settings, the
BIC can converge suboptimally in worst-case risk performance; this may reflect the
effect of the prior.
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10.2.3 Choices of Information Criteria

Any choice of φ in (10.2.1) gives an information criterion; AIC and BIC just reflect
two choices. In fact, (10.2.6) appears to hold as long as φ(n) = o(n), so the open
question is how large φ must be to allow consistency and some sort of efficiency. This
is partially answered by the unifying theorem at the end of this section. Now, for the
sake of intuition, some comparative comments are as follows.

10.2.3.1 Between AIC and BIC

General guidelines for when to use AIC, BIC, or other selection criteria are hard to
give beyond a few simple considerations. Roughly, if the true model is simple or finite-
dimensional, then higher penalties such as BIC should be used. But if the true model
is complex or infinitely-dimensional, then smaller penalties such as AIC should be
used. In other words, keeping models small with high penalties on complexity helps
for identification, but allowing larger models by way of smaller complexity penalties
helps for prediction. Most AIC versus BIC comparisons (see Shao (1997), Yang (2005)
for asymptotics and Burnham and Anderson (2002) for practical performance) come
down to properties of their sampling distributions IPA and IPB. Typically, IPA is more
spread out than IPB is. This means the AIC is slower than the BIC for identifying the
right model as n increases – when the AIC identifies the right model at all. However,
the comparative inefficiency of the AIC allows it to be more robust and hence better
for other purposes, such as prediction.

Reinforcing this, Shao (1997) pointed out that the support of IPA and IPB is a determin-
ing factor for the asymptotic performance of variable selection procedures. In particu-
lar, the question is whether or not the model space M contains a correct model with a
fixed dimension (i.e., whether or not the problem is M-closed in the sense of Bernardo
and Smith (1994)). If the problem is M-closed, then the consistency of the BIC makes
it preferred over the AIC. However, if the true model is not in the model space but the
number of models of the same dimension does not grow too fast with the dimension,
the average squared error of the model selected by AIC is asymptotically equivalent
to the smallest possible offered by candidate models, as shown by Shibata (1983), Li
(1987), Polyak and Tsybakov (1990), Zhang (1992), and Shao (1997). The BIC does
not have this property.

Interestingly, Yang (2005) showed that there is an unbridgeable gap between AIC and
BIC: The strengths of AIC and BIC cannot be shared. That is, if any model selection
criterion is consistent like BIC, it cannot be minimax-rate optimal; i.e., it must have a
worse mean average squared error than AIC. Consistency in selection and minimax-
rate optimality in estimating the regression function are therefore conflicting measures
of performance for model selection. However, recently van Erven et al. (2008) pro-
vided a reconciliation between the properties of AIC and BIC by showing that switch-
ing from AIC (for searching) to BIC (for model identification) at some stage in se-
quential prediction is better than using either AIC or BIC alone. The switching permits
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a prediction scheme to take advantage of the fact that simpler models can be better at
predicting than complex models when the sample size is preasymptotic.

10.2.3.2 Other Information Criteria

As discussed above, the AIC may perform poorly when the true model is small or
when there are too many parameters relative to n (see Sakamoto et al. (1986)). Also,
the BIC may perform poorly when the true model is large. So, many variants on the
AIC and BIC have been proposed; usually they have penalty terms between those of
the AIC and BIC.

For instance, Hurvich and Tsai (1989) studied the small-sample properties of the like-
lihood function and derived a corrected AIC,

AICc,k = AICk +
2k(k +1)
n− k−1

=−2

[
logLk−

n
n− k−1

k

]
, (10.2.19)

with φ(n) = n/(n− k− 1) (see Sugiura (1978)). The adjustment is based on small-
sample properties of the estimates assuming that the models have been chosen a priori.
Since φ(n) > 1, AICc gives a sharper cutoff and tends to select smaller subsets than
AIC when p is large compared with n. As n→∞, φ(n)→ 1, AICc thus asymptotically
behaves like AIC. Generally, Burnham and Anderson (2002) advocate the use of AICc

when the ratio n/p is small, say less than 40.

Hannan and Quinn (1979) considered selecting time series models in which the num-
ber of parameters k increases with n. In particular, they studied the selection of the
order of an autoregressive model and proposed minimizing

HQk =−2[logLk− log log(n)k]. (10.2.20)

The HQ criterion imposes a heavier complexity penalty than the AIC but a lighter
penalty than the BIC. HQ is seen to be asymptotically consistent for model selection
by an argument similar to that for BIC. Indeed, Hannan and Quinn (1979) establish
that, under some regularity conditions, if k̂ minimizes (10.2.20) over k≤K, for p0≤K,
then k̂ converges a.s. to p0.

The deviance information criterion (DIC) arises from calling D(θ) =−2log f (yyy|θ) a
deviance and setting D̄ = Eθ |YYY D(θ) and θ̄ = Eθ |YYYΘ so the criterion is to minimize

DIC = kD + D̄ = 2D̄−D(θ̄),

in which kD = D̄−D(θ̄) is an effective number of parameters. The DIC also represents
a sort of trade-off between fit and complexity.

There are many other information-like criteria, including the risk inflation criterion
(RIC; see George and Foster (2000)) which uses SSEγγγ plus a penalty dependent on the
number of nonzero parameters in the selection of terms summarized by γγγ . The RIC is
derived from a ratio of predictive risks of the form E(Xβββ −Xβ̂ββ )2. The informational
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complexity (IC; see Bozdogan (1987)) is based on penalizing the log likelihood by
functions of the Fisher information to obtain invariance properties. The focused in-
formation criterion (FIC; see Clasekens and Hjort (2003)) is an effort to minimize an
unbiased limiting form of the risk using the asymptotic normality of MLEs. The FIC
also uses a penalty term, on a risk, derived from the Fisher information; the FIC is
often similar to AIC but relies on many more limiting quantities. Atkinson (1980) also
penalizes a risk, but by a constant times kσ̂2. The covariance inflation criterion (CIC;
see Tibshirani and Knight (1999)) penalizes the SSE by an average of covariances be-
tween predictions and outcomes of the response by bootstrapping. Finally, there are
many information criteria having the general form ∑iρ(ei)+Ca(n)b(β ), where ρ is a
convex function, ei is a residual, and a and b are functions of the indicated arguments;
see Nishii (1984), Konishi and Kitagawa (1996), and Rao and Wu (2001).

10.2.4 Cross Validation

Cross validation (CV) was introduced in Chapter 1 as a blackbox tool for choosing
models based on their predictive ability. Here the focus is on the mechanics of how CV
works and what it means. Recall that CV partitions the sample into subsets and that an
analysis (e.g., estimating the coefficients in a model) is performed on each subset in
turn so that the data not used in the analysis can be used for evaluating the analysis. CV
is routinely used to select the important subset of variables in linear models, select and
build the architecture of neural networks and trees, choose the regularization parame-
ters for smoothing splines or other penalized methods, and to select the bandwidth for
kernel and other estimators.

CV is technically not an information criterion. Unlike AIC and BIC, CV does not
arise from a complexity penalty on a log likelihood (or risk). However, at the end
of this section, it will be seen that CV, AIC, and Cp are asymptotically equivalent in
some important cases. Admittedly, CV and AIC/Cp diverge in some cases as well.
Nevertheless, the four techniques AIC, Cp, BIC, and CV can be regarded as similar
enough that it makes sense to group them together. Indeed, the omnibus theorem at
the end of this section covers those four techniques, and several others, mostly on the
basis of norm properties.

The motivation for the CV procedure can be seen easily in the context of a linear model
Y = XXXTβββ +ε . Given a data set D = {(xxxi,yi), i = 1, · · · ,n}, imagine fitting a regression
model f̂ using D . One common measure for assessing the predictive performance of
f̂ , on average, is the mean squared prediction error (MSPE),

MSPE = EXXX ,Y
[
Y − f̂ (XXX)

]2
, (10.2.21)

where (XXX ,Y ) follows the same distribution as the original data points (xxxi,yi)s. Since
the true distribution is unknown in real data analysis, it is necessary to have test data
samples independent of the original data and compute
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M̂SPE =
1
n∗

n∗

∑
i=1

[y∗i − f̂ (xxx∗i )]
2, (10.2.22)

where D∗ = {(xxx∗i ,y∗i ), i = 1, · · · ,n∗} are generated from the same distribution as the
original data. The quantity (10.2.22) can be interpreted as the average predictor er-
ror over the sample D∗. The usual terminology is that the original data set D used
for model fitting is the training set and the set D∗ used for model assessment is the
validation set. If the MSPE is used to tune a procedure (e.g., select the best tuning
parameter) D∗ is called the tuning set, and if it is used to evaluate the performance of a
fitted model or compare the performance of several different procedures, D∗ is called
the test set.

In practice, however, independent test data are frequently difficult or expensive to ob-
tain, and it is undesirable to hold back data from the original data to use for a separate
test because it weakens the training data. CV is a technique for performing indepen-
dent tests without requiring separate test sets and without reducing the amount of data
used to fit the model. In particular, one can split the data set D into two complementary
parts as D = D1∪D2: The first part D1 contains n1 data points used for constructing a
model (training subset), whereas the second part D2 contains the remaining n2 = n−n1

data points used for assessing the predictive ability of the model (validating subset).
This process is then repeated many times, and there are

( n
n1

)
ways of partitioning the

data. The CV score is the average prediction errors based on the different ways the
data were partitioned.

Depending on the nature of the partitioning scheme, there are various types of CV
scores. For example, if D1 is chosen such that n2 = 1 (i.e., D2 is a singleton set) the
result is leave-one-out cross-validation (LOOCV). For the LOOCV, there are n ways to
split the data set, and the D2s corresponding to different splits are all disjoint. K-fold
CV is based on another type of scheme. The data are first divided into K roughly equal
parts. Then D1 is formed by claiming K− 1 parts and D2 consists of the remaining
part. So n1 = n(K − 1)/K and n2 = n/K; there are K ways to form D1 and D2. In
addition to the LOOCV and K-fold CV, there are other variations on CV including
the generalized CV (GCV; see Craven and Wahba (1979)), Monte Carlo CV (MCCV),
Bayesian CV, and median CV.

10.2.4.1 Leave-One-Out CV

One of the earliest statements of the idea of LOOCV is in Mosteller and Tukey (1968).
They asserted, informally, that LOOCV extracts all the information in a data set.
LOOCV is also mentioned as the prediction sum of squares (PRESS) by Allen (1971).
As the name suggests, LOOCV involves using a single observation from the original
sample as the validation data set, and the remaining observations as the training set.
In particular, let yyy−i be the vector with the ith observation, yi, removed from the orig-
inal response vector yyy and f̂−i be the estimate based on yyy−i. This is repeated for each
i = 1, · · · ,n. Then the average of n prediction errors is called the LOOCV score
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LOOCV =
1
n

n

∑
i=1

[yi− f̂−i(xxxi)]2. (10.2.23)

To compute the LOOCV score, one needs to fit the model n times, once for each delete-
one data set yyy−i. Hence, if the sample size n is large, the computation cost of LOOCV
can be expensive. Fortunately, for many situations one can calculate the LOOCV using
only one fit for all the data if the model satisfies the following “leave-one-out” property.
Let

ỹyyi = (y1, · · · ,yi−1, f̂−i(xxxi),yi+1, · · · ,yn)T,

the result of replacing the ith element in yyy, yi, with the evaluation of the delete-i fit f̂−i

at xxxi. Let f̃−i be the estimate of f with data ỹyyi. Then some fits satisfy the following.

LEAVE-ONE-OUT PROPERTY:

f̃−i(xxxi) = f̂−i(xxxi), i = 1, · · · ,n.

The leave-one-out property is that adding a new point that lies exactly on the surface
f̂−i does not change the fitted regression.

To see what this means, it helps to recall that a smoothing method f̂ff is linear if

f̂ff = Syyy,

where f̂ff = ( f̂ (xxx1), · · · , f̂ (xxxn))T, and the n× n matrix S depends on the input vectors
xxxi, i = 1, · · · ,n but not on the yis. For any linear smoother f̂ ,

f̂ (xxxi)− f̃−i(xxxi) =
n

∑
j=1

si jy j−
[

n

∑
j 	=i

si jy j + sii f̂−i(xxxi)

]
= sii(yi− f̂−i(xxxi)).

If the leave-one-out property holds for f̂ , then

f̂ (xxxi)− f̂−i(xxxi) = f̂ (xxxi)− f̃−i(xxxi) = sii(yi− f̂−i(xxxi)),

which implies that
yi− f̂ (xxxi)

yi− f̂−i(xxxi)
= 1− sii. (10.2.24)

Equation (10.2.24) describes the effect of dropping one individual datum on the final
fit, which can be used to adjust the optimized result for the omitted individual.

Using (10.2.24) in (10.2.23) gives that the LOOCV is

LOOCV =
1
n

n

∑
i=1

[
yi− f̂ (xxxi)

1− sii

]2

. (10.2.25)

The computation of (10.2.25) only requires one model fit based on the entire data set
and therefore saves computation time. The only extra cost is to save all the entries lying
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on the diagonal of the smoother matrix S. Linear regression models, Nadaraya-Watson
kernel estimators, and cubic smoothing splines all satisfy (10.2.24).

Indeed, it is easy to see (10.2.24) explicitly for a one-dimensional linear model yi =
β0 + β1xi + εi. The least squares fit is given by f̂ (xi) = ȳ + β̂1(xi− x̄), where β̂1 =
∑n

i=1(xi− x̄)yi/∑n
i=1(xi− x̄)2. Then (10.2.24) holds with

sii =
1
n

+
(xi− x̄)2

∑n
i=1(xi− x̄)2 .

LOOCV is approximately unbiased for the true prediction error but can have high
variance because the n training sets are so similar to one another. Discussion and theory
on LOOCV under various situations can be found in Allen (1974), Stone (1974, 1977),
Geisser (1975), Wahba and Wold (1975), Efron (1983, 1986), Picard and Cook (1984),
Herzberg and Tsukanov (1986), and Li (1987). In particular, Stone (1977) studies the
asymptotic consistency of CV and its asymptotic efficiency.

10.2.4.2 K-fold CV

The idea of multifold CV (MCV) first appeared in Geisser (1975), where instead of
deleting one observation as in LOOCV, d > 1 observations are deleted. The delete-d
MCV criterion is

MCVd =
1(n
d

)∑
T
∑

i∈T

[yi− f̂−T (xxxi)]2/d, (10.2.26)

where T denotes a subset of {1, · · · ,n} size d, f̂−T is the model fit using the remain-
ing data after leaving T out, and the first summation runs over all possible subsets
of size d. Zhang (1993) shows that the delete-d MCV criterion can be asymptotically
equivalent to information criteria in some cases where d → ∞. The main disadvantage
of MCV is that it demands intensive computation; this motivates many useful alterna-
tive CV methods such as K-fold CV.

In K-fold CV (see Breiman et al. (1984)), the observations are removed in groups.
Suppose the original sample is partitioned into K roughly equal-sized groups. For each
k = 1, · · · ,K, one fits the model using all the data except the kth group and then cal-
culates the prediction error of the fitted model using the data in the kth group. This
process is repeated K times, with each group used exactly once as the validation set.
The K prediction errors are then averaged to produce a single estimation. In particular,
define the index function κ : {1, · · · ,n} → {1, · · · ,K}, which assigns the observation
i to some group by a random scheme. Let f̂−k(xxx) be the fitted function based on the
data excluding the kth group. Then the K-fold CV estimate of the prediction error is

CVK =
1
n

n

∑
i=1

[yi− f̂−κ(i)(xxxi)]2. (10.2.27)
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If the models are indexed by a parameter α ∈Λ , let f̂−k(xxx;α ∈Λ) be the fitted model
associated with α and trained using the data excluding the kth group. Then the CV
estimate of the prediction error is

CVK(α) =
1
n

n

∑
i=1

[yi− f̂−κ(i)(xxxi;α)]2. (10.2.28)

The function CVK(α) provides an estimate of the test error curve, and the optimal
tuning parameter α̂ is found as the minimizer of the CVK(α) curve. The final model
chosen is f̂ (xxx; α̂), fitted with the entire data. In practice, K = 5 or K = 10 are common
choices and give good performance in practice (see Zhang (1993)).

10.2.4.3 Generalized CV

The calculation of LOOCV is often expensive since the whole process requires fit-
ting the model n times. GCV provides a convenient way to approximate the LOOCV
for linear fitting methods under the squared-error loss. Indeed, GCV should really be
called ACV – approximate CV – because it is obtained from the CV as

GCV =
1
n

n

∑
i=1

[yi− f̂ (xxxi)]2

[1− tr(S)/n]2
(10.2.29)

using sii ≈ ∑n
i=1 sii/n = trace(S)/n. The GCV score GCV works well if the siis are

not very different from each other; the quantity trace(S) is the effective number of
parameters. GCV is usually easier to compute than the LOOCV since only a single fit
based on the entire data is needed.

Interestingly, GCV has many connections with other variable selection criteria. First,
GCV can be viewed as a weighted version of LOOCV since

GCV =
1
n

n

∑
i=1

wii[yi− f̂ (xxxi)]2 (10.2.30)

with

wii =
[

1− sii

1− trace(S)/n

]2

.

If wii is independent of i, then LOOCV = GCV . For models satisfying the leave-one-
out property, GCV may save additional time since the computation of trace(S) is some-
times easier than finding the individual siis.

Second, GCV is close to Mallows’ Cp and the AIC. In the context of subset selection
for linear models, the GCV for a model of size k is

GCVk =
SSEk

n
1

[1− k/n]2
. (10.2.31)



592 10 Variable Selection

Taylor expanding gives (1− t)−2 ≈ 1+2t for smallt, so when n−1trace(S) is small,

GCVk ≈
SSEk

n
+2

SSEk

n
· k

n
≈ SSEk

n
+2s2 · k

n
, (10.2.32)

where SSEk/n estimates the error variance. Recall that in Cp the variance estimate is
based on a full model, s2 = SSEp/(n− p). Because SSEk/n→ σ2 as n→ ∞, (10.2.32)
suggests that minimizing GCVk is asymptotically equivalent to minimizing AIC and
Mallows’ Cp,

In the context of smoothing splines, GCV can be mathematically justified because
asymptotically it minimizes the mean squared error for estimation of f (see O’Sullivan
(1983), Wahba (1985, 1990)). More generally, GCV is typically used for linear
smoothers because GCV has nice theoretical properties and gives good performance
for them. For more complicated modeling procedures, such as nonlinear smoothers,
GCV is not necessarily a suitable choice and other criteria, such as LOOCV and K-
fold CV, are often better.

10.2.4.4 CV and Other Criteria

In linear regression, it has long been known that the LOOCV is asymptotically equiv-
alent to other model selection criteria such as AIC, Mallows’ Cp, the bootstrap (Efron
(1983, 1986)), and the jackknife. To see the link between LOOCV and either AIC or
Cp, let γ ∈M be the model index and write

AIC =−2[logL(α̂γ ;γ)− kγ ],

where L(αγ ;γ) is the log likelihood function of the model indexed by γ , α̂γ is the
maximum likelihood estimate of the parameter αγ , and kγ is the dimension of αγ . For
normal multiple linear regression models with known variance σ2, Mallows’ Cp is
given by

Cp = SSEγ/σ2− (n−2kγ)

and is equivalent to AIC.

To see that these are equivalent to LOOCV, follow the notation of Stone (1977) and set

g(y|xxx,γ,D)≡ gγ(y|xxx, α̂γ(D)),

where {gγ(y|xxx,αγ),αγ ∈ Λγ} are the densities for a conventional parametric model γ
associated with parameter αγ and α̂γ(D) is the maximum likelihood estimator maxi-
mizing L(αγ ;γ) = ∑n

i=1 gγ(yi|xxxi,αγ). The general LOOCV based on the likelihood is
now

LOOCV (γ) =
n

∑
i=1

loggγ(yi|xxxi,D−i), (10.2.33)
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where D−i is the data D omitting the ith observation. Under weak conditions, Stone
(1977) shows that (10.2.30) is asymptotically equivalent to AIC, making it equivalent
to Mallows’ Cp as well.

When K = n, CV is approximately unbiased for the true prediction error but can have
high variance because the n training sets are so similar to one another. The computa-
tional burden is also considerable, requiring the model to be fit n times. On the other
hand, if K is chosen small, then CV has a lower variance than LOOCV but possibly
a larger bias, depending on how the performance of the fitted model varies with the
size of the training set. As noted above, K = 5 and K = 10 often achieve a satisfactory
trade-off between bias and variance.

Careful use of the CV includes two further steps. First, practitioners look at the stan-
dard error of the CV score to calibrate the CV. This partially justifies the one-standard-
error rule to avoid underfitting in subset selection in linear models. The idea is that
since CV strongly favors smaller models, choosing the most parsimonious model
whose error is no more than one standard error above the error of the best model is
a reasonable fix. Second, it is important to look at a histogram of the errors yi− f̂ (xxxi)
that give the summands in the CV. If this histogram is roughly normal, the CV is prob-
ably more reliable than if it is skewed or multimodel – features that reflect bad fit.

10.2.4.5 CV for Model Selection

The basic model selection problem is to choose a prediction density for Y given xxx from
a class of candidate models indexed by γ ∈M . Recall the average squared error (ASE)
of a fitted model f̂γ(xxx) over the design points given in (10.2.14). A model selection
procedure is asymptotically optimal if

ASEn(γ̂)
infγ∈Γ ASEn(γ)

→ 1, in probability, n→ ∞, (10.2.34)

where γ̂ is the model selected by the procedure. Similar to AIC and Cp, when the
number of predictors in each model is fixed as n increases, the LOOCV is asymptot-
ically inconsistent in the sense that the probability of selecting the best model does
not converge to 1 as n→ ∞. If the number of predictors in the models under consid-
eration increases as n increases, Li (1987) shows that the LOOCV can be consistent
and asymptotically optimal under some regularity conditions. More recently, see Shao
(1997). In other words, the model selected by LOOCV asymptotically approaches the
minimum value of ASE among all possible models.

To organize the summary below, let n1 be the size of the training set so that n2 = n−n1

is the size of the validation set. One of the key issues for implementing CV is the choice
n2. This question is equivalent to specifying the K in K-fold CV. The following are typ-
ical choices.
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n2 = 1

This gives the LOOCV, which is approximately unbiased for the true prediction error.
The LOOCV can have high variance because the n training sets are so similar to one
another. The computational burden is also considerable, requiring the model to be fit
n times. When the number of predictors in each model is fixed as n increases , the
LOOCV is asymptotically inconsistent in the sense that the probability of selecting
the best model does not converge to 1 as n → ∞. In practice, the LOOCV tends to
select unnecessarily large models. Shao (1993) shows that the probability of selecting
the optimal models by using the LOOCV can be very low; e.g., ≤ 50% in Shao’s
simulations. The more zero components the βββ has, the worse performance LOOCV
has. The behavior of LOOCV is clarified in the theorem of the next section.

n2 = 2

The issue of using more than one observation at time for validation in LOOCV
was raised by several researchers, including Geisser (1975), Herzberg and Tsukanov
(1986), Burman (1989), Zhang (1992), and Shao (1993). For example, Herzberg and
Tsukanov (1986) discovered that the leave-two-out CV is better than the LOOCV in
some situations, although these two procedures are asymptotically equivalent in theory.

n2 = n/K

Between n2 = 2 and limiting behavior as n increases, one can choose K for K-fold CV.
This is usually done by simulations to find the best variance–bias trade-off. Larger K
gives a small bias but larger variance, and the computing time may be high. Smaller K
reduces the computing time and variance but may have a large bias. For sparse data,
K = 1 may work best. For large data sets, K = 5 or K = 10 is common, even though K
as low as three may be adequate.

n2/n→ 1

Shao (1993) showed that the inconsistency of the LOOCV can be fixed by using a large
n2, necessarily depending on n. In particular, an asymptotically correct CV procedure
requires an n2 that has the same rate of divergence to infinity as n; in other words,
n2/n → 1 as n → ∞. As explained in Shao (1993), one does not necessarily need a
very accurate model in the fitting step, but one does need an accurate assessment of
the prediction error in the validation step because the overall purpose of CV is to
select a model, and the selected model will then be refitted using the full data set for
prediction. From this standpoint, the value n1 is not necessarily close to n in the fitting
step. Shao (1993) shows that the MCCV is consistent for model selection if n2/n→ 1.

Nonparametric Regression

In the context of nonparametric regression, the LOOCV for smoothing parameter se-
lection leads to consistent regression estimators, as shown in Wong (1983) for kernel
regression and Li (1984) for nearest-neighbor estimation. It also leads to an asymptot-
ically optimal, or rate optimal, choice of smoothing parameters and optimal regression
estimation, as shown by Speckman (1985) and Burman (1990) for spline regression
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and Hardle et al. (1988) for kernel estimation. Recently, Yang (2007) established the
consistency of CV when used to compare parametric and nonparametric methods or
within nonparametric methods. Under some regularity conditions, with an appropriate
choice of data-splitting ratio, Yang (2007) shows that CV is consistent in the sense of
selecting the better procedure with probability approaching one. Furthermore, when
comparing two models converging at the same nonparametric rate, the validation size
n2 does not need to dominate; this contrasts with the parametric case described above.

10.2.4.6 A Unifying Theorem for Consistency

Separate from criteria like (10.2.34) that focus on optimality and hope to give consis-
tency are criteria that focus on consistency, which may give some sort of optimality.
Here, a general theorem on forms of consistency will be given to reconcile the incon-
sistency of AIC or CV with their use, which is extensive and effective. The key issue is
that the way some criteria are inconsistent is relatively harmless: They overfit. That is,
the models they choose are incorrect in the sense that they have extra terms but those
terms help give a better approximation.

Consider a true model of the form Y = f (xxx) + ε with E(ε) = 0 and Var(ε) = σ2.
Suppose that, for n outcomes, a p term linear model YYY = Xβββ + εεε is available. Let k0

denote the correct selection of nonzero β js and let K0 denote all the submodels of the
p term model that contain k0. The correct k0 contains the coefficients in the p term
model that satisfy

βββ f (n) = arg min
βββ∈IRp

‖Xβββ − fff‖ for finite n and liminf
n→∞

|(β f (n)) j| > 0

for the given f . Now, let CRIT be a criterion such as AIC or CV by which a model m̂
is selected from a list of models using the data. Now, define CRIT to be k0 consistent
if IP(m̂ = k0)→ 1 and define CRIT to be K0 consistent if IP(m̂⊃ k0)→ ∞. That is, k0

consistency is the usual form of consistency but K0 is a weaker form that permits extra
terms, beyond those in k0, because they provide a better, if incorrect, fit to f .

To fix notation, let K be a collection of submodels containing k0. Write the projec-
tion matrix for the full model as P = X(XTX)−1XT, and for a model k ∈ K write
Pk = Xk(XT

k Xk)−1XT
k . Without loss of generality, suppose m̂ = argmink∈K CRIT (k)

and write ‖ · ‖A as the norm with respect to an inner product defined by the matrix A.

Following Muller (1993) (see also Muller (1992)), criteria can be divided into two
classes for the purpose of consistency. These are

CRIT (k) =

{
‖yyy−Pkyyy‖2 +anrank(Pk)σ̂2

Q(k) Type A

‖yyy−Pkyyy‖2
S(k) Type B,

(10.2.35)

where σ̂2
Q(k) = (1/n)‖yyy‖Q(k) and an ≥ 0. The two positive semidefinite matrices Q(k)

and S(k) will be discussed below. The table lists nine selection criteria, six of which
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have been discussed here, and notes their types. Note that type is not strictly exclusive.

To establish a unifying theorem over the nine criteria, Muller (1993) uses five regu-
larity conditions. They are relatively weak: (i) The true model is nontrivial. (ii) The
projection matrix is asymptotically full rank; in particular, (1/n)XTX→M, where M
is k×k positive definite. (iii) The average of the squared norm of the vector of values of
the true function at the design points is bounded, (1/n)‖ fff‖2 = O(1). (iv) The squared
norm of the orthogonal projection is bounded,‖ fff‖2

P−Pk0
= O(1). And (v) some even

moment of ε greater than four is finite, E|ε|2s < ∞ for some s≥ 2.

The matrices Q(k) and S(k) control the sense in which minimizing CRIT leads to a
model. In particular, the differences between models must be detectable and estimates
of variances must be bounded. There are two conditions that ensure this for Q(k):

∀k : qn,k = λmax(Q(k)) = O(1), (10.2.36)

∀k : ∃Q Q(k)rn,kQ+ sn,k(Id−Pk), (10.2.37)

where, in the context of (10.2.37), (i) λmax is the maximum eigenvalue and rn,k,sn,k≥ 0,
(ii) ∀g⊃ k we have that

rn,k ≥ rn,g and sn,k ≥ sn,g,

and (iii) at least one of

∃rk > 0 : rn,kQ≥ rkQp, (10.2.38)

where Qp is a projection matrix with rank(Id−Qp) = O(1), and

∃sk : sn,k ≥ sk > 0 (10.2.39)

holds. If an → ∞, then (10.2.36) is not a restriction. If Q = Id−P, then (10.2.37) is
satisfied for all the Type A criteria in the table.

CRIT Expression Type

Mallows’ Cp Cp(k) = ‖yyy−Pkyyy‖2 +2rank(Pk)σ̂2 A
AIC AIC(k) = n log((1/n)‖yyy−Pkyyy‖2)+2rank(Pk) A

Final Pred. Err. FPE(k) = (1+2rank(Pk)/n)‖yyy−Pkyyy‖2 A
BIC BIC(k) = n log((1/n)‖yyy−Pkyyy‖2)+ rank(Pk) logn A

LOOCV LOOCV (k) = (yyy−Pkyyy)T(Id−Tk)−2(yyy−Pkyyy) B
Stand. RSS SRSS(k) = (yyy−Pkyyy)T(Id−Tk)−1(yyy−Pkyyy) B

GCV GCV (k) = (‖yyy−Pkyyy‖2)/(1− rank(Pk)/n)2 A or B
Res. Mean. Sq. RMS(k) = (‖yyy−Pkyyy‖2)/(1− rank(Pk)/n) A or B

SSE SSE(k) = ‖yyy−Pkyyy‖2 A or B

Table 10.1 For Mallows’ Cp, σ̂2 = (1/(n − k))‖yyy − Pyyy‖ and for LOOCV, Tk =
diag((Pk)1,1, . . . ,(Pk)n,n).
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The two assumptions on S(k) are like those in Nishii (1984):

∀k : S(k) is diagonal with S(k)≥ Id, (10.2.40)

∀k : lim
n→∞

max{S(k)i,i | i = 1, . . . ,n}= 1. (10.2.41)

Expression (10.2.41) is satisfied if the design points are in a circle with radius bounded
by o(n). Note that (10.2.40) is satisfied by CV and SRSS.

Now, Muller’s theorem can be stated. It has four parts: Two are for k0 and K0 consis-
tency. The other two parts give some bounds on the rates of consistency.

Theorem (Muller, 1993): Suppose the first four regularity conditions are satisfied
an = o(n), and that CRIT is a criterion function.

(i) If CRIT is of Type A or B as in (10.2.35) and satisfies (10.2.36), (10.2.40), and
(10.2.41), then CRIT is K0 consistent.

(ii) If CRIT is of Type A as in (10.2.35) and satisfies (10.2.36) and (10.2.37), then
CRIT is k0 consistent.

(iii) Under the conditions of (i), if k /∈K0 and ε satisfies regularity condition (v) above,
then

IP(m̂ = k) = O

(
1

(ckn)s

)
+O

(
qn,k0Kan

ukn3/2

)
+O

(
tn,k0 −1

vk
√

n

)
,

where K is the number of models under consideration, tn,k0 is the largest diagonal
element of S(k0), and ck, uk, and vk are positive constants. If, in addition, ε ∼N(0,σ2),
then

IP(m̂ = k) = O(e−ckn)+O(e−ukn2/qn,k0
Kan)+O(e−vkn/(tn,k0

−1)).

(iv) Under the conditions in (ii), if k /∈ K0, the conclusions of (C) continue to hold.
Under regularity condition (v) above, for k ∈ K0 \{k0},

IP(m̂ = k) = O

(
1

ns/2

)
+O

(
1

(zkan)s

)
,

where the zks denote positive constants. If ε ∼ N(0,σ2), then for a w > 0,

IP(m̂ = k) = O(e−wn)+O(e−zkan).

Proof: Omitted. �
It may be that the consistency of K-fold CV follows from this theorem because, when
the K is chosen well, K-fold CV gives a lower MSE than LOOCV, which is of Type
B. Indeed, if the design points are taken K at a time and the goal is to model KY , then
K-fold CV becomes LOOCV. However, the consistency properties of K-fold CV do
not seem as extensively studied as for LOOCV.

Overall, as noted in Muller (1993), consistency rates of the criteria can be categorized
by the rate of an. When an = o(n), K0 consistency holds and IP(m̂ /∈ K0) decreases
exponentially fast under normal errors but with a rate o(1/ns/2) more generally. For
Type A criteria, when an = O(1), the rate IP(m̂ /∈ K0) = O(1/ns) holds. If an → ∞,
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then Type A criteria are k0 consistent with rates IP(m̂ 	= k0) = O(exp(−can)) for some
c > 0 and IP(m̂ 	= k0) = O(1/ns/2)+O(1/a2

n). Accordingly, from an asymptotic rate
of convergence standpoint, choices of an ∼ nα for α ∈ (1/2,1) are optimal – not AIC,
BIC, or most of the other criteria commonly used.

10.2.4.7 Other Variants on Basic CV

There are many variants on the basic CV idea. Here, four are worth describing. First,
the number of subsets into which the n data points are partitioned reflects the estimation
procedure. Here, a test set and training set were used. However, if the modeling strategy
has two steps (e.g., model selection via cost complexity in trees followed by parameter
estimation), the data can be partitioned into three subsets: two for inferences and one
for testing. This is a straightforward extension.

Second, Picard and Cook (1984) and Shao (1993) suggest an alternative way to imple-
ment CV using Monte Carlo. Randomly draw, with or without replacement, a collec-
tion of B subsets of D that have size n1, denoted S1, · · · ,SB. The Monte Carlo CV
(MCCV) is

MCCV (α) =
1

Bn2

B

∑
b=1

∑
(xxxi,yi)∈Sb

[yi− f̂−Sb(xxxi;α)]2. (10.2.42)

This method uses B random splits of the original data and averages the squared predic-
tion error over the splits. This provides an estimate of (10.2.21) by sampling from the
possible subsets of size n1.

Third, Bayesian CV is close in spirit to (10.2.30), being based on the predictive den-
sity. Start with a full model for m < n data points w(β (α),σ)g(xxx1, . . . ,xxxm|β (α),σ),
where β (α) indicates the dependence of a parameter β on a hyperparameter α . and a
posterior density obtained from the remaining n−m points. Then, form the predictive
density

gα(xxx1, . . . ,xxxm | xxxm+1, . . . ,xxxn)

=
∫

g(xxx1, . . . ,xxxm| β (α),σ)w(β (α),σ | xxxm+1, . . . ,xxxn)dβ (α)dσ .

Now, instead of the squared error and the arithmetic mean, Bayesians often use the
geometric mean of the logarithms of densities. For B splits this is

CV (α) =
1
B

B

∑
b=1

loggα(Sb|S c
b ).

It is proved in Samanta and Chakrabarti (2008) that when each xxxi appears the same
number of times in the Sbs, argmaxαCV (α) is asymptotically consistent and optimal.

Finally, it must be remarked that (10.2.21) and (10.2.22) derive their importance from
squared error and the mean, neither of which are necessary. Indeed, any loss function
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can be used and any function of the data that reflects the location of the loss can be
used. An obvious variant is taking the median instead of the mean in (10.2.21) and
using it to define a median CV in (10.2.22), again by taking the median instead of the
mean. Yu (2009) provide evidence that median CV has a higher probability of choosing
the correct model than mean-based CV when the tails of the error distribution are
heavy or there are many outliers in the data. Moreover, median CV does not underfit
as severely as CV. One can argue that when the squared residuals are far from being
normally distributed that the median is a better summary of the variation than the
mean is. It is easy to imagine other functions of the data to use besides the mean and
the median to define other, possibly more useful, cross-validation functions.

10.3 Shrinkage Methods

In contrast to the model selection methods of the last section, penalized methods, also
called shrinkage or regularization, are usually based on subtracting a penalty from the
risk rather than from a log likelihood. Usually, the penalty is a function of the parameter
times a constant, called a decay parameter. The point of shrinkage methods is to order
the variables for inclusion by the size of the decay parameter, thereby reducing the
general problem to a nested case. Then, once the decay parameter is estimated, the
variable selection is complete. This can be done for a wide variety of model classes,
not just linear models.

From an abstract perspective, shrinkage methods aim to make a problem well-posed
when it is ill-posed because of nonuniqueness of the solution and are efforts to obtain

sparse solutions by automatically shrinking small entries of β̂ββ
ols

to zero to reduce the

variance. For instance, β̂ββ
ols

need not be unique when X is not of full rank. Even when

β̂ββ
ols

exists and is unbiased, it has a large variance due to nonsparsity when X is nearly
collinear. In contrast to OLS, some shrinkage methods, like ridge regression below,
make a problem well-posed but not sparse. Others, like LASSO below, make the prob-
lem well-posed and achieve sparsity at the same time. Overall, shrinkage estimators
generally give better prediction and smaller variances than the OLS estimators when p
is large.

From a more operational perspective, a good variable selection procedure aims (i) to
filter out unimportant variables from the candidate variables and (ii) to estimate the
regression coefficients for important variables consistently, with a high level of effi-
ciency. Such variable selection procedures are described as “oracle”, see Donoho and
Johnstone (1994). Let model (10.1.1) have true regression coefficients βββ ∗. Write the
index set for the important variables as A0 = { j = 1, . . . , p : β ∗j 	= 0} and the index set
for the unimportant ones as Ac

0. Without loss of generality, suppose A0 = {1, · · · , p0}.
Then βββ ∗ = (βββ ∗A0

,βββ ∗Ac
0
) = (βββ ∗A0

,0), and the true model is

Yi = ∑
j∈A0

Xi jβ j + εi.
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Now, a variable selection procedure for linear models is oracle if, with probability
tending to one, the resulting estimator satisfies:

(i) Consistent selection: The procedure is able to identify A0 correctly; i.e.,

β̂ j = 0, ∀ j ∈ A0, and β̂ j 	= 0, ∀ j ∈ Ac
0.

(ii)Optimal estimation: The estimates of nonzero parameters are as efficient as if A0

were known in advance; i.e.,

√
n(β̂ββA0

−β ∗A0
)−→d N(0,Σ ∗),

where Σ ∗ is the covariance matrix under the true subset model.

Consequently, an oracle procedure performs as well asymptotically as a procedure
that actually knew the true model structure. That is, it can uncover the correct model
so quickly that the convergence of the parameter estimation is not affected by being
based on the wrong, preconvergence model. Although not well studied, there probably
are cases where the model selection procedure is so slow that the parameters converge
before the model does, leading to poor inference. It will be seen below that several
regularization methods satisfy the oracle property.

Note that the use of the term oracle here is in a different sense than in Oracle inequali-
ties. The common feature is that the inference procedures that satisfy them perform as
well as if the correct model were known. However, Oracle inequalities are not asymp-
totic, while oracle estimators are only oracle in a limiting sense as n → ∞. Several
oracle penalized methods will be presented below; some nonoracle penalized methods
will also be presented since they, too, can give good performance.

Note that the stepwise methods of Section 10.1 are not oracle even though they of-
ten give effective performance with finite data. There are two reasons for this. First,
being greedy searches, they make the best selection locally, looking only one step
ahead, rather than seeking the globally optimal step. Therefore, they tend to produce
suboptimal models, calling the consistency into question. Second, the nature of subset
selection is discrete; i.e., a coefficient is either forced to zero or retained in the model
with possible inflation due to a complete exclusion of other covariates. This calls the
efficiency (and consistency) into question, as well as making prediction less accurate.

There is a third reason stepwise regression is not oracle: Subset selection can be un-
stable with respect to small perturbations in the data, as illustrated in Breiman (1996).
For instance, suppose backwards elimination is used to obtain a sequence of subsets
{Sk;k = 1, · · · , p} of size |Sk| = k. Then removing a single point (xxxn,yn) from the
data set and using backwards elimination again will often give a different sequence of
subsets {S ′

k ;k = 1, · · · , p}. Thus, a slight perturbation in the data may cause a dramatic
change in the prediction equation.

As before, X = (XXX1, ...,XXX p) is an n× p design matrix, the jth column indicating the
repeated sampling of the jth variable. Let yyy be the vector of n responses, and assume
all variables are standardized so that yyyT1n = 0, XXXT

j 1n = 0, and XXXT
j XXX j = 1.
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10.3.1 Shrinkage Methods for Linear Models

In general, a shrinkage method solves the optimization problem

min
βββ

(yyy−Xβββ )T(yyy−Xβββ )+λ
p

∑
j=1

J(|β j|), (10.3.1)

where J(|β j|) is the penalty function and λ ≥ 0 is the decay or tuning parameter that
controls the amount of shrinkage on the parameters β j. The larger the λ is, the greater
the shrinkage effect imposed on the β s. Different λ s can also be used for different
coefficients, allowing distinct levels of penalty on coefficients. Also, some methods
use a more general form of penalty Jλ (|β |), not necessarily linear in λ .

Fan and Li (2001) provide a thoughtful discussion on the principles of constructing a
good penalty function from the standpoint of unbiased estimation and sparse modeling.
They conclude that a good penalty function should produce an estimator β̂ββ satisfying:

(i) nonzero coefficients of βββ ∗ are nearly or asymptotically unbiased; (ii) β̂ββ is sparse
(i.e., small coefficients are automatically set to zero); and (iii) β̂ββ is continuous as a
function of the data. Fan and Li (2001) also argue that J′(|β |) = 0 for large |β |s is a
sufficient condition for unbiased estimation of large coefficients, and the singularity of
J at 0 is a necessary condition for the sparsity and continuity of the solutions.

An alternative formulation for (10.3.1) is to solve

min
βββ

(yyy−Xβββ )T(yyy−Xβββ ), subject to
p

∑
j=1

J(|β j|)≤ s, (10.3.2)

where s > 0 is a tuning parameter. For some regularization methods, using (10.3.2)
can greatly facilitate computation. For example, as will be seen later, the LASSO (Tib-
shirani, 1996) solution is piecewise linear in s and its solution path can be efficiently
computed using the LARS algorithm proposed by Efron et al. (2004).

Note that (10.3.2) is essentially the constrained optimization problem with Lagrange
form (10.3.1), so solving (10.3.1) and (10.3.2) are equivalent. Denote the solution to
(10.3.1) as β̂ββλ and the minimizer of (10.3.2) as β̂ββ s. Then, for any λ0 > 0 and the

corresponding solution β̂ββλ0
, there exists sλ0

such that β̂ββλ0
= β̂ββ sλ0

. On the other hand,

for any given s0 > 0 and the corresponding solution β̂ββ s0
, there exists λs0 such that

β̂ββ s0
= β̂ββλs0

. That is, there is a one-to-one correspondence between λ and s.

Interestingly, if the design matrix is orthogonal, the optimization problem (10.3.1) can
be decomposed into p componentwise shrinkage problems. To see this, assume that
XTX = In. The column orthogonality of X implies that the OLS estimator can be com-
puted componentwise as β̂ ols

j =∑n
i=1 xi jyi for j = 1, · · · , p. Then the objective function

in (10.3.1) becomes
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(yyy−Xβββ )T(yyy−Xβββ )+λ
p

∑
j=1

J(|β j|) = (yyy− ŷyy)T(yyy− ŷyy)+
p

∑
j=1

(β j− β̂ ols
j )2 +λ

p

∑
j=1

J(|β j|),

where ŷyy = XXTyyy. Consequently, the optimization in (10.3.1) is equivalent to solving
p one-dimensional shrinkage problems:

min
β j

(β j− β̂ ols
j )2 +λJ(|β j|), j = 1, · · · , p. (10.3.3)

10.3.1.1 Ridge Regression

When the design matrix X is not full rank or p < n, the OLS estimate is not unique. The
simplest way to make it unique is to invoke an extra criterion as a constraint. Hoerl and
Kennard (1970) introduced ridge regression (RR), which modifies OLS by introducing
a penalty to shrink β s toward zero. The RR estimator is

β̂ββ
ridge

= argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ )+λ
p

∑
j=1

β 2
j (10.3.4)

for λ > 0. The decay parameter λ should be chosen suitably based on data, often
by CV, and is sometimes called the Tikhonov factor. The explicit expression for the
minimizer of (10.3.4) is

β̂ββ
ridge

= (XTX +λ Ip)−1 XTyyy≡ Rλ yyy, (10.3.5)

where Ip is the n×n identity matrix and Rλ = (XTX +λ Ip)−1 XT is called the shrink-

age operator. It is easy to derive a standard error for β̂ββ
ridge

using (10.3.5).

Interest in (10.3.5) centers on small values of λ because that’s where the penalty term
contributes least; when λ = 0, (10.3.5) reduces to OLS. When n > p, the solution
is typically overdetermined and does not exist. Expression (10.3.4) roughly corre-
sponds to the goal of choosing a solution βββ to the original equation that has smallest
λ weighted norm. RR is most useful when X is nonsingular but has high collinearity;
i.e., is close to singular. In those cases, a small λ controls the variance inflation by
enlarging the subspace in which the eigenvalues of the inverse are bounded. The name
derives from this stabilization of the inverse matrix by adding the “ridge” of λ I in Rλ .
Note that this increases the trace of the hat matrix, which corresponds to the degrees
of freedom used in fitting the model (see Sen and Srivastava, 1990, Chapters 5, 12). So
RR acts like adding extra data points, but fewer as λ decreases.

Another way to see the effect of regularization is to use the singular value decomposi-
tion (SVD). Write Xn×p = Un×pSp×pVT

p×p, where U = (uuu1, ...,uuun), S = diag(s1, ...,sp),
and V = (vvv1, ...,vvvp), with Xvvvk = skuuuk, XTuuuk = skvvvk, and the uuuks and vvvks are orthonor-
mal so UTU = In and VTV = Ip. Now,



10.3 Shrinkage Methods 603

Rλ =
(

V SUTUSVT +λV IpVT
)−1

V SUT = V diag

(
s1

s2
1 +λ

, . . . ,
sp

s2
p +λ

)
UT.

It is seen that if λ is large relative to a given sk, then the component in the kth direction
is downweighted, while if sk is large relative to λ , then the component in the kth
direction gets its full weight. Obviously, choosing small λ means Rλ captures more
and more of the image of X , providing an inverse on a larger domain.

It is clear from (10.3.4) that β̂ββ
ridge

is biased, with the bias decreasing as λ → 0. On
the other side, as λ increases, the β̂ ridge

j s get closer to zero, even though they rarely
equal zero. Of course, one could force shrinkage of the coefficients to zero by choos-
ing a cutoff below which coefficients are set to zero. This would not have any obvious
meaning but might help smooth out noisy data and produce robust solutions. Over-
all, despite the bias, the variance will usually be much smaller than that of the OLS
estimator. Therefore, RR often gives a smaller MSE and so better prediction.

10.3.1.2 Nonnegative Garrote

Different from the RR modification of the OLS estimator, Breiman (1995) proposed
a shrinkage estimator based on OLS to overcome the instability of subset selection
methods. The nonnegative garrote (NG) estimator seeks a set of nonnegative scaling
factors c j for j = 1, . . . , p that achieve

min
ccc

n

∑
i=1

(
yi−

p

∑
j=1

c jxi jβ̂ ols
j

)2

+λ
p

∑
j=1

c j, subject to c j ≥ 0, j = 1, . . . , p, (10.3.6)

where λ is the decay or tuning parameter. Minimizing gives β̂ββ
ng

= (ĉ1β̂ ols
1 , . . . , ĉpβ̂ ols

p )T

in which ĉ j = ĉ j(λ ). Each of the ĉ js go to zero as λ increases.

To see how the NG estimator gives greater stability than the OLS, consider the special
case of orthogonal design, XTX = In. The best subset model of size k consists of those
Xjs with the k largest |β̂ ols

j |s. That is, the coefficients of a best subset regression are
given by

β̂ subset
j =

{
β̂ ols

j , if |β̂ ols
j | is among the largest k coefficients;

0, otherwise, for j = 1, · · · , p.

In the NG, c j ≥ 0, j = 1, · · · , p and solves

min
c j

(c jβ̂ ols
j − β̂ ols

j )2 +λc j.

Basic univariate calculus leads to
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ĉ j =

(
1− λ

2(β̂ ols
j )2

)

+

, j = 1, . . . , p, (10.3.7)

where (t)+ = max(t,0). That is, in the NG, large OLS coefficients have c js close to 1
and small OLS coefficients have c js close to zero. Finally, the NG solution is

β̂ ng
j =

(
1− λ

2(β̂ ols
j )2

)

+

β̂ ols
j , j = 1, . . . , p. (10.3.8)

By contrast, univariate calculus gives that the solution to the RR form of (10.3.3) is

β̂ ridge
j =

1
1+λ

β̂ ols
j . (10.3.9)

It is seen in (10.3.8) that the NG estimator uses the magnitude of the c js to retain
important variables and shrink the coefficients of p− k redundant variables to zero. It
is this property of (10.3.8) that stabilizes the subset selection of NG compared with the
instability of RR (or OLS) as can be inferred from (10.3.9).

A drawback of the original NG is its dependence on the OLS, which can perform
poorly when the design matrix is ill-posed and fail to exist uniquely when p > n. How-
ever, the idea of the NG can be generalized to take any initial estimate β̂ init

j in (10.3.6)

in place of β̂ ols
j . The NG can be implemented by standard quadratic programming

problems, and recently Yuan and Lin (2007) showed that the NG has a piecewise lin-
ear solution path and derived an efficient algorithm for computing the whole path. In
addition, Zou (2006) and Yuan and Lin (2007) show that NG is consistent for variable
selection and estimation.

10.3.1.3 Least Absolute Selection and Shrinkage Operator (LASSO)

Tibshirani (1996) imposes an L1 penalty on the least squares error and solves the con-
vex optimization problem

β̂ββ
lasso

= argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ )+λ
p

∑
j=1
|β j|, (10.3.10)

where λ > 0 is the decay parameter. The important insight embedded in this functional
is that the contours of the squared error loss are ellipses but the contours of absolute
value are lozenge-shaped, with corners on the coordinate axes, meaning some coef-
ficient is zero. Thus, viewed as a Lagrange multiplier problem, some of the LASSO
estimates β̂ lasso

j will actually equal zero rather than just move closer to zero as with
RR. This happens because the intersection of the elliptical and lozenge contours will
often be at the corner of the lozenge. As λ → ∞, LASSO forces more and more β̂ js to
be zero; as λ → 0, LASSO becomes closer and closer to OLS. The sequence in which
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variables leave the model as λ increases indicates their relative importance. An optimal
value of λ is therefore needed to balance model fit, via RSS, and model complexity.

The penalty term in (10.3.10) is equivalent to putting a double exponential prior with
parameter λ on βββ . As λ increases, the double exponential puts ever more of its mass
near 0, shrinking the βββ to a point mass at zero. Since many of the β̂ js end up being set
to zero for reasonable values of λ , LASSO combines variable selection with shrinkage
on the regression function in one minimization. This can be seen from the form of the
LASSO solution in the orthogonal design case XTX = In, which is

β̂ lasso
j = sign(β̂ ols

j )(|β̂ ols
j |−2λ )+ (10.3.11)

for j = 1, . . . , p analogous to (10.3.8) and (10.3.9). The operation defined in (10.3.11)
is also known as soft thresholding.

Unlike OLS and RR, where there are straightforward estimates of the standard error

of β̂ββ
ols

and β̂ββ
ridge

, the absolute error means there is no model-derived estimate for

SE(β̂ββ
lasso

), even for normal errors. One way to get an approximate estimated standard
error is by the bootstrap: Fix λ , and generate n bootstrap samples and their correspond-

ing β̂ββ
lasso

i (λ )s for i = 1, ...,n. From these an SE can be found. If λ is not fixed, it can
be estimated by CV. Use, say, four-fifths of the data to get β̂ββ = β̂ββ (λ ) as a function of λ
and then predict the remaining fifth of the data. Rotate through the other four-fifths of
the data to get a full set of predictions dependent on λ . Find λ by minimizing the sum
of the predictive errors over the whole data set. Thus λ̂ could be found first and then

the bootstrap applied to get an SE for the β̂ββ
lasso

i (λ̂ )s. Alternatively, one could write
the penalty as λ ∑p

j=1β
2
j /|β j| and argue that the SE for RR is not too far wrong (see

Tibshirani, 1996, Section 3).

Theoretical properties of LASSO have been studied. The L1 penalty approach was
first proposed in Donoho and Johnstone (1994) and called basis pursuit. They proved
the near-minimax optimality of LASSO for orthogonal predictors. Later, Knight and

Fu (2000) showed that if λ = O(
√

n) then β̂ββ
lasso

n is root-n consistent and has a well-
defined asymptotic distribution, that can have positive probability mass at zero for
j ∈Ac

0; details will be given in the next subsection. Greenshtein and Ritov (2004) also
show that, for suitable λ , LASSO does give asymptotically (in n) consistent prediction.

However, the LASSO is not an oracle procedure. Fan and Li (2001) show that LASSO
shrinkage can produce biased estimates for large coefficients, and therefore it can be
suboptimal in terms of estimation risk. Meinshausen and Buhlmann (2008) show that
the optimal λ for prediction gives inconsistent variable selection outside a condition
on the design matrix and a sort of neighborhood stability requirement. Recently, Zou
(2006) proved that if λ = O(

√
n), then limsupn→∞P(Âlasso = A0)≤ η < 1,where η is

some constant depending on the true model. Furthermore, Zou (2006) gave a necessary
condition for LASSO to be consistent for variable selection. Improving this, Zhao and
Yu (2006) identify an irrepresentable condition, based on covariances, which is nearly
necessary and sufficient for selection consistency of the LASSO. In summary, LASSO
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is not always a consistent variable selection procedure, and it tends to select over-
parametrized models with positive probability asymptotically.

LASSO has shown good empirical performance in various contexts. When a true
model really is sparse (i.e., has a few terms that greatly dominate) and p is large rela-
tive to n, LASSO often outperforms AIC, BIC, stepwise methods and RR in predictive
senses like MSE. The reasoning may be that the smooth constraint tends to give more
stable performance than stepwise or best subset selection, and the trade-off of permit-
ting a little bias to get a large reduction in variance for LASSO may typically be better
than for other regularization methods.

On the other hand no method will perform best under all circumstances; see No Free
Lunch in Chapter 7. LASSO does poorly compared with other methods when the true
model is not sparse – i.e., there really are a large number of variables, each influenc-
ing Y a little. In these cases, LASSO often gives too many large, wrong models. In
large p, small n problems, LASSO often gives n variables. Also, if some variables are
highly correlated, LASSO tends to pick one randomly, and if the design matrix is too
correlated, LASSO can readily fail to be consistent. In such cases, RR tends to per-
form better. LASSO may not be robust to outliers in the response; however, replacing
the squared error loss with absolute error often corrects this (see Wang et al. (2007)).
Like other regularization methods, LASSO is sensitive to λ ; if CV is used, too many
variables may result and bias can be high if LASSO overshrinks large β̂ js .

One great advantage of LASSO is its convenient computation. For each fixed λ , the
computation of the LASSO solution can be formulated as a quadratic programming
problem and solved by standard numerical analysis algorithms (Tibshirani (1996)).

Even so, it would be ideal if one could compute the entire solution path β̂ββ
lasso

(λ ) all at
once (i.e., calculate the LASSO solutions simultaneously for all values of λ ). Recently,
Efron et al. (2004) showed that the LASSO has a piecewise linear solution path; i.e.,
for some m, there exist λ0 = 0 < λ1 < .. . < λm = ∞ and ξξξ 0, · · · ,ξξξm−1 ∈ Rp such that

β̂ββ
lasso

(λ ) = β̂ββ
lasso

(λk)+(λ −λk)ξξξ k for λk ≤ λ ≤ λk+1, (10.3.12)

for k = 0, . . . ,m− 1. This means one can efficiently generate the whole regularized

path β̂ββ
lasso

(λ ),0≤ λ ≤ ∞, by sequentially calculating the step size between λ values
and the directions ξξξ 1, · · · ,ξξξm−1. Efron et al. (2004) propose the least angle regression
(LARS) algorithm to find the entire path of the LASSO solution. They show that the
number of linear pieces in the LASSO path is approximately p, and the complexity of
getting the whole LASSO path is O(np2), the same as the cost of computing a single
OLS fit. LARS will be presented in the next section; similar algorithms are suggested
in Osborne et al. (2000).

10.3.1.4 Bridge Estimators

The LASSO and RR differ only in the penalty form imposed on the regression coeffi-
cients: RR uses the squared L2 norm of parameters, while LASSO uses the L1 norm.
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So, obviously, they can be embedded in a larger class. For r ≥ 0, let

β̂ββ
bridge

= argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ )+λ
p

∑
j=1
|β j|r. (10.3.13)

Frank and Friedman (1993) suggested using (10.3.13) and called it bridge regulariza-
tion, adding that it was desirable to estimate r as a parameter rather than choosing it for
convenience. Nevertheless, r is often fixed in practice. The bridge estimator includes
some interesting special cases:

L0(βββ ) = ∑p
j=1 I(β j 	= 0),

L1(βββ ) = ∑p
j=1 |β j| LASSO,

L2(βββ ) = ∑p
j=1β

2
j ridge regression,

L∞(βββ ) = max j |β j|.

The penalty functions L0,L0.5,L1, and L2 are plotted in Figure 10.1.

When the L0 penalty is used and the design matrix is orthogonal, the optimization
becomes

min
β j

(β j− β̂ ols
j )2 +λ I(|β j| 	= 0),

which has the solution

β̂ j = sign(β̂ ols
j )I(|β̂ ols

j |>
√
λ ). (10.3.14)

The operator (10.3.14) is also known as the hard-thresholding rule, which shrinks small
coefficients to zeros while keeping large coefficients intact. Theoretically speaking, the
L0 penalty is the ideal choice for variable selection since it directly penalizes the size of
model. However, it is discontinuous and nonconvex so the optimization is numerically
hard and unstable.

The cases r ∈ (0,1] are known as soft-thresholding penalties, having contours that are
not convex. Choosing an r ∈ (0,1] regularly gives estimates that are 0 for some of the
β js. Model selection methods that penalize the number of parameters can be seen as
limiting cases of bridge estimation as r→ 0 because |β j|r → 0,1 accordingly as β j = 0
or β j 	= 0 when r→ 0.

The most important results for the general class of regularizations giving (10.3.13) are
that the estimators are consistent and have asymptotic distributions. These results are
due to Knight and Fu (2000) and are worth seeing in detail. Denote the functional by

Δn = Δn,p(βββ ,y1, ...,yn,xxx1, ...,xxxn,λn,r) =
1
n

n

∑
i=1

(yi− xxxT
i βββ )2 +

λn

n

p

∑
j=1
|β j|r. (10.3.15)

Assume
n

∑
i=1

xxxixxx
T
i →C and (1/n) max

1≤i≤n
xxxT

i xxxi → 0,

where C is a strictly positive definite p× p matrix, and define the limiting form
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Δ(βββ ) = (βββ −βββ ∗)TC(βββ −βββ ∗)+λ0

p

∑
j=1
|β j|r,

where βββ ∗ are the true regression coefficients.
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Fig. 10.1 Various shrinkage-type penalty functions.

Theorem (Knight and Fu, 2000): Suppose λn/n→ λ0 ≥ 0. Then,

β̂ββ
bridge →p arg min

βββ
Δ .

So, if λn = o(n), arg minβββ Δ = βββ ∗ and β̂ββ
bridge

is consistent.

Proof: It is enough to show that, for any compact set K of βββ s,

supβββ∈K |Δn−Δ | →p 0 (10.3.16)

and
β̂ββ = Op(1). (10.3.17)

If that is done, then (10.3.16) and (10.3.17) imply arg minβββ Δn →p arg minβββ Δ , as
desired.
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Let r≥ 1 so that Δn is convex. Then (10.3.16) and (10.3.17) follow from the pointwise
convergence of Δn to Δ +σ2 by directly taking the limit of Δn under the convergence
assumptions on ∑n

i=1 xxxixxxT
i .

Let r < 1; now Δn is not convex. However, (10.3.16) still holds as before. For (10.3.17),

Δn(βββ )≥ 1
n

n

∑
i=1

(yi− xxxT
i βββ )2 ≡ Δ0(βββ ).

It is clear that arg minβββ Δ0(βββ ) = Op(1), so arg minβββ Δ(βββ ) = Op(1), too. �
The distributions of bridge estimators converge to limits with various locations at rates
different from the usual

√
n. In fact, there are three possible limiting distributions,

depending on the value of r. Accordingly, consider the following three functions of U ,
a generic N(0,σ2C) random variable:

r > 1:

V2(uuu) =−2uuuTWuuuTCuuu+λ0

p

∑
j=1

u jsign(β j)|β j|r−1;

r = 1:

V1(uuu) =−2uuuTWuuuTCuuu+λ0

p

∑
j=1

u jsign(β j)I(β j 	= 0)+ |u j|I(β j = 0);

r < 1:

V0(uuu) =−2uuuTWuuuTCuuu+λ0

p

∑
j=1
|u j|rI(β j = 0).

As with consistency, the technique is to identify a finite-sample version Vn of the Vis
that converges and can be optimized.

Theorem (Knight and Fu, 2000):

(i) Suppose r > 1: If λn/n→ λ0 ≥ 0, then

√
n(β̂ββ n−βββ

∗)→ λ0 arg min
βββ

V2.

(ii) Suppose r = 1: If λn/n→ λ0 ≥ 0, then

√
n(β̂ββ n−βββ

∗)→ λ0 arg min
βββ

V1.

(iii) Suppose r < 1: If λn/nr/2 → λ0 ≥ 0, then

√
n(β̂ββ n−βββ

∗)→ λ0 arg min
βββ

V0.

Proof: It will be enough to prove (i) and (ii); (iii) is similar, and details can be found
in Knight and Fu (2000).
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Consider the finite-sample version of the Vis denoted

Vn(uuu) =
n

∑
i=1

[
(εi−uuuTxxxi/

√
n)2− ε2

i

]
+λ0

p

∑
j=1

[
|β j +u j/

√
n|r−|β j|r

]
.

It is seen that Vn is minimized at
√

n(β̂ββ −βββ ). To see how Vn converges, note that the
first term

n

∑
i=1

[
(εi−uuuTxxxi/

√
n)2− ε2

i

]
→d −2uuuTWuuuTCuuu.

When r > 1, the second term satisfies

λ0

p

∑
j=1

[
|β j +u j/

√
n|r−|β j|r

]
→ λ0

p

∑
j=1

u jsign(β j)|β j|r−1.

And, when r = 1, the second term satisfies

λ0

p

∑
j=1

[
|β j +u j/

√
n|r−|β j|r

]
→ λ0

p

∑
j=1

u jsign(β j)I(β j 	= 0)+ |u j|I(β j = 0).

Thus, Vn(uuu) converges to V2(uuu) or V1(uuu) in distribution accordingly as r > 1 or r = 1.
Since Vn is convex and Vi for i = 1,2 has a unique minimum,

arg min
βββ

Vn =
√

n(β̂ββ −βββ ∗)→d arg min
βββ

Vi. �

Note that the limiting forms reveal the degree of bias that may be associated with
bridge regression. Although the bias is Op(1/

√
n), it may be significant for large βββ s

especially when r > 1.

10.3.1.5 Adaptive LASSO

Zou (2006) proposed a generalization of LASSO, adaptive LASSO, that permits dif-
ferent weights for different parameters. The optimization problem is to find

β̂ββ
alasso

= argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ )+λ
p

∑
j=1

w j|β j|, (10.3.18)

where the w js are positive weights to ensure good sampling performance of the
ALASSO estimator. This adaptivity permits larger penalties to be imposed on unim-
portant covariates and smaller penalties on important ones. In the special case orthog-
onal design XTX = In, the ALASSO solution is

β̂ alasso
j = sign(β̂ ols

j )(|β̂ ols
j |−2λw j)+
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for j = 1, . . . , p. It will be seen that the ALASSO estimates can be obtained from the
LARS algorithm.

One reasonable choice for the weights was suggested by Zou (2006),

w j =
1

|β̃ j|γ
, j = 1, · · · , p,

where β̃ββ = (β̃1, . . . , β̃p) is a root-n consistent estimate of βββ and γ > 0 is a fixed constant.
For instance, OLS estimates can be used when they exist.

ALASSO has two important optimality properties. First, it is near-minimax optimal.
Let {y1, · · · ,yn} be n independent observations from

Yi = μi +Zi, i = 1, · · · ,n,

where the Zi are IID mean zero and known variance σ2, and suppose the goal is to esti-
mate μμμ =(μ1, · · · ,μn) by an estimator μ̂μμ with risk given by R(μ̂)= E

[
∑n

i=1(μi− μ̂i)2
]
.

To identify the ideal estimator, consider the family of diagonal linear projections
{δiyi}n

i=1 with δ ∈ {0,1}. If there were an oracle who could tell us which μi were
larger than the noise σ , then the ideal coefficients would be δi = I(|μi| > σ) and the
ideal risk would be R(ideal) = ∑n

i=1 min(μ2
i ,σ2), see Donoho and Johnstone (1994).

However, in general, the ideal risk cannot be achieved for all μ by any estimator. Next
best is to say an estimator μ̂μμ is near-minimax optimal if its performance differs from
the ideal performance by a factor; 2 logn has been found reasonable. Under several
regularity conditions, Zou (2006) generalizes Donoho and Johnstone (1994) to show
that if w j = 1/|yi|γ for some γ > 0, then the ALASSO estimate μ̂alasso

i = sign(yi)(|yi|−
2λ/|yi|γ) is near-minimax optimal, as in the following.

Theorem (Zou 2006, Theorem 3): Let λ = 2(2logn)
1+γ

2 . Then

inf
μ̂μμ

sup
μμμ

R(μ̂μμalasso)
σ2 +R(ideal)

∼ 2logn. �

Second, ALASSO is oracle. Zou (2006) Theorem 2 gives conditions to ensure that if

λ/
√

n→ 0 and λn
γ−1

2 → ∞, then ALASSO has the oracle property for estimation and
selection. Other researchers have also proved ALASSO is oracle in quantile regression
(see Wu and Liu (2009)) and in Cox’s proportional hazard models (Zhang and Lu
(2007)). The proof that ALASSO is oracle is inspired by the work of Knight and Fu
(2000), but is more complex.

10.3.1.6 Smoothly Clipped Absolute Deviation (SCAD)

Although difficult to ensure, a good penalty function should lead to a sparse, nearly
unbiased estimator that is continuous in the data and converges rapidly. Unfortunately,
RR is not sparse and LASSO can be biased. To remedy this, Fan and Li (2001) propose
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a penalty term called the smoothly clipped absolute deviation (SCAD), that satisfies
all the desired conditions. Mathematically, the SCAD penalty function is

qλ (|β |) =

⎧⎪⎪⎨
⎪⎪⎩
λ |β | if |β | ≤ λ ,

− (|β |2−2aλ |β |+λ 2)
2(a−1) if λ < |β | ≤ aλ ,

(a+1)λ 2

2 if |β |> aλ ,

(10.3.19)

where a > 2 and λ > 0 are tuning parameters. The function qλ is a symmetric quadratic
spline with knots at λ and aλ . Except for its singularity at the origin, qλ (|β |) has a
continuous first-order derivative. In Fig. 10.2, the SCAD function with a = 3 and
λ = 0.4 is plotted.
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Fig. 10.2 The SCAD penalty function with λ = 0.4,a = 3.

Note that the SCAD function is the same as the L1 penalty for small |β |s. However,
for large coefficients, the SCAD penalty is constant while the L1 penalty is linear. The
SCAD estimator solves

β̂ββ
scad

= argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ )+
p

∑
j=1

qλ (|β j|). (10.3.20)

The main reason that SCAD avoids causing bias for estimating large coefficients is
that qλ (|β |) does not increase in |β |. Indeed, under regularity conditions, Fan and Li
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(2001) establish that the SCAD estimator is oracle when the parameter λ is tuned
properly. ALASSO is oracle, too, but the bias may not decrease as rapidly as with the
SCAD penalty in many cases.

Unfortunately, the SCAD penalty can be hard to implement because (10.3.19) is a non-
convex optimization problem. Also, the SCAD penalty is not differentiable at zero, the
most important point, causing extra difficulty for gradient-based methods like Newton-
Raphson. Nevertheless, there are four algorithms to solve (10.3.19).

First, despite the nondifferentiability at zero of SCAD, Fan and Li (2001) propose to
solve a local quadratic approximation (LQA) of (10.3.20), iteratively. Let β̂ββ (0) be an

initial value. If β̂ββ
(0)
j is close to zero, set β̂ j = 0; otherwise, approximate the penalty

function locally by the quadratic function

qλ (|β j|)≈ qλ (| ˆbeta
(0)
j |)+

{β 2
j − β̂

(0)
j }2q′λ (|β̂ (0)

j |+)

2|β̂ (0)
j |

,

where q′λ (|β |+) denotes the right limit of q′λ (|β |). Using this LQA, a Newton-Raphson
algorithm can be used to solve

min
βββ

(yyy−Xβββ )T(yyy−Xβββ )+
1
2
βββTΣλ (βββ 1)βββ , (10.3.21)

where Σλ (βββ (0)) = diag{q′λ (|β̂ (0)
1 |)/|β̂ (0)

1 |, . . . ,q′λ (|β̂ (0)
p |)/|β̂ (0)

p |}. Since (10.3.21) is a
quadratic minimization, it can be iteratively solved like the ridge regression estimator.
In general, the solutions to (10.3.21) are not exactly zero, so a thresholding rule is
needed to decide whether to set a coefficient to zero or not. One drawback of the
algorithm (see Hunter and Li (2005)) is that once a covariate is deleted at any step in
the procedure, it is permanently removed from the final model.

Second, Hunter and Li (2005) suggested a majorize-minimize (MM) procedure to
solve (10.3.20). In principle, the MM algorithm substitutes a simple minimization
problem for a difficult minimization problem and solves the simple problem iteratively
until convergence is obtained.

Let θ0 be the current iterate. A function Φθ0(θ) is said to majorize qλ (|θ |) at θ0 if it
satisfies

Φθ0(θ)≥ qλ (|θ |), ∀θ ; Φθ0(θ) = qλ (|θ0|).
This condition implies

Φθ0(θ)−Φθ0(θ0)≥ qλ (|θ |)−qλ (|θ0|),

which leads to the descent property

Φθ0(θ) <Φθ0(θ0) implies qλ (|θ |) < qλ (|θ0|). (10.3.22)

Thus (10.3.22) implies that any decrease in the value of Φθ0(θ) guarantees a decrease
in qλ (|θ |).
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For the SCAD penalty, if the current iterate β̂ (m)
j is nonzero for all j, then Hunter and

Li (2005) suggested using

Sm(βββ )≡ (yyy−Xβββ )T(yyy−Xβββ )+
p

∑
j=1

Φ
β (m)

j
(β j)

as a majorizing function for (10.3.20), where

Φ
β̂ (m)

j
(β j)≈ qλ (|β̂ (m)

j |)+
{β 2

j − (β̂ (m)
j )2}q′λ (|β̂ (m)

j |+)

2|β̂ (m)
j |

. (10.3.23)

If some β̂ (m)
j is zero, Hunter and Li (2005) suggested replacing 2|β̂ (m)

j | by 2(ε+ |β̂ (m)
j |)

for some ε > 0, leading to a perturbed objective function:

Sm,ε ≡ (yyy−Xβββ )T(yyy−Xβββ )+Φ
β̂ (m)

j
(β j)+

{β 2
j − (β̂ (m)

j )2}q′λ (|β̂ (m)
j |+)

2|β̂ (m)
j + ε|

.

They show that, as long as ε is small, the minimizer of Sm,ε approximately solves
the original SCAD problem (10.3.20). Since the MM procedure optimizes a perturbed
version of LQA, it is less likely than LQA to exclude variables inappropriately.

Third, nonconvex penalties can sometimes be decomposed as the difference of two
convex functions, leading to a difference convex algorithm (DCA; An and Tao (1997))
that can be solved as a series of convex problems. For the SCAD case, Wu and Liu
(2009) note that, for (10.3.19),

qλ (|β |) = qλ ,1(|β |)−qλ ,2(|β |), (10.3.24)

where

q′λ ,1(|β |) = λ , q′λ ,2(|β |) = λ
(

1− (aλ −|β |)+
(a−1)λ

)
I(|β |> λ ).

In this case, Wu and Liu (2009) observe that the DCA is an instance of the MM since
at each step the DCA majorizes a nonconvex objective function and then performs a
minimization.

With the DC decomposition, (10.3.20) can be decomposed as Q1(βββ )−Q2(βββ ), where

Q1(βββ ) = (yyy−Xβββ )T(yyy−Xβββ )+
p

∑
j=1

qλ ,1(|β j|),

Q2(βββ ) = n
p

∑
j=1

qλ ,2(|β j|).

The algorithm suggested by Wu and Liu (2009) uses an initializing βββ (0) and then cycles
through

β̂ββ
(m+1)

= argmin
βββ

Q1(βββ )+
〈
−Q′2(β̂ββ

(m)
),βββ − β̂ββ

(m)
〉

,
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where 〈uuu,vvv〉 is the inner product of uuu and vvv, until convergence is observed.

One difference between DCA and MM is that, at each iteration, DCA majorizes the
nonconvex function using a linear approximation, while the MM algorithm uses a
quadratic approximation. Indeed,

−Q′2(β̂ββ
(m)

) =−n
(

q′λ ,2(|β̂
(m)
1 |)sign(β̂ (m)

1 ), . . . ,q′λ ,2(|β̂
(m)
p |)sign(β̂ (m)

p )
)T

.

So, at the (m + 1)th step, DCA approximates the second function linearly and essen-
tially solves

min
βββ

(yyy−Xβββ )T(yyy−Xβββ )+
p

∑
j=1

qλ ,1(|β j|)−n
p

∑
j=1

q′λ ,2(|β̂
(m)
j |)sgn(β̂ (m)

j )(β j− β̂ (m)
j ).

Fourth, Zou and Li (2007) proposed computing β̂ββ
scad

based on local linear approxi-
mation (LLA). A distinctive feature of this is that, at each step, the LLA estimator has

a sparse representation. Let β̂ββ
(0)

be an initial value. Then, the penalty function can be
locally approximated by

qλ (|β j|)≈ qλ (|β̂ (0)
j |)+(β j− β̂ (0)

j )q′λ (|β̂ (0)
j ).

Now, Zou and Li (2007) suggest cycling via

β̂ββ
(m+1)

= argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ )+n
p

∑
j=1

q′λ (|β̂ (m)
j )|β j|

until convergence is observed. It is seen that, at each step, the LLA algorithm must
solve a LASSO-type problem. This can be done efficiently by LARS (Efron et al.
(2004)).

Compared with LQA, LLA is more stable numerically and does not have the problem
of deleting variables in the middle of iteration. The LLA algorithm is an instance of
MM and hence has a descent property. Also, Zou and Li (2007) prove that the SCAD

estimate from the LLA algorithm, with β̂ββ
ols

as the initial estimator, has the oracle
property if the decay parameter is appropriately chosen.

10.3.2 Grouping in Variable Selection

Even without leaving the p≤ n paradigm, when p is too large for an exhaustive search
of the model space to be feasible, it may make sense to partition the set of variables into
groups and then do exhaustive searches within the groups (Gabriel and Pun (1979)).
Selecting groups of variables arises naturally in several scenarios. For instance, if there
are groups of highly correlated variables and each group works together to influence
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the response, it may be desirable to include or exclude the whole group. Two popular
techniques for examining groups of variables in the regression setting are the grouped
LASSO and the elastic net (EN).

10.3.2.1 Grouped LASSO

Assume the set of p variables can be partitioned into J groups, denoted Z1, · · · ,ZJ , in
which each Z j consists of n measurements of p j variables so that p1 + . . .+ pJ = p.
Now, the linear model can be expressed as

YYY =
J

∑
j=1

Z jβββ j + εεε, (10.3.25)

where yyy = (y1, . . . ,yn) is the response, Z j is an n× p j matrix corresponding to the jth
group of variables, and βββ j is a vector of length p j, j = 1, · · · ,J. Thus, the entire design

matrix is X = (Z1, · · · ,ZJ) and the coefficient vector βββ = (βββT
1 , · · · ,βββT

J )T. The group
LASSO estimator (Yuan and Lin (2007)) is

β̂ββ
glasso

= argmin
βββ

⎡
⎣
(

yyy−
J

∑
j=1

Z jβββ j

)T(
yyy−

J

∑
j=1

Z jβββ j

)
+λ

J

∑
j=1

p j(βββT
j βββ j)

1/2

⎤
⎦ .

(10.3.26)
Note that the groupwise L2 norm ‖βββ j‖= (βββT

j βββ j)
1/2 permits the selection or removal

of groups of variables simultaneously, and this selection is invariant under groupwise
orthogonal transformations.

The grouped LASSO gives better performance than traditional stepwise selection pro-
cedures in factor selection problems (Yuan and Lin (2007)). A grouped NG and a
grouped LARS (see below) can also be defined; they can be efficiently solved by using
the solution path algorithm. However, the grouped LASSO does not have a piecewise
linear solution path.

10.3.2.2 Elastic Net

As a variant on single penalty terms, Zou and Hastie (2005) propose the elastic net
(EN) as a way to combine the benefits of the L1 and L2 regularizations and simultane-
ously ensure that related Xjs get comparably sized coefficients. First, the naive elastic
net estimator is

β̂ββ
enet

= argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ )+λ1

p

∑
j=1
|β j|+λ2

p

∑
j=1

β 2
j , (10.3.27)

where λ1 and λ2 are decay parameters. The penalty in (10.3.27) causes a double
shrinkage, which can introduce bias to the estimation. To correct this, the elastic
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net coefficient is defined as a rescaled naive estimate (1 +λ2)β̂ββ
enet

. In contrast to the

LASSO, the EN penalty is strictly convex and so β̂ββ
enet

is particularly appropriate when
p is much larger than n. The EN estimator combines the strength of LASSO and the
ridge regression: The L1 penalty encourages the model to be parsimonious, and the L2

penalty encourages highly correlated predictors to have similar coefficient estimates.

An important property of EN estimators that makes them appropriate for assessing
groups of variables is that they are provably close to each other when their associated
variables are correlated. In particular, define the difference between the coefficients of
predictors Xj and Xk as

D( j,k) =
1

∑n
i=1 |yi|

|β̂ enet
j − β̂ enet

k |.

The grouping effect of EN is illustrated by the following theorem.

Theorem (Zou and Hastie, 2005): Assume yyy is centered and the predictors X are
standardized. Define the sample correlation ρ jk = xxxT

j xxxk for each j 	= k. Then

D( j,k)≤ 1
λ2

√
2(1−ρ jk). �

This theorem implies that, if Xj and Xk are almost perfectly correlated (i.e. |ρ jk| ≈ 1),
then the difference between β̂ enet

j and β̂ enet
k is nearly zero.

Zou and Hastie (2005) proposed a LARS-EN algorithm to compute the entire EN path
efficiently. Recently, Zou and Zhang (2008) extended the EN to an adaptive EN by
solving

β̂ββ
aenet

= argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ )+λ1

p

∑
j=1

w j|β j|+λ2

p

∑
j=1

β 2
j , (10.3.28)

and they proved that the adaptive EN estimator is oracle under regularity conditions.

10.3.3 Least Angle Regression

The computational technique called least angle regression (Efron et al. (2004)) aimed
at getting a parsimonious model for predictive purposes, is a less greedy version of
traditional forward selection methods. The intuitive idea of LARS is that rather than
adding explanatory variables to a submodel one at a time, look at the column space
of the design matrix, identify the equiangular vector that forms the same size angle
with each column vector, add a fraction of it to the model, and form a new set of
predictions. This is somewhat abstract, so it is worthwhile giving some details of the
LARS procedure (see Efron et al. (2004)).

Suppose the data are standardized. Then,



618 10 Variable Selection

� Initialize: Let μ̂μμ0 be a first choice for the fitted values, possibly 0, possibly based
on a choice of explanatory variables already in the model.

� Compute inputs: Form the n vector of “current correlations”

ccc = XT(yyy− μ̂μμ0),

and use this to find
A = { j : |c j|= max

j
|c j|}.

For j ∈A , set
s j = sign(c j) =±1

and let

XA = (...,s jxxx j, ...) j∈A , KA = (1T
A (XT

A XA )−11A )−1/2.

Now, the equiangular vector is

uuuA = KA XA (XT
A XA )−11A .

(Note: uuuA is the unit vector making equal angles with the columns of XA :
XT

A uA = KA 1A and ‖uA ‖= 1.) The inner product vector is

a = XTuuuA .

� Update μ̂μμ0: Let
μ̂μμ1 = μ̂μμ0 + γuuuA

where

γ = min
j∈A c

[
max j |c j|− c j

KA −a j
,

max j |c j|+ c j

KA +a j

]+

and the + means the positive part; i.e., negative values are excluded.

� Iterate to find μ̂μμ2 and so forth until a stopping criterion is met.

Thus, LARS augments a set of fitted values μ̂μμk by finding a set of variables that are
maximally correlated with its residual and using their central (equiangular) vector to
shift μ̂μμk to μ̂μμk+1. It’s as if yyy is regressed on the equiangular vector with coefficient γ .
That is, the fitted values are sequentially improved by finding explanatory (equiangu-
lar) vectors from the explanatory variables to reduce residuals.

LARS is closely related to another iterative algorithm, called forward stagewise linear
regression, which begins with μ̂μμ0 = 0 and builds up the regression function in succes-
sive small steps. In particular, if μ̂μμ is the current stagewise estimate, let ccc(μ̂μμ) be the
vector of current correlations (i.e., ccc(μ̂μμ) = XT(yyy− μ̂μμ)), so that the jth component of
ccc(μ̂μμ), denoted as ĉ j, is proportional to the correlation between the covariate Xj and the
current residual vector. At the next step, the stagewise algorithm takes the direction of
the greatest current correlation,
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ĵ = argmax |ĉ j|

and updates the estimate as

μ̂μμ → μ̂μμ+ ε · sign(ĉ j) · xxx ĵ,

where ε is some small constant.

There are several stopping criteria and variants of this procedure that have been stud-
ied, but the details are beyond the present scope. For instance, although not obvious,
LARS can be modified to give LASSO: If the procedure is stopped when γ falls below
a threshold and A is sequentially modified only by adding or removing one variable
at a time from A , LARS recovers all LASSO solutions (see Efron et al. (2004)) with
the same order of magnitude of computational effort as one OLS fit using the full set
of covariates. LARS is implemented in R with the function lars and is designed so
that other estimates such as LASSO and forward stagewise regression can be obtained
from it as options.

As an instance of how LARS performs, consider the Boston housing data set concern-
ing housing values in the suburbs of Boston, D. Harrison and Rubinfeld (1978). There
are 13 predictors to predict the median value of owner-occupied homes and n = 506.
The predictors consist of a variety of social variables (e.g., crime rate) and property lo-
cation variables (e.g., proportion of residential land zoned for lots over 25,000 square
feet). The full data set is available in the R package MASS.

Figure 10.3 plots the solution paths (see (10.3.12)) of the LASSO, LARS, and for-
ward stagewise regression estimates obtained by the LARS algorithm for the Boston
housing data. It is seen that there is high similarity among the solution paths of these
three methods. In all three cases, the variables come into the regression in essentially
the same order. For instance, the first three are variable 13 (status of the population),
variable 9 (access to highways), and variable 10 (property taxes). Also, the numerical
values for the coefficients from the three methods are seen to be similar, too. As noted
in Efron et al. (2004), all three procedures can be viewed as moderately greedy forward
stepwise procedures, which progress according to the compromise among the currently
most correlated covariates. LARS moves along the most obvious compromise direc-
tion, the equiangular vector, while LASSO and forward stagewise regression put some
restrictions on the equiangular strategy.
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Fig. 10.3 Solution paths of LASSO, LARS, and forward stagewise regression for the Boston housing
data. In each panel, the sizes of the coefficients at each iteration are indicated on the left axis; the
number of iterations is along the top; and the size of each coefficient relative to the largest coefficient
at each iteration, essentially tracking the decrease in λ , is indicated along the bottom. On the right,
the variable labels are given and the paths show the sequence in which variables are included.

10.3.4 Shrinkage Methods for Model Classes

So far, the idea of penalization has been seen only in linear models. However, penaliza-
tion is much more general and can be applied to both regression and classification
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problems with a wide variety of model classes, including ensembles, GLM, trees,
splines, and SVMs. It is worth looking at these in turn.

10.3.4.1 Boosted LASSO

Recall that ensemble methods were discussed as a general class in Chapter 6 and sev-
eral specific ensemble methods – boosting in particular – were presented. It is desirable
to merge the predictive performance of ensemble methods with the parsimony of pe-
nalized methods in the hope of getting better small-sample behavior. This could mean
combining several of the estimators from several regularization methods with weights
chosen by some ancillary optimization. Or it could mean finding a penalty term on
ensembles that would enforce parsimony. The first might be suboptimal because of the
use of the data in each regularization; the second might lead to bias because pruning
an ensemble weakens its predictive power. A more sophisticated approach is due to
Zhao and Yu (2007), where boosting and LASSO are combined on a methodological
level rather than just using them in sequence. Of course, any ensemble method and any
penalty would lead to another instance of this template.

Recall that boosting can be regarded as minimizing a risk, EL(Y,F(xxx)) where F varies
over a class of ensembles of “base learners”, say

F = {F | F(xxx) =
∞

∑
j=1

β jh j(xxx)}.

Using βββ = (β1, ...), write the minimization of E(L) over F as

βββ = argmin
βββ

n

∑
i=1

L(Zi,βββ ), (10.3.29)

where Zi = (Xi,Yi). One can attempt to solve (10.3.29) directly, but this can easily
lead to overfit solutions when many β js cannot be taken as zero. Boosting builds up a
solution iteratively – and can be stopped at any time to avoid overfitting.

Let eee j be the vector of length n, which is 1 in the jth entry and zero everywhere
else. Zhao and Yu (2007) write the boosting procedure algorithmically as a step from

iteration t to t +1. For a given β̂ββ
(t)

at step t, set

( ĵ, ŝ) = argmin
j,s

n

∑
i=1

L(Zi, β̂ββ
(t)

+ seee j).

Then, find

β̂ββ
(t+1)

= β̂ββ
(t)

+ ŝ ĵeee ĵ.

LASSO is seen to be a regularized version of this when L is squared error. The mini-
mization finds j and s such that eee j is added to the emerging β̂ t with a factor of ŝ j. If
s =±ε instead of being continuous, the procedure is called forward stagewise fitting.
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Roughly, the regularization in LASSO is used in the boosted LASSO procedure as
part of a decision criterion. Denote the functional defining LASSO in (10.3.10) by
Γ =Γ (ZZZ,βββ ,λ ) =∑n

i=1 L(Zi,βββ )+λ‖βββ‖1. In boosted LASSO, if Γ (ZZZ,βββ ,λ ) is reduced

enough by an iteration on βββ (t) for fixed λ , there is no need to reduce λ ; otherwise a
new search over j is done and typically a reduced λ is found. This can be seen in the
shrinkage step in the formal statement of the procedure.

Given data ZZZ = (Z1, ...,Zn), step size ε > 0, and threshold ξ > 0:

� Initialize: Start with β̂ββ
(−1)

= 0 and find

( ĵ, ŝ) = arg min
j,s=±ε

n

∑
i=1

L(Zi,seee j)

and

β̂ββ
(0)

= ŝ ĵeee ĵ.

Let λ = λ0 be the initial decrease in empirical risk at the first step, scaled by ε:

λ0 =
1
ε

(
n

∑
i=1

L(Zi,0)−
n

∑
i=1

L

(
Zi, β̂ββ

(0)
))

,

and let the initial active set A0 = { ĵ}. This completes the t = 0 step.

� Shrinkage: If shrinking the coefficient of an element of A also improves the
LASSO criterion enough, then use it to update the estimates. That is, find

ĵ = arg min
j∈At

n

∑
i=1

L

(
Zi, β̂ββ

(t)
+ s jeee j

)

with s j = sign(β̂ j)ε , and if

Γ
(

ZZZ, β̂ββ
(t)

+ s ĵeee ĵ,λt

)
< Γ

(
ZZZ, β̂ββ

(t)
,λt

)
+ξ , (10.3.30)

then shrink the ĵth coefficient and update:

β̂ββ
(t+1)

= β̂ββ
(t)

+ s ĵeee ĵ; λt+1 = λt ; At+1 = At −{ ĵ}.

� Search: If (10.3.30) fails, then search A c for a new j. Find

( ĵ, ŝ) = arg min
j,s=±ε

n

∑
i=1

L

(
Zi, β̂ββ

(t)
+ seee j

)

and update. Again, set β̂ββ
(t+1)

= β̂ββ
(t)

+ ŝeee ĵ and then set
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λt+1 = min

[
λt ,

1
ε

(
n

∑
i=1

L

(
Zi, β̂ββ

(t)
)
−

n

∑
i=1

L

(
Zi, β̂ββ

(t+1)
))]

; At+1 = At ∪{ ĵ}.

� Stopping: Increase t by 1 and repeat the steps until λt ≤ 0.

The shrinkage is a sort of backwards step to refine a coefficient; the search is a forward
step to find a new coefficient. The role of λ in the boosted LASSO is not quite the
same as in (10.3.10), but its role is similar since it tracks the decrease in empirical risk.
The choice of ε and ξ can vary widely; ε can easily range from .05 to 50, for instance.
Smaller values tend to give smoother curves for the quantities over time. Note that the
procedure is written so that the penalty term is generic. This means that the L1 penalty
can be used but so can L2, SCAD or any other.

10.3.4.2 GLM and Trees

Recall that the GLM was discussed in Section 4.2 and Trees were discussed in Sections
4.5 and 5.3. Here, both model classes can be situated in a penalization context. Recall
that in GLMs there is a link function g−1(·) that transforms the expected value of Y so it
can be expressed in terms of the regression function, not necessarily on the whole real
line. the correct choice of link function is particularly important for binomial, count,
and categorical data, but not usually as important for continuous data. Thus, there is
no reason not to try the same penalty term as in (10.3.13) and define

β̂ββ = argmin
βββ

{
∑ |yi−g(xxxT

i βββ )|2 +λ ∑ |β j|r
}

. (10.3.31)

Indeed, any of the penalties discussed could be used in place of the bridge penalty.
Note that g is applied to the population mean in the definition of a GLM model, so in
(10.3.31), it is applied to the expression in xxx. When g has local properties that make it
linearly approximable, the results of penalizing in GLMs should be similar to the linear
model case, though transformed, although this does not seem to have been investigated.
Likewise, properties such as being oracle or near-minimax optimal should hold for
GLMs if they hold for the linear model case.

Recall that tree-based regression and classification partitions the space of explanatory
variables into, say, p regions R1,R2, ...,Rp by a binary tree structure and then defines
an estimator for Y on each region. The response for xxx in the region at the terminal
node can be modeled as a linear regression, often just the average of the yis on it. More
formally, this is

yi =
p

∑
j=1

ave(yi|xxxi ∈ R j)I(xxx ∈ R j)+ εi.

The trade-off is that a very large tree risks overfitting the data while a small tree might
not capture important structure. As before, minimizing a cost-complexity
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C(T ) =
|T |

∑
j=1
∑

xxxi∈R j

(yi− ĉ j)2 +λ |T | (10.3.32)

helps find an optimally sized tree, where ĉ j = ave(yi|xxxi ∈ R j) and |T | denotes the
number of terminal nodes in tree T .

It can be seen in retrospect that cost-complexity optimization was a penalization
method. Moreover, (10.3.32) is a regularized (empirical) risk similar to those used
before. Indeed, the number of parameters in T is an affine function of |T |, suggesting
L0-like properties. Other assessments of the size of T can be used and may be more
appropriate depending on the class of trees and data. It is tempting to use |T |r hoping
that it corresponds to bridge. However, only penalizing the number of nodes in will
likely not be enough in general; the actual norms of the parameters in the ĉ js must be
penalized if the node function can be more complicated than the average. Penalized
trees in this sense do not seem to have been extensively studied.

10.3.4.3 Multidimensional Smoothing Splines

Chapter 3 gave a detailed treatment on smoothing splines. There, the focus was on
univariate function estimation; i.e., x was one-dimensional. Here, function estimation
with smoothing splines will use a multivariate argument xxx from a product domain
∏p

j=1 X j. A convenient approach to constructing the space of multidimensional splines
is by taking the tensor product of one-dimensional spaces of polynomial splines; a
tensor product of vector spaces is a way to generate a new vector space using elements
formed from combining the basis elements of the individual spaces. This is the main
idea of smoothing splines ANOVA and SS-ANOVA (see Wahba (1990), Gu (2002)).

Similar to the standard analysis of variance, in the SS-ANOVA framework, a mul-
tidimensional function f (xxx) = f (x1, ...,xp) is decomposed as a sum of main effects,
two-way interaction terms, and higher-order interaction terms:

f (xxx) = b0 +
p

∑
j=1

f j(x j)+∑
j<l

f jl(x j,xl)+ · · · . (10.3.33)

Certain side conditions can be imposed on the f js to guarantee the uniqueness of this
ANOVA-like decomposition. The modeling is accomplished by saying that each com-
ponent function in (10.3.33) is in an RKHS and that the RKHSs for bivariate and
higher-order terms are derived by taking tensor products of the RKHS of the univariate
functions. That is, each f j varies over an RKHS H ( j) of univariate functions associ-
ated to it, and each H ( j) has its own kernel. Then, the bivariate function f jl of x jand
xl for j < l in (10.3.33) is assumed to be in the tensor product space H ( j)⊗H (l).
The trivariate and later terms are similar, depending on tensor products of more and
more spaces. Thus, each component function in (10.3.33) is in a subspace of the form
⊗p

j=1H
( j) with its own reproducing kernel derived from the reproducing kernels of

the individual spaces.
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Since tensor products of different numbers of spaces are independent, the overall pth
order function space H of which f (xxx) is an element can be written as a direct sum,

H =⊗p
j=1H

( j) = [1]⊕
p

∑
j=1

H
( j)

1 ⊕∑
j<l

[H ( j)
1 ⊗H

(l)
1 ]⊕·· · ,

where H ( j) = [1]⊕H
( j)

1 for each j, [1] is the constant subspace, and H
( j)

1 is its
complement subspace. It can be shown that H is an RKHS with a reproducing kernel
derived from the reproducing kernels of its constituent spaces. An example of this
H ( j) is the second-order Sobolev space W2[0,1],

W2[0,1] = {g : g(t),g′(t) absolutely continuous, g′′(t) ∈L2[0,1]},

treated in Exercise 10.14.

Typically only low-order interactions in (10.3.33) are considered. The simplest is the
additive model

f (xxx) = b0 +
p

∑
j=1

f j(x j). (10.3.34)

In this case, the selection of functional components is equivalent to variable selection
and (10.3.33) and (10.3.34) reduce to the setting of Chapter 3. That is, the f to be
estimated is in an RKHS H equipped with the norm ‖ · ‖H , and the decomposition
(10.3.34) corresponds to the function space H in SS-ANOVA, which can be written

H = [1]⊕
p⊕

j=1

H j. (10.3.35)

In (10.3.35), H1, ..., Hp are p orthogonal subspaces of H for the main effects f js. A
traditional smoothing spline type method finds f ∈H to minimize

1
n

n

∑
i=1

(yi− f (xi))2 +λ
p

∑
j=1

θ−1
j ‖P j f‖2

H , (10.3.36)

where P j f is the orthogonal projection of f onto H j and the θ j ≥ 0 and λ are mul-
tiple tuning parameters. In more complex SS-ANOVA models not explicitly studied
here, model selection requires the selection of interaction terms in the SS-ANOVA
decomposition.

As seen earlier, shrinkage methods in the linear model context devolve to coefficient
shrinkage because Xj is regarded as unimportant when β̂ j = 0. For nonparametric mod-
els, the parallel property is that a component f j is excluded from the model when it
is estimated by the zero function; i.e., f̂ j(Xj) ≡ 0, a much stronger condition. Con-
sequently, shrinkage in general nonlinear models is much harder than in linear mod-
els. Nevertheless, two classes of methods have been developed to implement func-
tion shrinkage for (10.3.33): basis pursuit (BP) methods and direct function shrinkage
methods. The idea of BP is to make the nonparametric problem parametric: Represent
each component function in terms of a basis and then shrink the coefficients of basis
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elements toward zero. Direct methods, by contrast, define a soft-thresholding operator
to shrink the actual function components to the zero function. For ease of presentation,
the focus here will be on additive models as in (10.3.34), thereby assuming there are
no interaction effects between the covariates used. The methods presented here extend
to the general case (10.3.33); i.e., to functions f that include nonunivariate terms in
(10.3.33).

Basis Pursuit

BP originated as a principle for decomposing a signal into an optimal superposition
of prechosen elements, where the sense of optimality is that the superposition has the
smallest possible l1 norm of coefficients among all such decompositions; see Chen
et al. (1998) for BP in a wavelet regression context. Given the finite representation of
smoothing splines, Zhang et al. (2004) use enough basis functions to span the model
space and estimate the target function in that space. In particular, they assume for each
j that each component function can be approximated by a linear combination of N
basis functions B jl , l = 1, . . . ,N; i.e.,

f j(x j) =
N

∑
l=1

c jlB jl(x j).

The BP solution is

f̂ bp = argmin
f

1
n

n

∑
i=1

(yi− f (xxxi))
2 +

p

∑
j=1

λ j

N

∑
l=1

|c jl |, (10.3.37)

where f (xxx) = b0 +∑p
j=1 f j(x j) = b0 +∑p

j=1∑
N
l=1 c jlB jl(x j) and the λ js are the decay

parameters, which are allowed to take distinct values for different components.

It can be seen that (10.3.37) is a direct generalization of the LASSO penalty to the
context of nonparametric models. Moreover, the l1 penalty can still produce basis co-
efficients that are exactly zero. Therefore, BP gives a sparse representation for each
component. Computing BP solutions can be done through quadratic programming or
LARS. Instead of the L1 penalty, any other penalty, such as SCAD, group LASSO,
or adaptive LASSO, can be imposed. Although not shown here, if a representation of
f that includes bivariate terms as in (10.3.33) is adopted, then an extra penalty term
appears. The penalty term ensures the norm of the coefficients of the basis elements

for each copy of H
( j)

1 ⊗H
(l)

1 is small enough.

A Direct Method: COSSO

The component selection and smoothing operator (COSSO; see Lin and Zhang (2006))
is a direct shrinkage method for variable selection in nonparametric regression. Specif-
ically, COSSO solves

f̂ cosso = arg min
f∈H

n

∑
i=1

[yi− f (xxxi)]2 +λ
p

∑
j=1
‖P j f‖H , (10.3.38)
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where ‖·‖H is the norm defined in the RKHS H and λ ≥ 0 is the smoothing parame-
ter. The penalty term ∑p

j=1 ‖Pj f‖H in (10.3.38) is a sum of reproducing kernel Hilbert
space norms, not the squared norm penalty used in traditional smoothing splines in
(10.3.36). Note that the objective function in (10.3.38) is continuous and convex in
f ∈H , so its minimizer exists. In addition, the finite representer theorem holds for the
estimator f̂ . This is an important result for computational purposes since it ensures f̂
can be characterized by a finite number of parameters even for H infinite-dimensional.

As shown in Lin and Zhang (2006), COSSO applies soft thresholding to the function
components to achieve sparse function estimation in SS-ANOVA models. Instead of
solving (10.3.38) directly, consider the equivalent formulation

min
f∈H ,θθθ

n

∑
i=1

[yi− f (xxxi)]
2 +λ0

p

∑
j=1

θ−1
j ‖P j f‖2

H +λ1

p

∑
j=1

θ j, subject to θ j ≥ 0 ∀ j,

(10.3.39)
where λ0 ≥ 0 is constant and λ1 is the smoothing parameter. The form of (10.3.39) is
similar to the common smoothing spline (10.3.36) with multiple smoothing parame-
ters, except that there is an additional penalty on the θ js, although there is still only
one smoothing parameter λ . This means that the θs are part of the estimate rather than
free smoothing parameters. The additional penalty on the θ js means some θ js can be
zero, thereby giving zero function components in the COSSO estimate.

For additive models, Lin and Zhang (2006) show that COSSO converges at rate
On−m/(2m+1), where m is the order of function smoothness. For the case of a ten-
sor product design with periodic functions, COSSO selects the correct model structure
with probability tending to one. However, Storlie et al. (2007) observe that COSSO
tends to oversmooth nonzero functional components in the process of setting unim-
portant function components to zero. This parallels the way LASSO can overshrink
nonzero coefficients in when doing variable selection. COSSO is not oracle for non-
parametric model selection although a variant of it, presented next, can be.

Adaptive COSSO

Recently, Storlie et al. (2007) extended COSSO by including adaptive weights in the
COSSO penalty, ACOSSO. This allows for more flexibility in estimating important
functional components. It also penalizes unimportant functional components more
heavily because a rescaled norm is used to smooth each of the components. Formally,
the ACOSSO estimator for f ∈F is

f̂ acosso = argmin
n

∑
i=1

[yi− f (xxxi)]2 +λ
p

∑
j=1

w j‖ f j‖H , (10.3.40)

where the 0≤ w j ≤ ∞ are prechosen weights and λ > 0 is a smoothing parameter.

As with COSSO, ACOSSO has an equivalent formulation that is better for computa-
tion. Storlie et al. (2007) show that the optimization in (10.3.40) is equivalent to the
problem of finding θθθ = (θ1, . . . ,θp)T and f ∈H to minimize
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1
n

n

∑
i=1

[yi− f (xxxi)]2 +λ0

p

∑
j=1

θ−1
j w2−ϑ

j ‖P j f‖2
H +λ1

p

∑
j=1

wϑ
j θ j subject to θ j ≥ 0 ∀ j,

(10.3.41)
where 0 ≤ ϑ ≤ 2, λ0 ≥ 0 is a fixed constant, and λ1 ≥ 0 is a smoothing parameter. In
(10.3.41), the 0≤ w j < ∞ are usually chosen to depend on an initial f , say f̃ .

Ideally the w js should be chosen so that more important components have a smaller
penalty relative to less important components. Unfortunately, in contrast to the linear
model case, in nonparametric settings there is no single coefficient, or set of coeffi-
cients, to measure the importance of a component f j infallibly. However, the L2 norm
of the projection of a reasonable estimator may be adequate in many cases. That is, if
f̃ is a reasonable initial estimator, then ‖P j f̃‖2

L2
= (

∫
X j

(P j f̃ (x))2dx)1/2 should reflect
the importance of the component f j. If so, then the weights might be chosen as

w j = ‖P j f̃‖−γL2
, j = 1, . . . , p; (10.3.42)

setting γ = 1 appears to work well for many purposes. Storlie et al. (2007) suggested
choosing the traditional smoothing spline estimate as f̃ and showed that using the
weights in (10.3.42) had good theoretical properties. Indeed, if ‖ f‖2

n = 1/n∑n
i=1 f 2(xxxi)

is the squared norm of f at the design points, then, under some regularity conditions,
the ACOSSO estimator is asymptotically nonparametric oracle; i.e., ‖ f̂ − f‖n → 0 at
the optimal rate and P j f̂ ≡ 0 with probability tending to one for all the unimportant
components f j.

10.3.4.4 Shrinkage Methods for Support Vector Machines

Recall that SVMs were studied in detail in Chapter 5; they were seen to give sparse
solutions in the sense of the number of terms because the classifiers they gave only
depended on the support vectors, typically far fewer than n. SVMs are used extensively
with large p, small n data because of this sparsity and good performance. However,
SVMs are not sparse in the number of variables. This means that, even when there are
relatively few terms, the prediction accuracy of SVMs may suffer from the presence
of redundant variables and that the SVM solution often will not provide any insight
on the effects of individual variables. Thus, it is desirable to achieve sparsity over p as
well as over the number of terms.

In more precise form, this abstract goal can be described as follows. Let {xxx1, · · · ,xxxn}
be n points in p-dimensional space. Then, an SVM is sparse over the points in terms of
selecting support vectors. Variable selection, by contrast, is sparse over the coordinates
of the vectors. If only the first two vectors xxx1 and xxx2 are support vectors and only the
first three variables are selected, then the classification boundary depends on 2×3 = 6
coordinates rather than np, giving a sort of double sparsity.

Many algorithms have been proposed for selecting variables prior to classification.
Ranking methods are the most popular; these rank individual variables according to
some predetermined criteria and then use top-ranked variables for classification. Two
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commonly-used ranking criteria are correlation coefficients and hypothesis testing
statistics such as two-sample t-tests. Although useful in practice, these do selection
only over individual variables, ignoring correlation information. In addition, there are
kernel scaling methods; see Weston et al. (2000). Here, the focus will be on shrink-
age to ensure sparsity; the core idea is to replace the L2 norm ‖www‖2 with a shrinkage
penalty on www.

Variable Selection for Binary SVMs

The L1 SVM solves

(b̂l1, ŵwwl1) = argmin
b,www

1
n

n

∑
i=1

[1− yi(b+www · xxxi)]+ +λ
p

∑
j=1
|w j|. (10.3.43)

Different from the standard SVM that solves a linearly constrained quadratic optimiza-
tion, the L1 SVM in (10.3.43) leads to a linear programming problem,

min
ξξξ ,uuu,vvv

1Tξξξ +λ1T(uuu+ vvv)

s.t. YT(b1+Xwww)+ξξξ ≥ 1,

uuu,vvv,ξξξ ≥ 0, (10.3.44)

where Y = diag[y1, ...,yn], Xn×p is the design matrix with the ith row being the input
vector xxxi. Zhu et al. (2003) studied the solution properties of the L1 SVM by reformu-
lating (10.3.44) into a Lagrange version,

minb,www
1
n ∑

n
i=1[1− yi(b+www · xxxi)]+

s.t. ‖www‖= |w1|+ · · ·+ |wp| ≤ s, (10.3.45)

where s > 0 is the tuning parameter, which has the same role as λ . They showed the
solution of (10.3.45), say www(s), is piecewise linear in s and gave an efficient algorithm
to compute the whole solution path. This facilitates adaptive selection of s. Fung and
Mangasarian (2004) developed a fast Newton algorithm to solve the dual problem of
(10.3.44), which scales up to large p, including p >> n.

The SCAD SVM (Zhang et al., 2006) solves

(b̂scad , ŵwwscad) = argmin
b,www

1
n

n

∑
i=1

[1− yi(b+www · xxxi)]+ +
p

∑
j=1

pλ (|w j|), (10.3.46)

where pλ is the nonconvex penalty defined in (10.3.19). Compared with the L1 SVM,
the SCAD SVM often gives a more compact classifier and achieves higher classifica-
tion accuracy. A sequential quadratic programming algorithm can be used to optimize
in (10.3.46) by solving a series of linear equation systems.
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Variable Selection for Multiclass SVM

The linear multicategory SVM (MSVM) estimates K discriminating functions

fk(xxx) = bk +
p

∑
j=1

wk jx j, k = 1, . . . ,K,

in which each f j is associated with one class, so that any xxxnew is assigned to the class

ŷnew = argmax
k

fk(xxxnew).

One version of MSVM finds fk for k = 1, . . . ,K by solving

min
fk:k=1,...,K

1
n

n

∑
i=1

K

∑
k=1

I(yi 	= k)[ fk(xxxi)+1]+ +λ
K

∑
k=1

p

∑
j=1

w2
k j (10.3.47)

under the sum-to-zero constraint, f1(x)+ · · ·+ fK(x) = 0 (see Lee et al. (2004)); how-
ever, other variants are possible. To force sparsity on variable selection, Wang and
Shen (2007) impose an L1 penalty and solve

(b̂bb
l1
, ŵwwl1) = argmin

bbb,www

1
n

n

∑
i=1

K

∑
k=1

I(yi 	= k)[bk +wwwT
k xxxi +1]+ +λ

K

∑
k=1

p

∑
j=1
|wk j| (10.3.48)

under the sum-to-zero constraint (see Section 5.4.10).

The problem with (10.3.48) is that the L1 penalty treats all the coefficients equally,
no matter whether they correspond to the same or different variables. Intuitively, if a
variable is not important, all coefficients associated with it should be shrunk to zeros
simultaneously. To correct this, Zhang et al. (2008) proposed penalizing the supnorm
of all the coefficients associated with a given variable. For each Xj, let the collection
of coefficients associated with it be w( j) = (w1 j, · · · ,wK j)T, with supnorm ‖w( j)‖∞ =
maxk=1,··· ,K |wk j|. This means the importance of Xj is measured by its largest absolute
coefficient.

The supnorm MSVM solves

(b̂bb
sup

, ŵwwsup) = argmin
www,bbb

n

∑
i=1

K

∑
k=1

I(yi 	= k)[ fk(xxxi)+1]+ +λ
p

∑
j=1
‖w( j)‖∞,

subject to
K

∑
l=1

bk = 0,
K

∑
k=1

wk = 0. (10.3.49)

For three-class problems, the supnorm MSVM is equivalent to the L1 MSVM after
adjusting the tuning parameters. Empirical studies showed that the Supnorm MSVM
tends to achieve a higher degree of model parsimony than the L1 MSVM without
compromising the classification accuracy.
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Note that in (10.3.49) the same tuning parameter λ is used for all the terms ‖w( j)‖∞ in
the penalty. To make the sparsity more adaptive (i.e., like ACOSSO as compared with
COSSO), different variables can be penalized according to their relative importance.
Ideally, larger penalties should be imposed on redundant variables to eliminate them,
while smaller penalties should be used on important variables to retain them in the
fitted classifier. The adaptive supnorm MSVM achieves

(b̂bb
asup

, ŵwwasup) = argmin
www,bbb

n

∑
i=1

K

∑
k=1

I(yi 	= k)[ fk(xxxi)+1]+ +λ
p

∑
j=1

τ j‖w( j)‖∞,

subject to
K

∑
k=1

bk = 0,
K

∑
k=1

wk = 0, (10.3.50)

where the weights τ j ≥ 0 are adaptively chosen. Similar to ACOSSO, let (w̃1, · · · , w̃d)
be from the MSVM solution to (10.3.47). A natural choice is

τ j =
1

‖w̃( j)‖∞
, j = 1, · · · , p,

which often performs well in numerical examples. The case where ‖w̃( j)‖∞ = 0
implies an infinite penalty is imposed on wk js in which case all the coefficients
ŵk j,k = 1, · · · ,K associated with Xj are taken as zero.

10.3.5 Cautionary Notes

As successful and widespread as shrinkage methods have been, three sorts of criticisms
of them remain largely unanswered. First, as a class, they seem to be unstable in the
sense that they rest delicately on the correct choice of λ – a problem that can be
even more serious for ALASSO and ACOSSO, which have p decay parameters. Poor
choice of decay can lead to bias and increased variance. Separate from this, sensitivity
to dependence structures in the explanatory variables has been reported. This is an
analog to collinearity but seems to be a more serious problem for shrinkage methods
than conventional regression.

A related concern is that although shrinkage methods are intended for p < n, as sug-
gested by the definition of oracle, which is asymptotic in n, there is an irresistible
temptation to use them even when p > n. The hope is that the good performance of
shrinkage for p < n will extend to the more complicated scenario. While this hope is
reasonable, the existing theory, by and large, does not justify it as yet. In particular,
estimating a parameter by setting it to zero and not considering an SE for it is as un-
statistical as ignoring the variability in model selection but may be worse in effect.
However, the Bayesian interpretation of shrinkage, developed at the end of the next
section, may provide a satisfactory justification.
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Second, the actual choice of distances in the objective functions is arbitrary because
so many of them give the oracle property. For instance, using L1 error in both the risk
and the penalty (see Wang et al. (2007)) is also oracle. Indeed, the class of objec-
tive functions for which the oracle property (or near-minimaxity) holds remains to be
characterized. So far, the oracle property holds for some adaptive penalties on squared
error, ALASSO and ACOSSO, for some bounded penalties like SCAD, and for the
fully L1 case. However, the “oracle” class is much more general than these four cases.
One way to proceed is to survey the proofs of the existing theorems and identify the
class of objective functions to which their core arguments can be applied. In practice, a
partial solution to the arbitrariness of the objective function is to use several penalized
methods and combine them.

Third, separate from these two concerns is the argument advanced in a series of papers
culminating in Leeb and Potscher (2008). They argue that shrinkage estimators have
counterintuitive asymptotic behavior and that the oracle property is a consequence of
the sparsity of the estimator. That is, any estimator satisfying a sparsity property, such
as being oracle, has maximal risk converging to the supremum of the loss function,
even when the loss is unbounded. They further argue that when the penalty is bounded,
as with SCAD, the performance of shrinkage estimators can be poor. Overall, they
liken the effectiveness of shrinkage methods to a phenomenon such as superefficiency
known to hold only for a set of parameters with Lebesgue measure zero.

While this list of criticisms does not invalidate shrinkage methods, it is serious and
may motivate further elucidation of when shrinkage methods work well and why.

10.4 Bayes Variable Selection

Bayesian techniques for variable selection are a useful way to evaluate models in a
model space M = {M1, . . . ,MK} because a notion of model uncertainty (conditional
on the model list) follows immediately from the posterior on M . Indeed, as a gen-
erality, it is more natural in the Bayes formulation to examine whole models rather
than individual terms. The strictest of axiomatic Bayesians disapprove of comparing
individual terms across different models on the grounds that the same term in two dif-
ferent models has two different interpretations. Sometimes called the “fallacy of Greek
letters”, this follows from the containment principle that inference is only legitimate
if done on a single measure space. While this restriction does afford insight, it also
reveals a limitation of orthodox Bayes methods in that reasonable questions cannot be
answered.

Before turning to a detailed discussion of Bayesian model or variable selection, it is im-
portant to note that there are a variety of settings in which Bayesian variable or model
selection is done. This is important because the status of the priors and the models
changes from setting to setting. In the subjective Bayesian terminology of Bernardo
and Smith (1994), the first scenario, called M -closed, corresponds to the knowledge
that one of models in M is true, without knowing which. That is, the real-world data
generator of the data is in M . The second scenario, called M -complete, assumes that
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M contains a range of models available for comparison to be evaluated in relation
to the experimenter’s actual belief model Mtrue, which is not necessarily known. It is
understood that Mtrue /∈M , perhaps because it is more complex than anything in M .
Intuitively, this is the case where M only provides really good approximations to the
data generator.

The third scenario, called M -open, also assumes M is only a range of models avail-
able for comparison. However, in the M -open case, there need not be any meaningful
model believed true; in this case, the status of the prior changes because it no longer
represents a degree of belief in a model, only its utility for modeling a response. Also,
the models are no longer descriptions of reality so much as actions one might use to
predict outcomes or estimate parameters. Many model selection procedures assume the
M -closed perspective; however, the other two perspectives are usually more realistic.

So, recall that the input vector is XXX = (X1, · · · ,Xp) and the response is Y . Then, the
natural choice for M in a linear model context is the collection of all possible subsets
of X1, · · · ,Xp. Outside nonparametric contexts, it is necessary to assume a specific
parametric form for the density of the response vector yyy = (y1, · · · ,yn). Usually, YYY is
assumed drawn from a multivariate normal distribution YYY ∼ Nn(Xβββ ,σ2In), where In is
the identity matrix of size n and the parameters taken together as θθθ = (βββ ,σ).

To express the uncertainty of the models in M and specify the notation for the
Bayesian hierarchical formulation, let γ j be a latent variable for each predictor Xj,
taking 1 or 0 to indicate whether Xj is in the model or not. Now, each model M ∈M
is indexed by a binary vector

γγγ = (γ1, · · · ,γp), where γ j = 0 or 1, for j = 1, . . . , p.

Correspondingly, let XXX γγγ denote the design matrix consisting of only variables with
γ j = 1 and let βββγγγ be the regression coefficients under the design matrix XXX γγγ . Define
|γγγ|= ∑p

j=1 γ j. So, XXX γγγ is of dimension n×|γγγ| and βββγγγ is of length |γγγ|.
A Bayesian hierarchical model formulation has three main components:

� a prior distribution, w(γγγ), for the candidate models γγγ ,

� a prior density, w(θθθγγγ |γγγ), for the parameter θθθγγγ associated with the model γγγ ,

� a data-generating mechanism conditional on (γγγ,θθθγγγ), P(yyy|θθθγγγ ,γγγ).

Once these are specified, obtaining the model posterior probabilities is mathematically
well defined and can be used to identify the most promising models. Note that w(γγγ)
is a density with respect to counting measure not Lebesgue measure; this is more con-
venient than distinguishing between the discrete W (·) for γγγ and the continuous w(·|γγγ)
for θθθ .

To see how this works in practice, assume that for any model γγγk and its associated pa-
rameter θθθ k the response vector has density fk(yyy|θθθ k,γγγk). For linear regression models,

YYY |(βββ ,σ ,γγγk)∼ Nn(XXX γγγβββγγγ ,σ
2In).
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The marginal likelihood of the data under γγγk can be obtained by integrating with re-
spect to the prior distribution for model-specific parameters θθθ k = (βββγγγk

,σ2),

p(yyy|γγγk) =
∫

fk(yyy|θθθ k,γγγk)w(θθθ k|γγγk)dθθθ k.

The posterior probability for the model indexed by γγγk is

IP(γγγk|yyy) =
w(γγγk)p(yyy|γγγk)

m(yyy)
=

w(γγγk)p(yyy|γγγk)
∑K

l=1 w(γγγ l)p(yyy|γγγ l)

=
w(γγγk)

∫
fk(yyy|θθθ k,γγγk)w(θθθ k|γγγk)dθθθ k

∑K
l=1 w(γγγ l)

∫
fl(yyy|θθθ l ,γγγ l)w(θθθ l |γγγ l)dθθθ l

, (10.4.1)

where m(yyy) is the marginal density of yyy. The posterior distribution (10.4.1) is the fun-
damental quantity in Bayesian model selection since it summarizes all the relevant in-
formation in data about the model and provides the post-data representation of model
uncertainty.

A common Bayesian procedure is to choose the model with the largest IP(γγγk|yyy). This is
the Bayes action under a generalized 0-1 loss and is essentially the BIC. Generalizing
this slightly, one can identify a set of models with high posterior probability and use the
average of these models for future prediction. Using all the models would correspond
to Bayes model averaging (which is optimal under squared error loss). In any case,
search algorithms are needed to identify “promising” regions in M .

Before delving into Bayes variable, or model, selection, some facts about the Bayes
methods must be recalled. First, Bayes methods are consistent: If the true model is
among candidate models, has positive prior probability, and enough data are observed,
then Bayesian methods uncover the true model under very mild conditions. Even when
the true model is not in the support of the prior, Berk (1966) and Dmochowski (1996)
show that Bayesian model selection will asymptotically choose the model that is clos-
est to the true model in terms of Kullback-Leibler divergence. Second, as will be seen
more formally at the end of this section, Bayes model selection procedures are auto-
matic Ockham’s razors (see Jefferys and Berger (1992)) typically penalizing complex
models and favoring simple models that provide comparable fits.

Though the concept of Bayes model selection is conceptually straightforward, there
are many challenging issues in practical implementation. Since the model list is as-
sumed given, arguably the two biggest challenges are (i) choosing proper priors for
models and parameters and (ii) exploiting posterior information. In the hierarchical
framework, two priors must be specified: the prior w(γγγ) over the γγγks and the priors
w(θθθ k|γγγk) within each model γγγk. From (10.4.1), it is easy to see that IP(γγγk|yyy) can be
small for a good model if w(γγγ j,θθθ j) is chosen unwisely. For example, if too much mass
is put at the wrong model, or if the prior mass is spread out too much, or if the prior
probability is divided too finely among a large collection of broadly adequate models,
then very little weight may be on the region of the model space where the residual sum
of squares is smallest. A separate problem is that when the number of models under
consideration is enormous, calculating all the Bayes factors and posterior probabili-
ties can be very time-consuming. Although it is not the focus here, it is important to
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note that recent developments in numerical and Markov chain Monte Carlo (MCMC)
methods have led to many algorithms to identify high-probability regions in the model
space efficiently.

10.4.1 Prior Specification

The first step in a Bayesian approach is to specify the model fully, the prior structure in
particular. At their root, Bayes procedures are hierarchical and Bayes variable selection
represents the data generating mechanism as a three-stage hierarchical mixture. That
is, the data yyy were generated as follows:

� Generate the model γγγk from the model prior distribution w(γγγ).
� Generate the parameter θθθ k from the parameter prior distribution w(θθθ k|γγγk).

� Generate the data yyy from fk(yyy|θθθ k,γγγk).

It is seen from (10.4.1) that the model posterior probabilities depend heavily on both
priors. One task in prior specification is to find priors that are not overly influential
as a way to ensure the posterior distribution on the model list puts a relatively high
probability on the underlying true model and neighborhoods of it.

There has been a long debate in the Bayes community as to the roles of subjective
and objective priors (see Casella and Moreno (2006), for instance). Subjective Bayes
analysis is psychologically attractive (to some) but intellectually dishonest. The purely
subjective approach uses priors chosen to formalize the statistician’s pre-experimental
feelings and preferences about the unknowns but does not necessarily evaluate whether
these feelings or preferences mimic any reality. Sincere implementation of this ap-
proach for model-selection problems when the model list is very large is nearly im-
possible because providing careful subjective prior specification for all the parameters
in all the models requires an exquisite sensitivity to small differences between simi-
lar models. In particular, subjective elicitation of priors for model-specific coefficients
is not recommended, particularly in high-dimensional model spaces, because experi-
menters tend to be overoptimistic as to the efficacy of their treatments. Consequently,
objective priors are more commonly used in model selection contexts, and the role
of subjective priors is exploratory, not inferential. Subjective priors may be used for
inference, of course, if they have been validated or tested in some way by data.

A related prior selection issue is the role of conjugate priors. Conjugate priors have
several advantages: (i) If p is moderate (less than 20), they allow exhaustive posterior
evaluation; (ii) if p is large, they allow analytic computations of relative posterior prob-
abilities and estimates of total visited probability; and (iii) they allow more efficient
MCMC posterior exploration. However, the class of conjugate priors is typically too
small to permit good prior selection. Unless further arguments can be made to vali-
date conjugate priors, they are best regarded as a particularly mathematically tractable
collection of subjective priors. In addition, apart from any role in inference directly,
conjugate priors can be a reasonable class for evaluating prior robustness.
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10.4.1.1 Priors on the Model Space

Recall that the total number of candidate models in M is K = 2p. If p is large, M is
high-dimensional, making it hard to specify w(γγγ). In practice, to reduce the complex-
ity, the independence assumption is often invoked (i.e., the presence or absence of one
variable is independent of the presence or absence of other variables). When the co-
variates are highly correlated, independent priors do not provide the proper “dilution”
of posterior mass over similar models. Priors with better dilution properties are also
presented below.

Independence Priors

The simplification used in this class of priors is that each Xj enters the model indepen-
dently of the other coefficients and does so with probability

P(γ j = 1) = 1−P(γ j = 0) = w j,

in which the w js are p hyperparameters. This leads to the prior on M ,

w(γγγ) =
p

∏
j=1

w
γ j
j (1−w j)1−γ j . (10.4.2)

Chipman et al. (2001) note that this prior is easy to specify, substantially reduces com-
putational requirements, and often yields sensible results; see Clyde et al. (1996) and
George and McCulloch (1993, 1997).

Choices of w js are flexible and may be problem dependent. If some predictors are
not favored, say due to high cost or low interest, the corresponding w js can be made
smaller. The Principle of Insufficient Reason suggests w1 = · · · = wp = w be chosen
giving the model prior

w(γγγ) = w|γγγ|(1−w)p−|γγγ|,

and the single hyperparameter w is the a priori expected proportion of Xjs in the model.
In particular, w can be chosen small if a sparse model is desired, as is often the case
for high-dimensional problems. If w = 1/2, the uniform prior results; it assigns all the
models the same probability,

w(γγγk) =
1
2p , k = 1, · · · ,2p.

The uniform prior can be regarded as noninformative and the model posterior is pro-
portional to the marginal likelihood under this prior,

P(γγγ|yyy) ∝ P(yyy|γγγ).

This is appealing because the posterior odds is equivalent to the BF comparison.

One problem of the uniform prior is that, despite being uniform over all models, it
need not be uniform over model neighborhoods, thereby biasing the posterior away
from good models. For instance, the uniform prior puts most of its weight near models
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with size close to |γγγ| = p/2 because there are more of them in the model space. So
the uniform prior does not provide the proper “dilution” of posterior mass over similar
models. This makes the uniform prior unreasonable for model averaging when there
are groups of similar models (Clyde (1999); Hoeting et al. (1997); and George (2000)).

To overcome this problem, w can be chosen small; this tends to increase the relative
weight on parsimonious models. Or, one can specify a hierarchical model over the
model space by assigning a prior to w as a random variable and take a fully Bayesian
or empirical Bayes approach. Cui and George (2007) use a uniform prior on w that
induces a uniform prior over the model size and therefore increases the chance of
models with small or large sizes.

Dilution Model Priors

If there is a dependence relation among covariates, say interaction or polynomial terms
of predictors are included in the model, then independence priors (such as the uniform)
are less satisfactory. They tend to ignore differences and similarities between the mod-
els. Instead, priors that can capture the dependence relation between the predictors are
more desired. Motivated by this, George (1999) proposed dilution priors; these take
into account covariate dependence and assign probabilities to neighborhoods of the
models. Dilution priors are designed to avoid placing too little probability on good
but unique models as a consequence of massing excess probability on large sets of
nearby similar models. That is, as in George (2000), it is important to ensure that a
true model surrounded by many nearly equally good models will not be erroneously
seen as having low posterior probability.

The following example from Chipman et al. (2001) illustrates how a dilution prior can
be constructed.

In the context of linear regression, suppose there are three independent main effects
X1,X2,X3 and three two-factor interactions X1X2,X1X3,X2X3. Common practice to
avoid dilution problems is to impose a hierarchical structure on the modeling: Interac-
tion terms such as X1X2 are only added to the model when their main effects X1 and
X2 are already included. A prior for γγγ = (γ1,γ2,γ3,γ12,γ13,γ23) that reflects this might
satisfy

w(γγγ) = w(γ1)w(γ2)w(γ3)w(γγγ12|γ1,γ2)w(γγγ23|γ2,γ3)w(γγγ13|γ1,γ3),

typically with

w(γγγ12|0,0) < {w(γγγ12|0,1),w(γγγ12|1,0)}< w(γγγ12|1,1).

Similar strategies can be used to downweight or eliminate models with only isolated
high-order terms or isolated interaction terms. Different from the independence priors
in (10.4.2), dilution priors concentrate more on plausible models. This is essential in
applications, especially when M is large.

Conventional independent priors can also be modified to dilution priors. Let Rγγγ be the
correlation matrix so that Rγγγ ∝XT

γγγ Xγγγ . When the columns of Xγγγ are orthogonal, |Rγγγ |= 1
and as the columns of Xγγγ become more redundant, |Rγγγ | decreases to 0. Define
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wh ∝ h(|Rγγγ |)
p

∏
j=1

w
γ j
j (1−w j)1−γ j ,

where h is a monotone function satisfying that h(0) = 0 and h(1) = 1. It is seen that
wD is a dilution prior because it downweights models with redundant components. The
simplest choice for h is the identity function.

Dilution priors are particularly desirable for model averaging using the entire posterior
because they avoid biasing the average away from good models. These priors are also
desirable for MCMC sampling of the posterior because Markov chains sample more
heavily from regions of high probability. In general, failure to dilute posterior prob-
ability across clusters of similar models biases model search, model averaging, and
inference more broadly.

10.4.1.2 Priors for Parameters

In the normal error case, variable selection is equivalent to selecting a submodel of the
form

p(yyy|βββ ,σ2,γγγ) = Nn(Xγγγβββγγγ ,σ
2In), (10.4.3)

where Xγγγ is the n×|γγγ| matrix whose columns consist of the subset of X1, · · · ,Xp cor-
responding to 1s of γγγ , and βββγγγ is the vector of regression coefficients. In order to select
variables, one needs to zero out those coefficients that are truly zero by making their
posterior mean values very small. In general, there are two ways of specifying the
prior to remove a predictor Xj from the model: (i) Assign an atom of probability to the
event β j = 0; and (ii) use a continuous distribution on β j with high concentration at 0.
Therefore, the data must strongly indicate a β j is nonzero for Xj to be included.

The use of improper priors for model-specific parameters is not recommended for
model selection because improper priors are determined only up to an arbitrary mul-
tiplicative constant. Although constants can cancel out in the posterior distribution of
the model-specific parameters, they remain in the marginal likelihoods. There, they
can lead to indeterminate posterior model probabilities and Bayes factors. To avoid
indeterminacies in posterior model probabilities, and other problems such as excess
dispersion and marginalization paradoxes, proper priors for θθθγγγ under each model are
often required. Below, a collection of commonly occurring proper priors is given.

Spike and Slab Priors

Lempers (1971) and Mitchell and Beauchamp (1988) proposed spike and slab priors
for βββ . For each variable Xj, the regression coefficient β j is assigned a two-point mix-
ture distribution made up of a uniform flat distribution (the slab) and a degenerate
distribution at zero (the spike) given by

β j ∼ (1−h j0)U(−a j,+a j)+h j0δ (0), j = 1, · · · , p,
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where δ (0) is a point mass at zero, the a js are large positive numbers, and U(−a,a) is
the uniform distribution. This prior has an atom of probability for the event β j = 0. If
the prior on σ is chosen to be log(σ)∼U(− ln(σ0),+ ln(σ0)), the prior for γγγk is

w(γγγk) = ∏
j∈γγγk

(1−w j)∏
j/∈γγγk

w j,

where j ∈ γγγk denotes the variable Xj in the model Mk indexed by γγγk. Note the speci-
fication of these priors is not the same as the hierarchical formulation, which first sets
the prior w(γγγ) and then the parameter prior w(θθθ |γγγ). Using some approximations for
integrals, Mitchell and Beauchamp (1988) express the model posterior probability as

P(γγγk|yyy) = g ·
∏ j/∈γγγk

[2h j0a j/(1−h j0)] ·w(n−|γγγk|)/2

|XT
γγγk

Xγγγk
|1/2RSS(n−|γγγk|)/2

γγγk

,

where g is a normalizing constant and RSSγγγk
is the residual sum of squares for model

γγγk. Clearly the posterior probabilities above are highly dependent on the choice of h j0

and a j for each variable.

George and McCulloch (1993) proposed another spike and slab prior using zero-one
latent variables, each β j having a scale mixture of two normal distributions,

β j|γ j ∼ (1−w(γ j))N(0,τ2
j )+w(γ j)N(0,c jτ2

j ), j = 1, · · · , p,

where the value for τ j is chosen to be small and c j is chosen to be large. As a con-
sequence, coefficients that are promising have posterior latent variables γ j = 1 and
hence large posterior hypervariances and large posterior β js. Coefficients that are not
important have posterior latent variables γ j = 0 and hence have small posterior hy-
pervariances and small posterior β js. In this formulation, each β j has a continuous
distribution but with high concentration at 0 if γ j = 0. It is common to assign a prior
for γ j derived from independent Bernoulli(w j) distributions with w j = 1/2 as a popu-
lar choice.

Point-Normal Prior

The conventional conjugate prior for (βββ ,σ2) is a normal-inverse-gamma,

w(βββγγγ |σ2,γγγ) = N|γγγ|(0,σ2Σγγγ), (10.4.4)

w(σ2|γγγ) = IG(ν/2,νλ/2), (10.4.5)

where λ , Σγγγ , and ν are hyperparameters that must be specified for implementations.
Note that the prior on σ2 is equivalent to assigning νλ/σ2 ∼ χ2

ν . When coupled with
the prior w(γγγ), the prior in (10.4.4) implicitly assigns a point mass at zero for coef-
ficients that are not contained in βββγγγ . If σ2 is integrated out in (10.4.4), the prior on
βββγγγ , conditional only on γγγ , is w(βββγγγ |γγγ) = T|γγγ|(ν ,0,λΣγγγ), which is the multivariate T
distribution centered at 0 with ν degrees of freedom and scale λΣγγγ .
What makes (10.4.4) appealing is its analytical tractability: It has closed-form ex-
pressions for all marginal likelihoods. This greatly speeds up posterior evaluation and
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MCMC exploration. Note that the conditional distribution of θθθγγγ = (βββγγγ ,σ2) given γγγ is
conjugate for (10.4.3), so that (βββγγγ ,σ2) can be eliminated by routine integration from

p(yyy,βββγγγ ,σ
2|γγγ) = p(yyy|βββγγγ ,σ2,γγγ)p(βββγγγ |σ2,γγγ)w(σ2|γγγ),

leading to

p(yyy|γγγ) ∝ |XT
γγγ Xγγγ +Σ−1

γγγ |−1/2|Σγγγ |−1/2(νλ +S2
γγγ)
−(n+ν)/2, (10.4.6)

where
S2
γγγ = yyyTyyy− yyyTXγγγ(XT

γγγ Xγγγ +Σ−1
γγγ )−1XT

γγγ yyy.

These priors have been extensively used.

Since it is not easy to make a good subjective choice of hyperparameters (λ ,Σγγγ ,ν),
they are often chosen to “minimize” the prior influence. How to do this for ν and λ
is treated in Clyde et al. (1996) and Raftery et al. (1997). Indeed, the variance is often
reexpressed as Σγγγ = gVγγγ , where g is a scalar and Vγγγ is a preset form. Common choices
include Vγγγ = (XT

γγγ Xγγγ)−1, V = I|γγγ| and combinations of them. The first of these gives
Zellner’s g-prior, Zellner (1986).

Zellner’s g-prior

For Bayes variable selection, Zellner (1986) proposed a class of priors defined by

w(σ) =
1
σ

, w(βββ |σ ,γγγ)∼ N|γγγ|(0,gσ2(XT
γγγ Xγγγ)−1), (10.4.7)

where g is a hyperparameter interpreted as the amount of information in the prior
relative to the sample. Under a uniform prior on the model space, g controls the model
complexity: Large values of g tend to concentrate the prior on parsimonious models
with a few large coefficients, while small values of g typically concentrate the prior on
large models with small coefficients (George and Foster (2000)). When the explanatory
variables are orthogonal, the g-prior reduces to a standard normal, and outside of this
case, dependent explanatory variables tend to correspond to higher marginal variances
for the β js.

One big advantage of g-priors is that the marginal density, p(yyy), has a closed-form

p(yyy) =
Γ (n/2)

2πn/2(1+g)|γγγ|/2

(
yyyTyyy− g

1+g
yyyTXγγγ(XT

γγγ Xγγγ)−1XT
γγγ yyy

)−n/2

. (10.4.8)

Likewise, the Bayes factors and posterior model probabilities also have closed-form
expressions. This resulting computational efficiency for evaluating marginal likeli-
hoods and doing model searches makes g-priors popular for Bayes variable selection.

Heuristically, g must be chosen large enough that w(βββγγγ |γγγ) is relatively flat over the
region of plausible values of βββγγγ . There are typically three ways to do this: (i) De-
terministically preselect a value of g, (2) estimate g using the empirical Bayes (EB)
method, and (3) be fully Bayes and assign a prior to g. Shively et al. (1999) suggest
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g = n. Foster and George (1994) calibrated priors for model selection based on the risk
information criterion (RIC) and recommended the use of g = p2 from a minimax per-
spective. Fernandez et al. (2001) recommended g = max(n, p2). Hansen and Yu (2001)
developed a local EB approach to estimate a separate g for each model, deriving

ĝLEB
γγγ = max{Fγγγ −1,0},

where Fγγγ is the F-test statistic for H0 : βββγγγ = 0,

Fγγγ =
R2
γγγ/|γγγ|

(1−R2
γγγ)/(n−|γγγ|) ,

and R2
γγγ is the ordinary coefficient of determination of the model γγγ . George and Foster

(2000) and Clyde and George (2000) suggest estimating g by EB methods based on its
marginal likelihood.

Recently, Liang et al. (2008) proposed the mixture of g-priors using a prior w(g) on g.
This includes the Zellner-Siow Cauchy prior (see Zellner and Siow (1980)) as a special
case. They show that the fixed g-prior imposes a fixed shrinkage factor g/(1 + g) on
the posterior mean of βββγγγ , while the mixture of g-priors allows adaptive data-dependent
shrinkage on θθθγγγ . This adaptivity makes the mixture of g-prior procedure robust to mis-
specification of g and consistent for model selection.

It can be shown that Bayes selection with fixed choices of g may suffer some para-
doxes in terms of model selection consistency. Here are two examples. Suppose one
compares the linear model γγγ : YYY = Xγγγβββγγγ + εεε versus the null model γγγ0 : βββ = 0. It can

be shown that, as the least squares estimate β̂ββ γγγ goes to infinity, so that the evidence is

overwhelmingly against γγγ0, the BF of γγγ0 to γγγ will go to (1+g)(|γγγ|−n)/2, a nonzero con-
stant. Another undesired feature of the g-prior is Bartlett’s paradox: It can be shown
that as g→ ∞, where n and |γγγ| are fixed, the Bayes factor of γγγ0 and γγγ will go to zero.
This means the null model is favored by the BF, regardless of the data, an unintended
consequence of the noninformative choice of g. Liang et al. (2008) have shown that,
in some cases, the mixture of g-priors with an empirical Bayes estimate of g resolves
these Bayes factor paradoxes.

Normal-Normal Prior

A drawback for the normal-inverse-gamma prior is that when n is large enough, the
posterior tends to retain unimportant β js; i.e., the posterior favors retention of Xj as
long as |β j| 	= 0, no matter how small. To overcome this, George and McCulloch (1993,
1997) propose a normal-normal prior that excludes Xj whenever |β j| is below a pre-
assigned threshold. Under this prior, Xj is removed from the model if |β j| < δ j for a
given δ j > 0.

Under the normal-normal formulation, the data follow the full model

p(yyy|β ,σ2,γγγ) = Nn(Xβββ ,σ2In) (10.4.9)
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for all γγγ , and different values of γγγ index different priors on the β s so that submodels
of (10.4.9) can be chosen. For each γγγ , the corresponding coefficients have

w(βββ |σ2,γγγ) = Np(0,DγγγRγγγDγγγ) (10.4.10)

as a prior, where Rγγγ is a correlation matrix and Dγγγ is a diagonal matrix with the jth
element being

√
v0 j if γ j = 0 and

√
v1 j if γ j = 1, for j = 1, · · · , p. Here v0 j and v1 j are

hyperparameters that must be specified. Note that βββ is independent of σ2 in (10.4.10),
and it is convenient to choose an inverse Gamma prior for σ2. Obvious choices of Rγγγ
include Rγγγ ∝ (XTX)−1 and R = Ip.

Under the model space prior w(γγγ), the marginal prior distribution of each component
β j is a scale mixture of two normal distributions:

w(β j) = (1−w(γ j))N(0,v0 j)+w(γ j)N(0,v1 j). (10.4.11)

George and McCulloch (1993) suggest that the hyperparameters v0 j is set small while
v1 j be set large, so that N(0,v0 j) is concentrated and N(0,v1 j) is diffuse. In this way,
a small coefficient β j is more likely to be removed from the model if γ j = 0. Given
a threshold δ j, higher posterior weighting of those γγγ values for which |β j|> δ j when
γ j = 1 can be achieved by choosing v0 j and v1 j such that p(β j|γ j = 0) = N(0,v0 j) >
p(β j|γ j = 1) = N(0,v1 j) precisely on the interval (−δ j,δ j). In turn, this can be
achieved by choosing v0 j and v1 j to satisfy

log(v1 j/v0 j)/(v−1
0 j − v−1

1 j ) = δ 2
jγ . (10.4.12)

Under (10.4.10), the joint distribution of (βββ ,σ2) given γγγ is not conjugate for the likeli-
hood of the data; this can substantially increase the cost of posterior computations. To
address this, George and McCulloch (1993) modify (10.4.10) and (10.4.11) to propose
a normal prior,

w(βββ |σ2,γγγ) = Np(0,σ2DγγγRγγγDγγγ), (10.4.13)

for βββ and an inverse gamma prior for σ2,

w(σ2|γγγ) = IG(ν/2,νλ/2).

It can be shown that the conditional distribution of (βββ ,σ2) given γγγ is conjugate. This
allows (βββ ,σ2) to be integrated out to give

p(yyy|γγγ) ∝ |XTX +(DγγγRγγγDγγγ)−1|−1/2|DγγγRγγγDγγγ |−1/2(νλ +S2
γγγ)
−(n+ν)/2, (10.4.14)

where S2
γγγ = yyyTyyy− yyyTX(XTX + (DγγγRDγγγ)−1)−1XTyyy. This dramatically simplifies the

computational burden of posterior calculation and exploration.

Under (10.4.13), the inverse gamma prior for σ2, and a model space prior w(γγγ), the
marginal distribution of each β j is a scale mixture of t-distributions,

w(β j|γγγ) = (1− γ j)t(ν ,0,λv0 j)+ γ jt(ν ,0,λv1 j), (10.4.15)
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where t(ν ,0,λv) is a one-dimensional t-distribution centered at 0 with ν degrees
of freedom and scale v. Note that (10.4.15) is different from the normal mixture of
(10.4.11). Similar to the nonconjugate prior, ν0 j and ν1 j are to be chosen small and
large, respectively, so that a small coefficient β j is more likely to be removed from the
model if γ j = 0. Given a threshold δ j, the pdf p(β j|γ j = 0) = t(ν ,0,λv0 j) > p(β j|γ j =
1) = t(ν ,0,λv1 j) precisely on the interval (−δ j,δ j), resulting in

(v0 j/v1 j)ν/(ν+1) = [(v0 j +δ 2
j )/(νλ )]/[v1 j +δ 2

j /(νγ)],

parallel to (10.4.12).

10.4.2 Posterior Calculation and Exploration

In order to do Bayes variable selection, it is enough to find the model posterior proba-
bility (10.4.1). For moderately sized M , when a closed-form expression for w(γγγ|yyy) is
available, exhaustive calculation is feasible. However, when a closed form for w(γγγ|yyy)
is unavailable or if p is large, it is practically impossible to calculate the entire posterior
model distribution. In such cases, inference about posterior characteristics ultimately
relies on a sequence like

γγγ(1),γγγ(2), . . . (10.4.16)

whose empirical distribution converges (in distribution) to w(γγγ|yyy). In particular, the
empirical frequency estimates of the visited γγγ values are intended to provide consis-
tent estimates for posterior characteristics. Even when the length of (10.4.16) is much
smaller than 2p, it may be possible to identify regions of M containing high probabil-
ity models γγγ because they appear more frequently.

In practice, Markov chain Monte Carlo (MCMC) methods are the main technique for
simulating approximate samples from the posterior. These samples can be used to ex-
plore the posterior distribution, estimate model posterior characteristics, and search for
models with high posterior probability over the model space. Since the focus here is on
Bayes variable selection, only the two most important MCMC methods are described
here: the Gibbs sampler (Geman and Geman (1984); Gelfand and Smith (1990)) and
the Metropolis-Hastings algorithm (Metropolis et al. (1953); Hastings (1970)). Other
general MCMC posterior exploration techniques, such as reversible jump and particle
methods, are more sophisticated and are not covered here.

10.4.2.1 Closed Form for w(yyy|γγγ)

One great advantage of conjugate priors is that they lead to closed-form expressions,
for instance in (10.4.6) and (10.4.14), that are proportional to the marginal likelihood of
the data p(yyy|γγγ) for each model γγγ . This facilitates posterior calculation and estimation
enormously. Indeed, if the model prior w(γγγ) is computable, conjugate priors lead to
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closed-form expressions g(γγγ) satisfying

g(γγγ) ∝ p(yyy|γγγ)w(γγγ) ∝ p(γγγ|yyy).

The availability of a computable g(γγγ) enables exhaustive calculation of p(γγγ|yyy) when
p is small or moderate. This is done by calculating the value g(γγγ) for each γγγ and then
summing over the γγγs to obtain the normalization constant. In many situations, the value
of g(γγγ) can also be updated rapidly when one of the components in γγγ is changed. This
also speeds posterior evaluation and exploitation.

As shown by George and McCulloch (1997), the availability of g(γγγ) can also be used
to obtain estimators of the normalizing constant C for p(γγγ|yyy). That is, an MCMC
sequence γγγ(1), · · · ,γγγ(L) from (10.4.16) can be used to find

C = C(yyy) = g(γγγ)/p(γγγ|yyy).

The idea is to choose a set A of γγγ values and write g(A) = ∑γγγ∈A g(γγγ) so that P(A|yyy) =
Cg(A). Then a consistent estimator of C is

Ĉ =
1

g(A)L

L

∑
l=1

IA(γγγ(l)),

where IA() is the indicator of the set A.

The availability of g(γγγ) also allows for the flexible construction of MCMC algorithms
that simulate (10.4.16) directly as a Markov chain. Such chains are very useful in
terms of both computational and convergence speeds. Numerous MCMC algorithms
have been proposed to generate the sequences like (10.4.16) based on Gibbs sampler
and Metropolis-Hastings algorithms. Detailed introductions on these algorithms are
given by Casella and George (1992), Liu et al. (1994), Chib and Greenberg (1995),
and Chipman et al. (2001), among others.

10.4.2.2 Stochastic Variable Search Algorithms

George and McCulloch (1993) proposed the stochastic search variable selection (SSVS)
algorithm. Built in the framework of hierarchical Bayesian formulation, the SSVS in-
directly samples from the posterior model distribution, identifies subsets that appear
more frequently in the sample, and therefore avoids the problem of calculating the
posterior probabilities of all 2p subsets of M . That is, instead of calculating the pos-
terior model distribution for all possible models, SSVS uses a sampling procedure to
identify promising models associated with high posterior probabilities in the model
space. As effective as this procedure is, it does not seem to scale up to large p as well
as others do, for instance Hans et al. (2007), discussed below.

To understand the basics behind these procedures, suppose that analytical simplifica-
tion of p(βββ ,σ2,γγγ|yyy) is unavailable. MCMC methods first simulate a Markov chain
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βββ (1),σ (1),γγγ(1),βββ (2),σ (2),γγγ(2), · · · , (10.4.17)

that converges to p(βββ ,σ2,γγγ|yyy) and take out the subsequence γγγ(1),γγγ(2), · · · . Now, the
two most fundamental general procedures can be described. However,note that ver-
ifying convergence of the estimates from the chains remains a topic of controversy
despite extensive study.

Gibbs Samplers

In practice, Gibbs sampling (GS) is often used to identify promising models with high
posterior probability. In GS, the parameter sequence (10.4.17) is obtained by succes-
sive simulations from the distribution conditioned on the most recently generated pa-
rameters. When conjugate priors are used, the simplest strategy is to generate each
component of γγγ = (γ1, · · · ,γp) from the full conditionals

γ j|γγγ− j,yyy, j = 1, · · · , p,

where γγγ(− j) = (γ1, · · · ,γ j−1,γ j+1, · · · ,γp). This decomposes the p-dimensional data
simulation problem into one-dimensional simulations, and the generation of each com-
ponent can be obtained as a sequence of Bernoulli draws.

When nonconjugate priors are used, the full parameter sequence (10.4.17) can be suc-
cessively simulated using GS from the full conditionals in sequence:

p(βββ |σ2,γγγ,yyy),

p(σ2|βββ ,γγγ,yyy),

p(γ j|βββ ,σ2,γγγ(− j),yyy), j = 1, · · · , p.

Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm is a rejection sampling procedure to gen-
erate a sequence of samples from a probability distribution that is difficult to sam-
ple directly. In this sense MH, generalizes GS. (The availability of g(γγγ) ∝ p(γγγ|yyy)
also facilitates the use of the MH algorithm for direct simulation of (10.4.16).) The
MH works by successive sampling from an essentially arbitrary probability transi-
tion kernel q(γγγ|γγγ i) and imposing a random rejection step at each transition. Because
g(γγγ)/g(γγγ ′) = p(γγγ|yyy)/p(γγγ/|yyy), the general MH algorithm has the following form.

At the ith step, for i = 0,1, ...,:

� simulate a candidate γγγ∗ from a transition kernel q(γγγ∗|γγγ(i)).

� Accept the candidate sample γγγ∗; i.e. set γγγ(i+1) = γγγ∗, with probability

α(γγγ∗|γγγ(i)) = min

{
q(γγγ(i)|γγγ∗)
q(γγγ∗|γγγ(i))

g(γγγ∗)
g(γγγ(i))

,1

}
.

Otherwise, reject the candidate sample; i.e., set γγγ(i+1) = γγγ(i).
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The idea is that only new γs representative of g are likely to be retained.

A special case of the MH algorithm is the Metropolis algorithm, which is obtained
using symmetric transition kernels q. The acceptance probability then simplifies to

αM(γγγ∗|γγγ(i)) = min

{
g(γγγ∗)
g(γγγ(i))

,1

}
.

One choice of symmetric transition kernel is q(γγγk|γγγ l) = 1/p if ∑p
j=1 |γk j − γl j| = 1.

This gives the Metropolis algorithm:

� Simulate a candidate γγγ∗ by randomly changing one component of γγγ(i).

� Set γγγ(i+1) = γγγ∗ with probability αM(γγγ∗|γγγ(i)). Otherwise, reject the candidate sample
and set γγγ(i+1) = γγγ(i).

High-Dimensional Model Search

Standard MCMC methods usually perform well when p is small. However, when p is
high, standard MCMC is often ineffective due to slow convergence because MCMC
chains tend to get trapped near local maxima of the model space. To speed the search
for “interesting” regions of the model space when p is high, some strategies exploit
local collinearity structures, for example shotgun stochastic search (SSS; Hans et al.
(2007)). Compared with standard MCMC methods, SSS often identifies probable mod-
els rapidly and moves swiftly around in the model spaces when p is large.

The key idea of the SSS is that, for any current model, there are many similar mod-
els that contain either overlapping or collinear predictors and these models form a
neighborhood of the current model. The neighborhood makes it possible to consider
each possible variable at each step, allowing the search to move freely among models
of various dimensions. Therefore, quickly identifying these neighborhoods generates
multiple candidate models so the procedure can “shoot out” proposed moves in various
directions in the model space.

In Hans et al. (2007), for a current model γγγ of dimension |γγγ| = k, the neighborhood
N(γ) can be given as three sets N(γ) = {γγγ+,γγγ0,γγγ−}, where γγγ+ is a set containing the
models obtained by adding one of the remaining variables to the current model γ , the
addition moves; γγγ0 is a set containing all the models obtained by replacing any one
variable in γ with one not in γ , the replacement moves; and γγγ− is a set containing
the models obtained by deleting one variable from γ , the deletion moves. For large p
problems, typically |γγγ0| � |γγγ+| � |γγγ−|, making it hard to examine models of different
dimensions. To correct this, Hans et al. (2007) suggested a two-stage sampling: First
sample three models γγγ+

∗ ,γγγ0
∗,γγγ−∗ from γγγ+,γγγ0,γγγ−, respectively, and then select one of

the three. Let γγγ be a regression model and S(γγγ) be some (unnormalized) score that
can be normalized within a set of scores to become a probability. The following is the
detailed SSS sampling scheme:

Given a starting model γγγ(0), iterate in t = 1, · · · ,T the following steps:
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� In parallel, compute S(γγγ) for all γγγ ∈ nbd(γγγ(t)), constructing γγγ+
∗ ,γγγ0

∗,γγγ−∗ . Update
the list of the overall best models evaluated.

� Sample three models γγγ+
∗ ,γγγ0

∗,γγγ−∗ from γγγ+,γγγ0,γγγ− respectively, with probabilities
proportional to S(γγγ)α1 , normalized within each set.

� Sample γγγ(t+1) from {γγγ+
∗ ,γγγ0

∗,γγγ−∗ } with probability proportional to S(γγγ)α2 , nor-
malized within this set.

The positive annealing parameters α1 and α2 control how greedy the search is: Values
less than one flatten out the proposal distribution, whereas very large values lead to a
hill-climbing search.

10.4.2.3 Bayes Prediction

A typical Bayes selection approach chooses the single best model and then makes
inferences as if the selected model were true. However, this ignores the uncertainty
about the model itself and the uncertainty due to the choice of M . This leads to over-
confident inferences and risky decisions. A better Bayes solution is Bayes model av-
eraging (BMA), presented in Chapter 6, which involves averaging with respect to the
posterior for the models over all elements of M to make decisions, and especially
predictions, about quantities of interest.

Berger and Mortera (1999) show that the largest posterior probability model is optimal
if only two models are being entertained and is often optimal for variable selection in
linear models having orthogonal design matrices. For other cases, the largest posterior
model is not in general optimal. For example, in nested linear models, the optimal sin-
gle model for prediction is the median probability model (Barbieri and Berger (2004)).
The median model is the model consisting of only those variables which have posterior
inclusion probabilities greater than or equal to one-half. In this case, only the poste-
rior inclusion probabilities for the variables must be found, not the whole posterior as
required for BMA.

10.4.3 Evaluating Evidence

There are many ways to extract information from the posterior, but the most popular is
the Bayes factor, which is the Bayes action under generalized zero-one loss, the natural
loss function for binary decision problems such as hypothesis testing. Obviously, using
a different loss function would lead to a different Bayes action. Moreover, there are
modifications to the Bayes factor that are efforts to correct some of its deficiencies.
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10.4.3.1 Bayes Factors

Let the prior over the model space be w(γγγ) and the prior for the parameters θθθ in γγγ be
w(θθθ |γγγ). Then the posterior probability of the model γγγ is given by (10.4.1) as

IP(γγγ|yyy) =
w(γγγ)
m(yyy)

∫
f (yyy|θθθ ,γγγ)w(θθθ |γγγ)dθθθ ,

where m is the mixture of distributions that makes the right-hand side integrate to one.
The posterior odds in favor of model γγγ1 over an alternative model γγγ2 are

IP(γγγ1|yyy)
IP(γγγ2|yyy)

=
p(yyy|γγγ1)
p(yyy|γγγ2)

· w(γγγ1)
w(γγγ2)

=
∫

f1(yyy|θθθ 1,γγγ1)w(θθθ 1|γγγ1)dθθθ 1∫
f2(yyy|θθθ 2,γγγ2)w(θθθ 2|γγγ2)dθθθ 2

· w(γγγ1)
w(γγγ2)

.

The Bayes factor (BF) of the model γγγ1 to the model γγγ2 is defined as the ratio

BF12 =
IP(yyy|γγγ1)
IP(yyy|γγγ2)

=
∫

f1(yyy|θθθ 1,γγγ1)w(θθθ 1|γγγ1)dθθθ 1∫
f2(yyy|θθθ 2,γγγ2)w(θθθ 2|γγγ2)dθθθ 2

. (10.4.18)

The BF is the weighted likelihood ratio of γγγ1 and γγγ2; it represents the comparative
support for one model versus the other provided by the data. That is, through the Bayes
factor, the data updates the prior odds to the posterior odds. Computing BF12 requires
both priors w(θθθ k|γγγk) for j = 1,2 be specified.

Posterior model probabilities can also be obtained from BFs. If w(γγγk)s are available
for k = 1, · · · ,K, then the posterior probability of γγγk is

IP(γγγk|yyy) =
w(γγγk)IP(yyy|γγγk)

∑K
l=1 w(γγγ l)IP(yyy|γγγ l)

=

[
K

∑
l=1

w(γγγ l)
w(γγγk)

Blk

]−1

. (10.4.19)

A special case for the prior over models is uniform, w(γγγk) = 1/K for k = 1, · · · ,K.
For this, the posterior model probabilities are the same as the renormalized marginal
probabilities,

IP∗(yyy|γγγk) =
IP(yyy|γγγk)

∑K
l=1 IP(yyy|γγγ l)

, (10.4.20)

so Blk = IP∗(yyy|γγγ l)/IP∗(yyy|γγγk).

Strictly, BFs just give the Bayes action from a particular decision problem. Never-
theless, they are used more generally as an assessment of evidence. However, in the
model selection context, the general use of BFs has several limitations. First, when
the models have parameter spaces of different dimensions, use of improper noninfor-
mative priors for model-specific parameters can make the BF become indeterminate.
For instance, suppose w(θθθ 1|γγγ1) and w(θθθ 2|γγγ2) are improper noninformative priors for
model-specific parameters. Then the BF is BF12 from (10.4.18). However, because the
priors are improper, the noninformative priors c1w(θθθ 1|γγγ1) and c2w(θθθ 2|γγγ2) are equally
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valid. They would give (c1/c2)BF12 as the BF, but, since c1/c2 is arbitrary, the BF is
indeterminate. When the parameter spaces for γγγ1 and γγγ2 are the same, it is usually rea-
sonable to choose c1 = c2, but when the parameter spaces have different dimensions,
c1 = c2 can give bad answers (Spiegelhalter and Smith (1982), Ghosh and Samanta
(1999)). Second, the use of vague proper priors usually gives unreliable answers in
Bayes model selection, partially because the dispersion of the prior can overwhelm the
information in the data. Berger and Pericchi (2001) argue that one should never use
arbitrary vague proper priors for model selection, but improper noninformative priors
may give reasonable results. Jeffreys (1961) also dealt with the issue of indeterminacy
of noninformative priors by using noninformative priors only for common parameters
in the models and using default proper priors for parameters that would appear in one
model but not the other.

10.4.3.2 Other Bayes Factors

The dependence of BFs on the priors matters most when the prior is weak (i.e., too
spread out) because as the tail behavior becomes too influential the BFs become un-
stable. To address this issue, Berger and Pericchi (1996) and O’Hagan (1995, 1997)
suggested the use of partial Bayes factors: Some data points, say m, are used as a train-
ing sample to update the prior distribution, effectively making it more informative, and
the remaining n−m data points are used to form the BF from the updated prior.

To see this, let yyy = (ỹyyT
(m), ỹyy

T
(n−m))

T, where ỹyy(m) are the m training points, and let
w(θθθ j|γγγ j, ỹyy(m)) be the posterior distribution of the parameter θ j, j = 1,2 given ỹyy(m).
The point is to use ỹyy(m) to convert improper priors w(θk|γγγk) to proper posteriors
w(θθθ j|γγγ j, ỹyy(m)). Now, the partial BF for model γγγ1 against model γγγ2 is

BFpart
12 =

∫
p(ỹyy(n−m)|θθθ 1,γγγ1)w(θθθ 1|γγγ1, ỹyy(m))dθθθ 1∫
p(ỹyy(n−m)|θθθ 2,γγγ2)w(θθθ 2|γγγ2, ỹyy(m))dθθθ 2

. (10.4.21)

Compared with BF12, the partial BF is less sensitive to the priors. The BFpart does
not depend on the absolute values of prior distributions, and instead it depends on the
relative values of priors, the training sample ỹyy(m), and the training sample size m. When
the training size m increases, the sensitivity of the partial BF to prior distributions
decreases, but at the cost of less discriminatory power. Also, BFpart

12 depends on the
arbitrary choice of the training sample ỹyy(m).

To eliminate this dependence and to increase the stability, Berger and Pericchi (1996)
propose an intrinsic Bayes factor (IBF), which averages the partial BF over all possible
training samples ỹyy(m). Depending on how the averaging is done, there are different
versions of IBFs. Commonly used are the arithmetic IBF (IBFa), the encompassing
IBF (IBFen), the expected IBF (IBFe), and the median IBF (IBFm); see Berger and
Pericchi (1996) for their exact definitions. Berger and Pericchi (1996, 1997, 2001) do
extensive evaluations and comparisons of different BFs under various settings. They
conclude that different IBFs are optimal in different situations and that IBFs based on
training samples can be used with considerable confidence as long as the sample size
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is not too small. In particular, they suggest that the expected IBF should be used if
the sample size is small, the arithmetic IBF be used for comparing nested models, the
encompassing IBF be used for multiple linear models, and the median IBF be used for
other problems including nonnested models. Computational issues are also addressed
in Varshavsky (1995). Typically IBFs are the most difficult to compute among default
Bayes factors since most of them involve training sample computations. When the
sample size n is large, computation of IBFs is only possible by using suitable schemes
for sampling from the training samples.

To reduce the computational burden of averaging needed in the IBF, O’Hagan (1995)
suggests the fractional Bayes factor (FBF) based on much the same intuition as for the
IBF. Instead of using part of the data to turn noninformative priors into proper priors,
the FBF uses a fraction, b, of each likelihood function, p(yyy|θθθ k,γγγk), with the remaining
1−b fraction of the likelihood used for model discrimination. The FBF of γγγ1 to γγγ2 is

FBF12 = BF12 ·
∫
[p(yyy|θθθ 2,γγγ2)]

bw(θθθ 2|γγγ2)dθθθ 2∫
[p(yyy|θθθ 1,γγγ1)]bw(θθθ 1|γγγ1)dθθθ 1

. (10.4.22)

One common choice is b = m/n, where m is the minimal training sample size, as
in O’Hagan (1995) and Berger and Mortera (1999). The asymptotic motivation for
(10.4.22) is that if m and n are both large, the likelihood based on ỹyy(m) is approximated
by the one based on yyy, raised on the power m/n. The FBF is in general easier to
compute than the IBF.

10.4.4 Connections Between Bayesian and Frequentist Methods

To conclude this section, it is worthwhile to see that even though Bayesian and frequen-
tist variable selection methods have different formulations, they are actually closely re-
lated. Indeed, Bayes selection can be seen as a generalization of penalization methods,
and posterior maximization subsumes several information criteria.

10.4.4.1 Bayes and Penalization

Many shrinkage estimators introduced in Section 10.3, such as ridge, LASSO, SCAD,
ALASSO, have Bayesian interpretations. Assume the prior w(βββ ) on βββ and an inde-
pendent prior w(σ2) on σ2 > 0. Then, the posterior for (βββ ,σ2), given yyy, is

w(βββ ,σ2|yyy) ∝ w(σ2)(σ2)−(n−1)/2 exp

{
− 1

2σ2 (yyy−Xβββ )T(yyy−Xβ )+ logw(βββ )
}

.

Shrinkage procedures can now be seen to correspond to different choices of w(βββ ).

First, assume the w(β j)s are independent normal N(0,2λ )s; i.e.,
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w(βββ ) =
p

∏
j=1

1√
2π(2λ )−1/2

e−λβ
2
j .

Then the posterior for (βββ ,σ2), given yyy, becomes

w(βββ ,σ2|yyy) ∝ w(σ2)(σ2)−(n−1)/2 exp

{
− 1

2σ2 (yyy−Xβββ )T(yyy−Xβ )−λ
p

∑
j=1

β 2
j

}
.

Now, for any fixed value of σ2, the maximizing βββ is the RR estimate, which is the
posterior mode.

Next, when the priors on parameters are independent double-exponential (Laplace)
distributions (i.e., w(βββ ) =∏p

j=1
λ
2 e−|β j |λ ) the posterior for (βββ ,σ2), given yyy, is

w(βββ ,σ2|yyy) ∝ w(σ2)(σ2)−(n−1)/2 exp

{
− 1

2σ2 (yyy−Xβββ )T(yyy−Xβ )−λ
p

∑
j=1
|β j|

}
.

So, again, for any fixed values of σ2, the maximizing βββ is the LASSO estimate, a pos-
terior mode, as noted in Tibshirani (1996). If different scaling parameters are allowed

in the prior (i.e., w(βββ ) =∏p
j=1

λ j
2 exp{−|β j|λ j}), the posterior distribution becomes

w(βββ ,σ2|yyy) ∝ w(σ2)(σ2)−(n−1)/2 exp

{
− 1

2σ2 (yyy−Xβββ )T(yyy−Xβ )−
p

∑
j=1

λ j|β j|
}

,

and the posterior mode is the ALASSO estimate.

More generally, using the prior

w(βββ ) = C(λ ,q)exp

{
−

p

∑
j=1

β q
j

}
, q > 0,

on a normal likelihood leads to the bridge estimator, which can likewise be seen as a
posterior mode. Also, the elastic net penalty corresponds to using the prior

w(βββ ) = C(λ ,q)exp

{
−λ

[
α

p

∑
j=1

β 2
j +(1−α)

p

∑
j=1
|β j|

]}
,

which is a compromise between the Gaussian and Laplacian priors. The Bayes pro-
cedures, unlike the frequentist versions, also give an immediate notion of uncertainty
different from bootstrapping as might be used in LASSO, for instance.

Note that this conversion from penalties to priors is mathematical. A Bayesian would
be more likely to try to think carefully about the topology of the space of regression
functions and the meaning of the penalty in that context. That is, the use of penalties
for their mathematical properties of getting good behavior would probably not satisfy
a Bayesian on the grounds that the class of such priors was large and would not lead to
correct assignments of probabilities more generally.
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10.4.4.2 Bayes and Information Criteria

To see how several information-based criteria can be regarded as instances of Bayes
selection, consider the simple independence prior for model space combined with the
point-normal prior on the parameters,

w(βββγγγ |σ2,γ) = N|γγγ|(0,cσ2XT
γγγ Xγγγ)−1,

w(γγγ) = w|γγγ|(1−w)p−|γγγ|,

and assume σ2 is known. George and Foster (2000) show that

w(γγγ|yyy) ∝ w|γγγ|(1−w)p−|γγγ|(1+ c)−|γγγ|/2 exp

{
−yyyTyyy−SSγγγ

2σ2 − SSγγγ
2σ2(1+ c)

}

∝ exp

[
c

2(1+ c)
{SSγγγ/σ2−F(c,w)|γγγ|}

]
, (10.4.23)

where

F(c,w) =
1+ c

c
{2log

1−w
w

+ log(1+ c)},

SSγγγ = β̂ββ
T

γγγ XT
γγγ Xγγγ β̂ββ γγγ , and β̂ββ γγγ = (XT

γγγ Xγγγ)−1XT
γγγ yyy.

It can be seen from (10.4.23) that, for fixed c and w, w(γγγ|yyy) is monotonic in

SSγγγ/σ2−F(c,w)|γγγ|.

Therefore, the γγγ maximizing the posterior model probability w(γγγ|yyy) is equivalent to
model selection based on the penalized sum of squares criterion. As pointed out by
Chipman et al. (2001), many frequentist model selection criteria can now be obtained
by choosing a particular value of c, w, and F(c,w). For example, if c and w are cho-
sen so that F(c,w) = 2, this yields Mallows Cp and approximately the AIC. Like-
wise, choice of F(c,w) = logn leads to the BIC, and F(c,w) = 2log p yields the RIC
(Donoho and Johnstone (1994), Foster and George (1994)). In other words, depending
on c, w, and F , selecting the highest-posterior model is equivalent to selecting the best
AIC/Cp, BIC, and RIC models, respectively.

Furthermore, since c and w control the expected size and the proportion of the nonzero
components of βββ , the dependence of F(c,w) on c and w provides a connection between
the penalty F and the models it will favor. For example, large c will favor the models
with large regression coefficients, and small w will favor models where the propor-
tion of nonzero coefficients is small. To avoid fixing c and w, they can be treated as
parameters and estimated by empirical Bayes by maximizing the marginal likelihood

L(c,w|yyy) ∝ ∑
γγγ

p(γγγ|w)p(yyy|γγγ,c)

∝ ∑
γγγ

w|γγγ|(1−w)p−|γγγ|(1+ c)−|γγγ|/2 exp

{
cSSγγγ

2σ2(1+ c)

}
.
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However, this can be computationally overwhelming when p is large and X is not
orthogonal.

10.5 Computational Comparisons

To conclude this chapter, it is important to present some comparisons of variable selec-
tion methods to show how well they work and suggest when to use them. The setting
for examining some traditional methods, shrinkage methods, and Bayes methods is a
standard linear regression model of the form

YYY = Xβββ + ε, ε ∼ N(0,σ). (10.5.1)

The true model used here is a four-term submodel of (10.5.1). When n > p, this mimics
the usual linear regression setting. Here, however, in some simulations, the explanatory
variables are assigned nontrivial dependence structures.

The second subsection here permits p > n in (10.5.1). The same true model is used as
a data generator but now the task is to find it from a vastly larger overall model. To
do this, sure independence screening (SIS) is applied first and then various shrinkage
methods are used on the output to identify a final model. In this way, the oracle property
of some of the shrinkage methods may be retained. Note that, in this section, all data
sets are assumed standardized.

10.5.1 The n > p Case

To present simulations in the context of (10.5.1), several more specifications must be
given. First, the true value of βββ was taken as βββ = (2.5,3,0,0,0,1.5,0,0,0,4,0). So,
the correct number of important covariates is q = 4, and these have indices {1,2,6,9}.
The covariates were generated in several different ways, usually with an autoregressive
structure of order one, AR(1). That is, the Xjs were generated as Xj = ρXj−1 +u j with
u j taken as N(0,1). In this case, the covariance structure is Corr(Xj,Xk) = ρ | j−k|. The
other covariance structure simply took all the pairwise correlations among the Xjs as
the same, corr(Xj,Xk) = ρ for j 	= k. In the cases examined, the two covariance struc-
tures often gave broadly similar results, so only the AR(1) computations are presented
in this section. The values chosen for the correlation were ρ = 0, .5, .9, corresponding
to no dependence, moderate dependence, and high dependence.

The error term was assigned three values σ : σ = 1, to match the variance of the ρ = 0
variance of the Xjs, and σ = 2,3 to see how inference behaves when the noise is
stronger. Computations with n = 50,100 were done, and unless otherwise specified,
the number of iterations was N = 500; this was found to be sufficient to get good
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approximations. The code for generating the data can be found in the Notes at the end
of this chapter.

For each of the traditional and shrinkage methods for variable selection presented here,
five numerical summaries of the sampling distribution are given. First is the average
MSE,

MSE = E[(X β̂ββ −Xβββ )T(X β̂ββ −Xβββ )] = (β̂ββ −βββ )TE(XTX)(β̂ββ −βββ ).

Second, the number of explanatory variables correctly found to be zero is given. The
true value is six. Third is the number of explanatory variables incorrectly found to be
zero. The correct value is zero; the worst value is four. If H : β j = 0 is taken as a
null hypothesis, then the second summary counts the number of false rejections and
the third counts the number of false acceptances. Thus, the second and third numerical
summaries correspond roughly to Type I and Type II errors. Fourth is the probability
that the method selected the correct model; this is the fraction of times the correct
model was chosen over the 500 iterations. Fifth are the inclusion probabilities of each
of the explanatory variables.

For Bayes methods, frequentist evaluations are inappropriate since it is the posterior
distribution that provides inference, not the sampling distribution. For these cases, in
place of the first three numerical summaries, a graphical summary of the posterior
distribution and its properties over the class of models can be provided. Parallel to the
fourth and fifth summaries, the posterior probabilities of selecting the correct model
and variable inclusion probabilities are given.

10.5.1.1 Traditional Methods

Consider using AIC, BIC, and GCV to find good submodels of (10.5.1). Since there
are 210 models to compare, it is common to reduce the problem by looking only at a
sequence of p models formed by adding one variable at a time to a growing model.
For instance, here, rather than evaluating AIC on all 210 models, an initial good model
with one variable is found and its AIC computed. Then, forward selection is used to
find the next variable it is best to include, and its AIC is found. Continuing until all
ten variables have been included and ten AIC scores have been found gives a list of
ten good submodels from which the model with the highest AIC score can be chosen.
This can be done for BIC and GCV as well. Although forward selection is used here,
backward selection and stepwise selection could have been used instead and often are.

To get the results, the leaps package was used to get the whole sequence for the for-
ward model selection. In the same notation as the Notes at the end of this chapter, the
commands used here were:

library(leaps)
forward_fit <- regsubsets(Xtr,ytr,method="forward")
aic <- which.min(2*(2:(p+2))+n*log(forward_fit$rss/n)
+n+n*log(2*pi))
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bic <- which.min(log(n)*(2:(p+2))
+n*log(forward_fit$rss/n)+n+n*log(2*pi))
gcv <- which.min(forward_fit$rss
/(n*(1-(2:(p+2))/n)ˆ2))

The command library() is used to include special packages in R, such as leaps, that are
not in the base library.

To begin, Table 10.2 shows the results of using AIC, BIC, and GCV when ρ = 0. The
first column indicates the sample size. The second column indicates the SD of the error
term. The third column indicates the criterion used. The next four columns contain the
first four of the numerical summaries; the numbers in parentheses give the SE of the
MSE.

Average # of Zero Coef.
n σ IC MSE Corr. Zero (6) Inc. Zero (0) PCS
50 1 AIC 0.186 (0.006) 5.060 0 0.366

GCV 0.187 (0.006) 5.036 0 0.356
BIC 0.139 (0.006) 5.722 0 0.754

2 AIC 0.747 (0.025) 5.060 0.002 0.366
GCV 0.751 (0.024) 5.036 0.002 0.356
BIC 0.568 (0.024) 5.712 0.008 0.750

3 AIC 1.722 (0.057) 5.022 0.040 0.354
GCV 1.731 (0.057) 5.000 0.040 0.344
BIC 1.476 (0.061) 5.598 0.120 0.660

100 1 AIC 0.082 (0.002) 5.044 0 0.364
GCV 0.082 (0.002) 5.030 0 0.360
BIC 0.055 (0.002) 5.816 0 0.832

2 AIC 0.328 (0.010) 5.044 0 0.364
GCV 0.329 (0.009) 5.030 0 0.360
BIC 0.222 (0.008) 5.816 0 0.832

3 AIC 0.739 (0.021) 5.042 0.002 0.362
GCV 0.742 (0.022) 5.028 0.002 0.358
BIC 0.501 (0.018) 5.814 0.002 0.830

Table 10.2 Model selection and fitting results when the explanatory variables are AR(ρ = 0). When
n = 50, it is seen that, as σ increases, the MSE for each method increases. Likewise, the other columns
increase or decrease as anticipated with increasing noise. The same holds for n = 100. However, a few
small reversals from what would be expected can be seen across sample sizes. For instance, the PCS
for AIC with σ = 2 drops from .366 when n = 50 to .364 when n = 100.

It can be seen that AIC and GCV give comparable performances; perhaps AIC does
slightly better. This is no surprise since AIC, GCV, and cross-validation are all fairly
similar in many cases. Also, BIC performs meaningfully better, especially in terms of
probability of correct selection (PCS) nearly doubling the values of AIC or GCV.

The fifth collection of numerical summaries consists of the variable inclusion prob-
abilities. These are the proportion of times a variable was included in the estimated
model out of the 500 iterations. Table 10.3 gives the inclusion probabilities for AIC,
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BIC, and GCV in the context of (10.5.1) for ρ = 0. Recall that the data generator used
X1, X2, X6, and X9.

n σ IC X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

50 1 AIC 1 1 0.152 0.184 0.154 1 0.146 0.164 1 0.140
GCV 1 1 0.152 0.194 0.164 1 0.146 0.168 1 0.140
BIC 1 1 0.052 0.054 0.048 1 0.034 0.052 1 0.038

2 AIC 1 1 0.152 0.184 0.154 0.998 0.144 0.162 1 0.142
GCV 1 1 0.152 0.194 0.164 0.998 0.144 0.166 1 0.142
BIC 1 1 0.054 0.052 0.048 0.992 0.034 0.052 1 0.040

3 AIC 1 1 0.148 0.184 0.156 0.960 0.146 0.164 1 0.140
GCV 1 1 0.148 0.194 0.164 0.960 0.146 0.168 1 0.140
BIC 0.998 1 0.054 0.054 0.048 0.882 0.034 0.054 1 0.038

100 1 AIC 1 1 0.176 0.162 0.144 1 0.158 0.156 1 0.160
GCV 1 1 0.178 0.166 0.144 1 0.158 0.156 1 0.168
BIC 1 1 0.036 0.034 0.024 1 0.036 0.022 1 0.032

2 AIC 1 1 0.176 0.162 0.144 1 0.158 0.156 1 0.160
GCV 1 1 0.178 0.166 0.144 1 0.158 0.156 1 0.168
BIC 1 1 0.036 0.034 0.024 1 0.036 0.022 1 0.032

3 AIC 1 1 0.176 0.162 0.144 0.998 0.158 0.156 1 0.160
GCV 1 1 0.178 0.166 0.144 0.998 0.158 0.156 1 0.168
BIC 1 1 0.036 0.034 0.024 0.998 0.036 0.022 1 0.032

Table 10.3 Selection probabilities of the explanatory variables for AR(ρ = 0). When n = 50, as σ
increases, the selection probabilities of correct variables generally increase and the selection proba-
bilities of incorrect variables generally decrease. However, there are some reversals: For X7, both the
AIC and GCV inclusion probabilities decrease as σ increases from one to two. When n = 100, the
entries are preternaturally stable but consistent with intuition as σ increases. However, again the com-
parison between sample sizes yields inconsistencies. For instance, for X3, the inclusion probabilities
for AIC and GCV rise as sample size rises for fixed σ . The same is seen for X7 and X10.

Tables 10.4 and 10.5 parallel Tables 10.2 and 10.3 but have ρ = .5. As ρ increases,
the dependence among the explanatory variables increases. Moreover, the dependence
structure of Xj involves the previous j− 1 variables, so the complexity of the depen-
dence within the explanatory variables increases with the index. Note that the PCS for
each method at each σ and n does not change much but that the drop in performance
of AIC and GCV for fixed σ as n increases is much larger than for Table 10.2.

Similarly, in comparing Table 10.3 with Table 10.5, the extent of the reversals from
what one would expect increases. For instance, with GCV, X10, and σ = 1, the dif-
ference in inclusion probabilities from n = 50 to n = 100 is .036 in Table 10.5 but is
.02 in Table 10.3. Overall, BIC seems to be least affected by the dependence, although
the performance of BIC also deteriorates. It is tempting to conjecture that the forward
selection is breaking down because of the dependence; however, the good performance
of BIC seems to militate against this.
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Average # of Zero Coef.
n σ IC MSE Corr. Zero (6) Inc. Zero (0) PCS
50 1 AIC 0.187 (0.006) 5.030 0 0.392

GCV 0.189 (0.006) 4.996 0 0.374
BIC 0.135 (0.005) 5.718 0 0.748

2 AIC 0.757 (0.025) 5.018 0.012 0.394
GCV 0.763 (0.024) 4.984 0.012 0.376
BIC 0.553 (0.024) 5.698 0.012 0.742

3 AIC 1.786 (0.060) 4.910 0.096 0.364
GCV 1.793 (0.059) 4.886 0.090 0.352
BIC 1.589 (0.063) 5.458 0.206 0.594

100 1 AIC 0.081 (0.002) 5.018 0 0.362
GCV 0.081 (0.002) 5.016 0 0.358
BIC 0.055 (0.002) 5.808 0 0.820

2 AIC 0.326 (0.009) 5.018 0 0.362
GCV 0.326 (0.009) 5.016 0 0.358
BIC 0.220 (0.008) 5.808 0 0.820

3 AIC 0.734 (0.021) 5.016 0.002 0.360
GCV 0.735 (0.022) 5.014 0.002 0.356
BIC 0.511 (0.020) 5.794 0.012 0.812

Table 10.4 Model selection and fitting results for AR(ρ = .5).

n σ IC X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

50 1 AIC 1 1 0.172 0.186 0.164 1 0.158 0.160 1 0.130
GCV 1 1 0.178 0.190 0.170 1 0.164 0.166 1 0.136
BIC 1 1 0.046 0.048 0.046 1 0.044 0.054 1 0.044

2 AIC 1 1 0.170 0.186 0.168 0.988 0.156 0.160 1 0.130
GCV 1 1 0.176 0.190 0.174 0.988 0.162 0.166 1 0.136
BIC 1 1 0.048 0.048 0.048 0.988 0.044 0.056 1 0.046

3 AIC 0.998 1 0.170 0.184 0.172 0.906 0.168 0.166 1 0.134
GCV 0.998 1 0.172 0.188 0.178 0.912 0.176 0.172 1 0.138
BIC 0.988 1 0.050 0.050 0.064 0.806 0.062 0.066 1 0.044

100 1 AIC 1 1 0.172 0.170 0.144 1 0.172 0.158 1 0.166
GCV 1 1 0.172 0.166 0.146 1 0.178 0.158 1 0.164
BIC 1 1 0.040 0.030 0.032 1 0.032 0.016 1 0.042

2 AIC 1 1 0.172 0.170 0.144 1 0.172 0.158 1 0.166
GCV 1 1 0.172 0.166 0.146 1 0.178 0.158 1 0.164
BIC 1 1 0.040 0.030 0.032 1 0.032 0.016 1 0.042

3 AIC 1 1 0.172 0.170 0.144 0.998 0.172 0.158 1 0.166
GCV 1 1 0.172 0.166 0.146 0.998 0.178 0.158 1 0.164
BIC 1 1 0.040 0.030 0.032 0.988 0.034 0.016 1 0.042

Table 10.5 Selection frequencies of variables for AR(ρ = 0.5).

The corresponding tables for ρ = .9 differed from those for ρ = .5, in much the same
way as the tables for ρ = .5 differed from those for ρ = 0. All the methods deteriorated
in all scenarios; their relative performance remained much the same.
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10.5.1.2 Shrinkage Methods

Consider using shrinkage methods to find good submodels of (10.5.1). A good range
of methods is provided by using the elastic net (Enet), LASSO, a variant on Enet called
the adaptive Enet (AEnet), Adaptive LASSO (ALASSO), and SCAD penalties. These
methods automatically reduce the number of models to be considered from 210 to 10
since the size of the decay parameter orders the variables for inclusion.

The computations for Enet, LASSO, AEnet, and ALASSO can be done with existing
R packages so it is worth giving some explanation of this. However, the optimization
for SCAD (see (10.3.20)) is not yet available in established packages. So, it is enough
to comment that the results here are obtained using private code to implement the local
quadratic approximation (LQA) theorem suggested by Fan and Li (2001). Also, while
the discussion here uses a fixed value of the decay parameter λ , in practice λ is chosen
using the BIC for all the methods in this section.

To describe the four procedures amenable to R, assume X is the matrix of standardized
predictors, y is the vector of responses, and a fixed value of the decay parameter λ
is chosen. To begin the description, it is easiest to start with LASSO and ALASSO.
Recall the LARS algorithm was described in Section 10.3.3 and can provide an en-
tire sequence of coefficients and fits, starting from zero, for least squares fitting. For
LASSO, the optimization in (10.3.10) can be done in R using the following:

> library(lars)
> lasso_fit <- lars(X,y,type="lasso")
> lasso_coef <- coef(lasso_fit, type="coef",
mode="lambda")

Next, ALASSO solutions can be derived from lars by using a transformation. Recall
that ALASSO solves (10.3.18), in which the w js are prespecified weights. Let w =
(w1, · · · ,wd)T be the weight vector. Zou (2006) constructs a transformed design matrix
X∗ of dimension n× p as

X∗i j = Xi j/w j for i = 1, · · · ,n and j = 1, · · · ,d.

Then lasso is used in lars to obtain

β̂ββ
∗
= argmin(yyy−X∗βββ )T(yyy−X∗βββ )+λ

p

∑
j=1
|β j|,

so that the ALASSO solution is found as β̂ββ ∗alasso = (β̂ ∗1 /w1, · · · , β̂ ∗d /wd)T.

For Enet and AEnet, recall that the elastic net estimator achieves (10.3.27). Within R,
Enet solutions can be found using

> library(elasticnet)
> enet_fit <- enet(X,y,lambda)
> enet_coef <-coef(enet_fit, type="coef",
mode="penalty")
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The AEnet is an adaptive form of the Enet derived by using more weights in the
penalty, much like ALASSO is obtained from LASSO and ACOSSO is obtained from
COSSO. That is, the adaptive elastic net estimate is

β̂ββ
aenet

= (1+λ2)

{
argmin

βββ
(yyy−Xβββ )T(yyy−Xβββ )+λ1

p

∑
j=1

w j|β j|+λ
p

∑
j=1

β 2
j

}
.

The AEnet estimate can be obtained by solving a transformed Enet problem, much like
ALASSO can be obtained from LASSO. Moreover, like the other adaptive versions of
shrinkage methods, the AEnet is oracle; see Ghosh (2007).

Parallel to Tables 10.2–10.5, Tables 10.6–10.9 show the performance of Enet, LASSO,
AEnet, ALASSO, and SCAD for (10.5.1), but here ρ = 0, .9; the ρ = .5 case is omitted
since its results are intermediate. For comparison, the same numerical summaries are
provided on data generated the same way. Note that the ordering on the methods is
roughly in terms of performance for ρ = 0; in some cases below, however, ALASSO
or AEnet outperforms SCAD.

Tables 10.6 and 10.7 match intuition for each method as σ and n vary. Overall, it can
be seen that the three methods that are oracle (AEnet, ALASSO, SCAD) give better
results than the two that are not (LASSO, Enet). However, there is a slight tendency
for ALASSO to give better variable selection probabilities for incorrect variables than
for SCAD. This is seen in Table 10.7 for X10 when n = 50, σ = 3. However, more
typically for this case, ALASSO is intermediate between SCAD and AEnet.

When ρ = .9, Tables 10.8 and 10.9 show results that can be compared with those in
Tables 10.6 and 10.7. Again, for each method, performance increases with n and de-
creases with σ . Also, the three oracle methods outperform the two nonoracle methods.
However, the relative performance changes in particular among AEnet, ALASSO, and
SCAD. Note that except for the case where n = 50 and σ = 1, ALASSO has a higher
PCS than AEnet or SCAD. AEnet also appears to outperform SCAD when n and σ
are larger. This suggests, but does not establish, that SCAD may be more sensitive to
dependence structure than ALASSO or AEnet.

Table 10.9 exhibits the same trends as Table 10.8: In the presence of dependence,
ALASSO tends to give better inclusion probabilities than SCAD and AEnet for both
the variables in the data generator and for the noise variables. Likewise, AEnet outper-
forms SCAD. Interestingly, the inclusion probabilities do not seem to depend on the
index of the explanatory variables apart from being closer to zero for noise variables
and closer to one for correct variables.

In contrast to Tables 10.6 and 10.7, Tables 10. 8 and 10.9 show that all five methods
deteriorate substantially, in all five summaries, in the presence of strong dependence.

10.5.1.3 Bayes Methods

As noted in Section 10.3, Bayes inference rests on the posterior. The posterior is
formed from the prior and likelihood. In (10.5.1), the likelihood is given by the
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Average # of Zero Coef.
n σ IC MSE Corr. Zero (6) Inc. Zero (0) PCS

50 1 Enet 0.233 (0.007) 4.042 0 0.152
LASSO 0.221 (0.006) 4.506 0 0.250
AEnet 0.151 (0.007) 5.658 0 0.734
Alasso 0.128 (0.005) 5.758 0 0.796
SCAD 0.112 (0.005) 5.866 0 0.920

2 Enet 0.893 (0.026) 4.194 0.002 0.182
LASSO 0.889 (0.027) 4.510 0.004 0.252
AEnet 0.611 (0.025) 5.610 0.010 0.704
Alasso 0.574 (0.023) 5.688 0.010 0.736
SCAD 0.517 (0.022) 5.760 0.006 0.824

3 Enet 2.001 (0.059) 4.324 0.046 0.194
LASSO 2.011 (0.059) 4.530 0.046 0.250
AEnet 1.533 (0.057) 5.562 0.108 0.588
Alasso 1.522 (0.057) 5.612 0.114 0.622
SCAD 1.564 (0.061) 5.592 0.156 0.622

100 1 Enet 0.105 (0.003) 4.404 0 0.206
LASSO 0.101 (0.003) 4.804 0 0.328
AEnet 0.058 (0.002) 5.792 0 0.838
Alasso 0.052 (0.002) 5.826 0 0.860
SCAD 0.047 (0.002) 5.924 0 0.964

2 Enet 0.400 (0.011) 4.532 0.00 0.232
LASSO 0.403 (0.011) 4.804 0.00 0.328
AEnet 0.243 (0.009) 5.748 0.00 0.804
Alasso 0.220 (0.008) 5.788 0.00 0.834
SCAD 0.203 (0.007) 5.884 0.00 0.916

3 Enet 0.890 (0.024) 4.626 0.002 0.260
LASSO 0.905 (0.024) 4.804 0.002 0.326
AEnet 0.549 (0.019) 5.716 0.002 0.778
Alasso 0.530 (0.018) 5.748 0.002 0.800
SCAD 0.513 (0.021) 5.778 0.010 0.876

Table 10.6 Model selection and fitting results for AR(ρ = 0). As n increases or σ decreases, the
performance of each method increases.

distribution on ε but also depends on the sampling properties of the explanatory
variables. In effect, Bayesians condition on the explanatory variables and a careful
Bayesian would build their distribution into the posterior to reflect the dependence.
Here, however, this will be neglected. Thus, even though there is a dependence struc-
ture on (X1, . . . ,X10), they will be treated as deterministic and independent in the un-
derlying mathematics. While incorrect, it will be seen that the results will still be in-
terpretable and reflect the distribution of the Xjs.

So, to specify the posterior, it remains to specify the priors. There are two priors, one
across models and one within models. First recall that there are 210 = 1024 models and
that within each model there are up to 11 parameters: up to 10 for the coefficients of
the variables and one more for σ . For simplicity, the prior over models will be uniform;
i.e., each model gets probability 1/210. The prior on the coefficients within models will
be either N(0,1) or given by Zellner’s g-prior; here σ = 1,2,3 will be taken as fixed so



10.5 Computational Comparisons 661

n σ IC X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

50 1 Enet 1 1 0.294 0.296 0.310 1 0.284 0.356 1 0.302
LASSO 1 1 0.218 0.250 0.246 1 0.238 0.268 1 0.224
AEnet 1 1 0.056 0.054 0.054 1 0.046 0.070 1 0.046
Alasso 1 1 0.042 0.046 0.040 1 0.028 0.036 1 0.036
SCAD 1 1 0.026 0.024 0.018 1 0.016 0.032 1 0.016

2 Enet 1 1 0.280 0.284 0.302 0.994 0.280 0.336 1 0.294
LASSO 1 1 0.218 0.250 0.246 0.994 0.238 0.268 1 0.224
AEnet 1 1 0.066 0.070 0.070 0.990 0.060 0.088 1 0.066

ALASSO 1 1 0.052 0.060 0.056 0.990 0.042 0.060 1 0.048
SCAD 1 1 0.044 0.052 0.048 0.988 0.036 0.052 1 0.040

3 Enet 1.000 1 0.262 0.276 0.270 0.946 0.272 0.324 1 0.260
LASSO 1.000 1 0.214 0.244 0.238 0.942 0.232 0.260 1 0.220
AEnet 1.000 1 0.072 0.084 0.072 0.878 0.070 0.088 1 0.070

ALASSO 1.000 1 0.066 0.082 0.070 0.870 0.062 0.058 1 0.052
SCAD 0.996 1 0.076 0.072 0.072 0.832 0.066 0.084 1 0.068

100 1 Enet 1 1 0.316 0.228 0.250 1 0.292 0.314 1 0.306
LASSO 1 1 0.224 0.198 0.198 1 0.228 0.222 1 0.202
AEnet 1 1 0.044 0.036 0.038 1 0.046 0.044 1 0.056
Alasso 1 1 0.046 0.030 0.028 1 0.040 0.012 1 0.036
SCAD 1 1 0.004 0.014 0.004 1 0.014 0.006 1 0.008

2 Enet 1 1 0.294 0.222 0.242 1 0.284 0.308 1 0.286
LASSO 1 1 0.224 0.198 0.198 1 0.228 0.222 1 0.202
AEnet 1 1 0.054 0.046 0.038 1 0.056 0.050 1 0.068
Alasso 1 1 0.032 0.032 0.028 1 0.044 0.016 1 0.040
SCAD 1 1 0.016 0.020 0.020 1 0.026 0.008 1 0.030

3 Enet 1 1 0.280 0.216 0.228 0.998 0.274 0.284 1 0.258
LASSO 1 1 0.224 0.196 0.198 0.998 0.228 0.222 1 0.202
AEnet 1 1 0.052 0.056 0.042 0.994 0.048 0.048 1 0.066
Alasso 1 1 0.036 0.044 0.038 0.996 0.034 0.034 1 0.042
SCAD 1 1 0.034 0.044 0.028 0.990 0.018 0.018 1 0.042

Table 10.7 Selection frequencies of variables for AR(ρ = 0). As n increases or σ decreases, the in-
clusion probabilities of incorrect variables decrease and the inclusion probabilities of correct variables
increase.

no prior on it needs to be specified. The g in the g-prior is chosen by a cross-validation
(empirical Bayes) criterion, so no prior needs to be specified on it either.

It is important to remember that Bayes evaluations are done conditionally on the data
via the posterior. As before, sample sizes of n = 50,100 were used; only results for
n = 100 will be shown. In the key inferential calculations, therefore, the conditional
probabilities are shown for exactly one set of data. For evaluating methods overall by
inclusion probabilities, one can find the actual inclusion probability from the posterior
or, as done here, average over N iterations. When this is done, N = 50 is used rather
than N = 500, strictly for convenience.

For the uniform prior on models and the normal prior on coefficients, the computations
can be done in R. The BMA package can be loaded and called by

library(BMA)
bma.result <- bicreg(X,y, strict=FALSE, OR = 20)



662 10 Variable Selection

Average # of Zero Coef.
n σ IC MSE Corr. Zero (6) Inc. Zero (0) PCS

50 1 Enet 0.177 (0.005) 3.508 0.002 0.040
LASSO 0.176 (0.005) 3.822 0.002 0.056
AEnet 0.144 (0.006) 5.572 0.020 0.706
Alasso 0.141 (0.006) 5.658 0.020 0.766
SCAD 0.133 (0.006) 5.626 0.018 0.778

2 Enet 0.664 (0.020) 3.570 0.112 0.054
LASSO 0.683 (0.021) 3.846 0.120 0.072
AEnet 0.762 (0.027) 5.324 0.414 0.560
Alasso 0.811 (0.029) 5.470 0.474 0.588
SCAD 0.770 (0.026) 5.166 0.402 0.482

3 Enet 1.371 (0.039) 3.628 0.332 0.088
LASSO 1.453 (0.044) 3.900 0.374 0.112
AEnet 1.773 (0.049) 5.268 0.974 0.358
Alasso 2.016 (0.058) 5.434 1.182 0.334
SCAD 1.642 (0.048) 5.078 0.828 0.400

100 1 Enet 0.076 (0.002) 3.594 0.000 0.050
LASSO 0.075 (0.003) 3.852 0.000 0.080
AEnet 0.055 (0.002) 5.760 0.000 0.820
Alasso 0.050 (0.002) 5.886 0.000 0.896
SCAD 0.051 (0.002) 5.830 0.000 0.894

2 Enet 0.299 (0.008) 3.572 0.016 0.044
LASSO 0.301 (0.010) 3.850 0.020 0.082
AEnet 0.270 (0.010) 5.554 0.110 0.734
Alasso 0.273 (0.010) 5.674 0.128 0.790
SCAD 0.293 (0.011) 5.358 0.114 0.656

3 Enet 0.646 (0.018) 3.622 0.112 0.054
LASSO 0.661 (0.018) 3.860 0.112 0.084
AEnet 0.729 (0.023) 5.384 0.422 0.602
Alasso 0.795 (0.026) 5.560 0.504 0.620
SCAD 0.714 (0.022) 5.204 0.358 0.552

Table 10.8 Model selection and fitting results for AR(ρ = .9). Note that in contrast to Table 10.6,
ALASSO usually gives better values than SCAD or AEnet in the four columns indicating performance
of the methods. AEnet also does better than SCAD for those cases.

(The notation is as in the Notes at the end of this chapter.) This searches the model
space and computes all that is needed for Bayes model averaging. As a consequence,
it provides the posterior weights (probabilities) of all the models. The command
help(bicreg) can be used to find all the outputs of the BMA package.

For Zellner’s g-prior, the function bayes.model.selection by Jim Albert, was taken
from http://learnbayes.blogspot.com/2007/11/ and go to the section
bayesian-model-selection.html. It is freely available.

Turning now to the actual results, for the uniform-normal case, Fig. 10.4 shows the
posterior probabilities for ρ = 0 for one set of generated data. It is seen that all the top
models had X1, X2, and X9. All but one of the top ten models had X6. Other variables
occasionally appeared, but not with any obvious pattern.
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n σ IC X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

50 1 Enet 1 1 0.400 0.358 0.422 0.998 0.408 0.448 1 0.456
LASSO 1 1 0.360 0.324 0.384 0.998 0.364 0.400 1 0.346
AEnet 1 1 0.068 0.058 0.082 0.980 0.070 0.082 1 0.0648
Alasso 1 1 0.052 0.058 0.070 0.980 0.058 0.060 1 0.044
SCAD 1 1 0.056 0.044 0.068 0.982 0.082 0.070 1 0.054

2 Enet 0.998 0.998 0.404 0.352 0.414 0.892 0.394 0.442 1 0.424
LASSO 0.998 0.998 0.354 0.318 0.380 0.886 0.360 0.398 0.998 0.344
AEnet 0.960 0.970 0.118 0.098 0.118 0.658 0.128 0.134 0.998 0.080

ALASSO 0.942 0.962 0.092 0.086 0.100 0.624 0.112 0.088 0.998 0.052
SCAD 0.968 0.980 0.142 0.118 0.142 0.652 0.150 0.152 0.998 0.130

3 Enet 0.968 0.974 0.392 0.346 0.406 0.734 0.384 0.430 0.992 0.414
LASSO 0.958 0.970 0.348 0.316 0.368 0.706 0.344 0.388 0.992 0.336
AEnet 0.824 0.852 0.124 0.112 0.108 0.382 0.134 0.144 0.968 0.110

ALASSO 0.734 0.806 0.098 0.098 0.086 0.328 0.116 0.100 0.950 0.068
SCAD 0.882 0.900 0.152 0.124 0.140 0.420 0.178 0.160 0.970 0.168

100 1 Enet 1 1 0.412 0.320 0.360 1 0.448 0.454 1 0.412
LASSO 1 1 0.384 0.292 0.332 1 0.406 0.404 1 0.330
AEnet 1 1 0.046 0.022 0.024 1 0.044 0.042 1 0.062
Alasso 1 1 0.022 0.016 0.018 1 0.026 0.010 1 0.022
SCAD 1 1 0.038 0.016 0.020 1 0.040 0.022 1 0.034

2 Enet 1 1 0.420 0.334 0.358 0.984 0.446 0.446 1 0.424
LASSO 1 1 0.384 0.292 0.332 0.980 0.406 0.404 1 0.332
AEnet 1 1 0.072 0.044 0.072 0.890 0.114 0.078 1 0.066
Alasso 1 1 0.104 0.032 0.068 0.874 0.092 0.040 1 0.042
SCAD 1 1 0.034 0.076 0.098 0.886 0.132 0.122 1 0.110

3 Enet 1 1 0.414 0.318 0.362 0.888 0.444 0.446 1 0.394
LASSO 1 1 0.384 0.290 0.328 0.888 0.404 0.402 1 0.332
AEnet 0.972 0.972 0.102 0.056 0.106 0.634 0.136 0.122 1 0.094
Alasso 0.938 0.956 0.062 0.044 0.098 0.602 0.118 0.066 1 0.052
SCAD 0.988 0.980 0.138 0.092 0.122 0.674 0.164 0.148 1 0.132

Table 10.9 Selection frequencies of variables for AR(ρ = .9). The conclusions suggested by Table
10.8 are generally supported.

Models selected by BMA

Model #
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X10

X9

X8
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Fig. 10.4 Posterior probabilities for the uniform-normal case. The ten models (out of the 1024 mod-
els) with the highest posterior probabilities are indicated along the horizontal axis. The ten explanatory
variables are noted on the vertical axis. A solid square on the grid means that the variable was included
in the model. A white square means the variable was not included. The few indeterminate cases are
also indicated.
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As ρ increases, Fig. 10.5 shows results similar to those in Fig. 10.4. Note that larger
values of ρ are associated with the posterior distribution being less concentrated so
that, rather than ten models, 15 or 30 are required, as indicated on the horizontal axis.
Thus, the figures have many smaller rectangles to indicate which variables are present,
and many of these are incorrect. Note that Figs. 10.4 and 10.5 are not really analogous
to any of the earlier tables because they only represent a single data set.

Models selected by BMA

Model #

1 2 3 4 5 6 8 10 13

X10

X9

X8

X7
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X1

Models selected by BMA
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Fig. 10.5 The two panels here are the same as in Fig. 10.4 but for ρ = .5, .9.

If the analysis for a single data set given in Fig. 10.4 or 10.5 is repeated and the variable
inclusions counted over 50 iterations, average inclusion probabilities in a frequentist
sense can be computed and compared with the corresponding results for traditional
and shrinkage methods. These are recorded in Table 10.10.

ρ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0 1.00 1.00 .139 .139 .124 .994 .912 .130 1.00 .122
0.5 1.00 1.00 .129 .147 .142 .974 .963 .137 1.00 .119
0.9 .912 .951 .119 .141 .159 .559 .129 . 146 .996 .109

Table 10.10 Here the inclusion probabilities for the ten variables are given for the three correlations
among the explanatory variables in the uniform-normal case.

It is seen that the inclusion probabilities deteriorate as ρ increases. However, they are
broadly comparable to the results in Tables 10.3 and 10.7 for ρ = 0, to Table 10.5 for
ρ = .5, and to Table 10.9 for ρ = .9.
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For the g-prior, code to generate visual summaries like Figs. 10.4 and 10.5 does not ex-
ist. Albert’s code does, however, provide equivalent information, and this is presented
next. First, parallel to Figs. 10.4 and 10.5, the posterior probabilities of the 1024 mod-
els can be output. For ρ = 0, one run of the simulation gave that the true model was
the model of the posterior and had probability .527. For ρ = .5, again the true model
was the mode of the posterior but had lower posterior probability, .459. When ρ = .9,
however, the modal model had explanatory variables 1, 2, and 9, omitting 6, with prob-
ability .228. The correct model had only the fifth highest posterior probability, .058.
The intervening models all had X1, X2, and X9; however, they included a variable other
than X6 and had probabilities .134, .111, and .093.

Finally, parallel to Table 10.10, a table shows of inclusion probabilities can be com-
piled as in Table 10.11. Again, performance deteriorates as ρ increases, and the values
are broadly comparable to the earlier cases.

ρ X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

0 1 1 0.093 0.094 0.085 0.999 0.064 0.090 1 0.084
.5 1 1 0.084 0.101 0.105 0.936 0.073 0.095 1 0.083
.9 0.821 0.901 0.094 0.112 0.128 0.470 0.113 0.116 0.990 0.086

Table 10.11 Here the inclusion probabilities for the ten variables are given for the three correlations
among the explanatory variables for the uniform-g-prior case.

10.5.2 When p > n

In many problems, the number of potentially important variables is so large that the
first task is to reduce them to a manageable number. In these cases, practitioners some-
times believe that the true model is quite small (i.e., sparse), so that little is lost and
much is gained by the reduction.

To mimic this procedure, consider the case where (10.5.1) has p = 200 but the data-
generating model is the same (i.e., has X1, X2, X6, and X10, with the same coefficients
as before). Suppose the sample size is n = 50,100 so that p > n and that σ = 1,2.
Instead of AR(1) generation of the explanatory variables, suppose they exhibit com-
pound symmetry (CS). That is, all the pairwise correlations among the Xjs are the
same, Corr(Xj,Xk) = ρ for j 	= k. This sort of dependence is more extensive, and typ-
ical for sparse models, than serial dependence is.

To search for a sparse model, recall that sure independence screening (SIS) is one
way to reduce the available p variables to a number below n. Essentially, SIS ranks
the explanatory variables according to the absolute values of their correlation with
the response. Since the variance of the Xjs is one and the variance of Y is common
across all Xjs, it is enough to look at the absolute covariance between Y and each Xj.
When these are sorted by size, only those Xjs with a high enough absolute covariance
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are retained. This is a simple procedure that can be coded easily. Here, for a variety
of reasons, the SIS threshold was chosen to be 37. Fan and Lv (2008) suggest n/ lnn;
however, here, comparisons over different sample sizes are made. Thresholds involving
p may seem more reasonable; however, they also have drawbacks.

Once SIS is used to eliminate enough explanatory variables, shrinkage methods, for in-
stance, may be applied to select an even smaller model; this second step is the same as
in the last section. Combining shrinkage with SIS vastly expands the scope of variable
selection problems that can be resolved effectively.

Below, the output of the combined SIS and shrinkage procedures is reported. The sum-
maries roughly parallel those given earlier. However, there are three noteworthy dif-
ferences. First, MSE was calculated using the model chosen from SIS and a shrinkage
method. Thus, different iterations gave models with different numbers of explanatory
variables. Second, the case ρ = 0 was used as a baseline. However, only computations
with ρ = .3 were done because once ρ was much greater than .3, the performance
was terrible. (The MSEs were around 14 for ρ = .5.) Third, in Table 10.12, the ex-
pected number of explanatory variables is given instead of the probability of correct
selection. This is easier to compare with the other columns within the table, and the
numbers would otherwise be quite low.

In Table 10.12, it is seen that the performance indices improve with larger n or smaller
σ . Also, the numbers are much better behaved than the earlier ones where SIS did not
need to be used. Not only are there few reversals, but the jumps from entry to entry
and the ranges of performance within the cells are smaller. This may be due to the
fact that none of the variables SIS selects are bad. They may be irrelevant, but they
are less obviously irrelevant than in earlier cases. So, the numbers smooth out more.
One consequence is that the difference in performance between shrinkage methods
that have oracle properties and those that don’t is much less than when SIS is not used.
On the other hand, the Inc. Zero column is a little bit higher than for the earlier cases,
too, partially because the combined procedure is more complex. Note that the average
model sizes are much larger than four, often by a factor of 2, and that the sum of the
last three columns is roughly 200.

Table 10.13 parallels Tables 10.3, 10.5, 10.7, and 10.11. However, it is just the first
ten columns in a 200 column table where the columns correspond to the explanatory
variables. The correct variables are 1, 2, 6, and 9, so all 190 later variables do not matter
except in that they make the correct model hard to find. The entries in the irrelevant
explanatory variables among the first ten give a good picture of the general behavior.
The values are seen to be reasonable but generally worse for the correct variables
(especially for X1 and X6) than in the earlier cases, where SIS was not used. This only
means that the problem is more complicated, not that SIS is ineffective. The values for
the irrelevant variables are lower than in the earlier cases; however, the sheer number
of explanatory variables means that even though the chances of including any one of
them are lower, the chances of including some of them are higher.

For a last comparison, the problem was rerun with ρ = .3. The results are seen in
Tables 10.14 and 10.15. By and large, the deterioration is more visible in the worsening
selection of correct variables. However, an overall increase in selection of incorrect
variables is seen, too. Since the model sizes increase as well, there is a greater chance
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Average # of Zero Coef.
n σ IC MSE Corr. Zero (196) Inc. Zero (0) Model Size (4)
50 1 SIS+Enet 3.576 (0.218) 183.864 0.406 15.730

SIS+LASSO 3.187 (0.210) 185.610 0.406 13.984
SIS+AEnet 3.322 (0.217) 189.870 0.406 9.724
SIS+Alasso 2.757 (0.206) 191.138 0.406 8.456
SIS+SCAD 3.606 (0.236) 190.014 0.410 9.576

2 SIS+Enet 4.970 (0.170) 186.732 0.454 12.814
SIS+LASSO 4.665 (0.161) 187.868 0.454 11.678
SIS+AEnet 4.083 (0.187) 192.074 0.458 7.468
SIS+Alasso 3.351 (0.181) 193.074 0.458 6.648
SIS+SCAD 5.530 (0.237) 190.542 0.468 5.530

100 1 SIS+Enet 0.733 (0.059) 189.242 0.126 10.632
SIS+LASSO 0.669 (0.054) 190.576 0.126 9.298
SIS+AEnet 0.660 (0.062) 193.194 0.126 6.680
SIS+Alasso 0.526 (0.057) 194.162 0.126 5.712
SIS+SCAD 0.693 (0.064) 192.306 0.126 7.568

2 SIS+Enet 1.590 (0.056) 190.306 0.154 9.540
SIS+LASSO 1.538 (0.056) 191.208 0.154 8.638
SIS+AEnet 1.220 (0.063) 193.616 0.154 6.230
SIS+Alasso 0.908 (0.058) 194.436 0.154 5.410
SIS+SCAD 1.580 (0.079) 192.014 0.154 7.832

Table 10.12 Model selection and fitting results for AR(ρ = 0). The values are less spread out than
in Tables 10.2, 10.4, 10.6, and 10.8. Also, it is seen that SIS with ALASSO routinely gives better
performance than SIS composed with any of the other four methods.

that wrong models with only one or two correct variables and a dozen or so incorrect
variables will result. The effect will be high variance and high bias.

10.6 Notes

10.6.1 Code for Generating Data in Section 10.5

The code for the bayes.model.selection function was taken from http://
learnbayes.blogspot.com/2007/11/bayesian-model-selection.
html, and is due to Jim Albert.

For the frequentist results, the code is below, followed by the code used to call Albert’s
code.

library(BMA)
library(MASS)
library(MCMCpack)
library(LearnBayes)
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n σ IC X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

50 1 SIS+Enet 0.952 0.986 0.070 0.068 0.070 0.656 0.066 0.072 1 0.054
SIS+LASSO 0.952 0.986 0.064 0.060 0.060 0.656 0.062 0.058 1 0.044
SIS+AEnet 0.952 0.986 0.036 0.046 0.028 0.656 0.036 0.036 1 0.020
SIS+Alasso 0.952 0.986 0.026 0.028 0.026 0.656 0.036 0.034 1 0.016
SIS+SCAD 0.952 0.986 0.038 0.040 0.022 0.652 0.040 0.036 1 0.016

2 SIS+Enet 0.946 0.986 0.048 0.054 0.054 0.614 0.046 0.050 1 0.052
SIS+LASSO 0.946 0.986 0.042 0.048 0.048 0.614 0.038 0.050 1 0.040
SIS+AEnet 0.946 0.986 0.014 0.022 0.020 0.610 0.016 0.030 1 0.022
SIS+Alasso 0.946 0.986 0.010 0.016 0.020 0.610 0.018 0.022 1 0.016
SIS+SCAD 0.946 0.986 0.030 0.036 0.028 0.600 0.026 0.026 1 0.020

100 1 SIS+Enet 0.994 1 0.036 0.040 0.036 0.88 0.030 0.046 1 0.032
SIS+LASSO 0.994 1 0.030 0.026 0.028 0.88 0.020 0.040 1 0.028
SIS+AEnet 0.994 1 0.014 0.016 0.014 0.88 0.012 0.026 1 0.014
SIS+Alasso 0.994 1 0.010 0.008 0.004 0.88 0.006 0.014 1 0.012
SIS+SCAD 0.994 1 0.020 0.014 0.014 0.88 0.010 0.018 1 0.024

2 SIS+Enet 0.994 1 0.024 0.018 0.028 0.852 0.026 0.036 1 0.032
SIS+LASSO 0.994 1 0.020 0.014 0.024 0.852 0.024 0.028 1 0.030
SIS+AEnet 0.994 1 0.010 0.010 0.010 0.852 0.012 0.014 1 0.014
SIS+Alasso 0.994 1 0.006 0.004 0.002 0.852 0.008 0.012 1 0.008
SIS+SCAD 0.994 1 0.016 0.014 0.014 0.852 0.024 0.026 1 0.032

Table 10.13 Selection frequencies of variables for AR(ρ = 0).

##INPUT parameters
N = 500 #number of simulations
n = 100 #sample size
p = 10 #total number of covariates
p0 = 5 #number of nonzero regression coefficients
sigma = 3 #the standard deviation of noise
rho = 0.0 #the correlation coefficient in AR or CS
truebeta = c(2.5,3,0,0,0,1.5,0,0,4,0)
c = 500
##OUTPUT results
betahat = matrix(0,N,p)
beta0hat = rep(0,N)
modelerr = rep(0,N)
varprob = matrix(0,N,p)
gVarprob = matrix(0,N,p)
##specify the AR(rho) covariance matrix for X
Xcov<-matrix(0,p,p)
for (i in 1:p)
{for (j in 1:p)
Xcov[i,j]<-rhoˆ(abs(i-j))

}
##specify the CS(rho) covariance matrix for X
#Xcov<-rho*matrix(1,p,p)
#diag(Xcov) <- 1
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Average # of Zero Coef.
n σ IC MSE Corr. Zero (196) Inc. Zero (0) Model Size (4)
50 1 SIS+Enet 6.866 (0.460) 182.746 0.672 16.582

SIS+LASSO 6.730 (0.465) 183.540 0.674 15.786
SIS+AEnet 6.597 (0.440) 188.948 0.684 10.368
SIS+Alasso 6.576 (0.440) 189.148 0.684 10.168
SIS+SCAD 7.612 (0.427) 187.562 0.684 11.754

2 SIS+Enet 7.047 (0.279) 186.168 0.734 13.098
SIS+LASSO 6.691 (0.275) 187.376 0.734 11.890
SIS+AEnet 6.199 (0.287) 192.526 0.758 6.716
SIS+Alasso 5.870 (0.292) 193.240 0.776 5.984
SIS+SCAD 8.781 (0.375) 191.062 0.772 8.166

100 1 SIS+Enet 1.553 (0.119) 186.938 0.332 12.730
SIS+LASSO 1.518 (0.118) 187.758 0.332 11.910
SIS+AEnet 1.444 (0.121) 192.840 0.332 6.828
SIS+Alasso 1.394 (0.119) 193.202 0.332 6.466
SIS+SCAD 1.756 (0.133) 190.412 0.332 9.256

2 SIS+Enet 2.483 (0.120) 187.160 0.36 12.480
SIS+LASSO 2.296 (0.118) 188.472 0.36 11.168
SIS+AEnet 1.911 (0.125) 193.896 0.36 5.744
SIS+Alasso 1.708 (0.120) 194.610 0.36 5.030
SIS+SCAD 2.615 (0.143) 191.814 0.36 7.826

Table 10.14 Model selection and fitting results for AR(ρ = .3). It is seen that the output here is nearly
uniformly worse than in Table 10.12.

svd.Xcov<-svd(Xcov)
v<-svd.Xcov$v
d<-svd.Xcov$d
D<-diag(sqrt(d))
S<-(v)%*%D%*%t(v)
## LOOP starts here
for (i in 1:N)
{set.seed(2009+i)
##generate X
Ztr<-matrix(rnorm(n*p),n,p)
X<-Ztr%*%S
#generate y
ymean<-X%*%truebeta
y<-ymean+sigma*rnorm(n)

#data fit (here we apply the model fitting method)

#-----------------------------------------------#
# BMA with normal on beta and uniform on models #
#-----------------------------------------------#
# lma <- bicreg(X,y, strict=FALSE, OR = 20)
# varprob[i,] <- lma$probne0
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n σ IC X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

50 1 SIS+Enet 0.832 0.918 0.064 0.070 0.070 0.590 0.080 0.078 0.988 0.058
SIS+LASSO 0.832 0.918 0.064 0.066 0.062 0.588 0.072 0.068 0.988 0.054
SIS+AEnet 0.830 0.918 0.034 0.032 0.036 0.580 0.046 0.046 0.988 0.036
SIS+Alasso 0.830 0.918 0.034 0.032 0.038 0.580 0.042 0.044 0.988 0.034
SIS+SCAD 0.832 0.918 0.042 0.042 0.034 0.578 0.042 0.042 0.988 0.032

2 SIS+Enet 0.814 0.908 0.048 0.046 0.052 0.564 0.052 0.052 0.980 0.052
SIS+LASSO 0.814 0.908 0.042 0.038 0.048 0.564 0.048 0.050 0.980 0.042
SIS+AEnet 0.814 0.906 0.012 0.016 0.026 0.542 0.018 0.028 0.980 0.018
SIS+Alasso 0.814 0.904 0.006 0.016 0.022 0.526 0.008 0.024 0.980 0.018
SIS+SCAD 0.814 0.904 0.020 0.038 0.026 0.530 0.034 0.032 0.980 0.024

100 1 SIS+Enet 0.956 0.988 0.036 0.058 0.056 0.724 0.040 0.034 1 0.032
SIS+LASSO 0.956 0.988 0.030 0.044 0.050 0.724 0.034 0.030 1 0.028
SIS+AEnet 0.956 0.988 0.006 0.022 0.016 0.724 0.012 0.014 1 0.016
SIS+Alasso 0.956 0.988 0.006 0.022 0.014 0.724 0.008 0.014 1 0.016
SIS+SCAD 0.956 0.988 0.016 0.038 0.028 0.724 0.024 0.028 1 0.032

2 SIS+Enet 0.946 0.984 0.042 0.052 0.052 0.71 0.036 0.040 1 0.036
SIS+LASSO 0.946 0.984 0.036 0.042 0.046 0.71 0.036 0.034 1 0.034
SIS+AEnet 0.946 0.984 0.006 0.010 0.004 0.71 0.008 0.010 1 0.014
SIS+Alasso 0.946 0.984 0.004 0.006 0.004 0.71 0.006 0.004 1 0.012
SIS+SCAD 0.946 0.984 0.016 0.026 0.016 0.71 0.028 0.028 1 0.032

Table 10.15 Selection frequencies of variables for AR(ρ = .3). It is seen that the output here is nearly
uniformly worse than in Table 10.13.

#-----------------------------------------------#
# Bayes Model Selection with g-prior on beta #
# and uniform on models #
#-----------------------------------------------#

X <- data.frame(X)
prob <- matrix(0,1,p)

gPriorBayes <- bayes.model.selection(y, X, c,
constant = FALSE) # Call to Jim Albert’s code
post.prob.col <- dim(gPriorBayes$mod.prob)[2]
sorted.gPrior <- sort(gPriorBayes$mod.prob
[,post.prob.col], index.return = TRUE,
decreasing = TRUE)

# Type "gPriorBayes$mod.prob[sorted.gPrior$ix,]"
to see list of models for this run

# Extract post prob of var inclusion
post.prob <- gPriorBayes$mod.prob[,post.prob.col]
for(j in 1:p){

prob[j] <- sum(post.prob[which
(gPriorBayes$mod.prob[,j] == TRUE)]) }
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gVarprob[i,] <- prob # Store post prob of var
# inclus for run i }

10.7 Exercises

Exercise 10.1 (Overfitting and underfitting). Variable selection is important for
regression since there are problems in either using too many (irrelevant) or too
few (omitted) variables in a regression model. Consider the linear regression model
yi = xxxT

i βββ 0 + εi, where the input vector is xxxi ∈ Rp and the errors are IID, satisfy-
ing E(εi) = 0 and Var(εi) = σ2. Let yyy = (y1, . . . ,yn)T be the response vector and
X = (xi j) , i = 1, · · · ,n; j = 1, . . . , p be the design matrix.

Assume that only the first p0 variables are important. Let A = {1, . . . , p} be the index
set for the full model and A0 = {1, . . . , p0} be the index set for the true model. The
true regression coefficients can be denoted as βββ ∗ = (βββ ∗TA0

,0T)T. Now consider three
different modeling strategies:

• Strategy I: Fit the full model. Denote the full design matrix as XA and the corre-

sponding OLS estimator by β̂ββ
ols

A .

• Strategy II: Fit the true model using the first p0 covariates. Denote the correspond-

ing design matrix by XA0 and the OLS estimator by β̂ββ
ols

A0
.

• Strategy III: Fit a subset model using only the first q covariates for some q < p0.

Denote the corresponding design matrix by XA1 and the OLS estimator by β̂ββ
ols

A1
.

1. As noted in Section 10.1, one possible consequence of including irrelevant vari-
ables in a regression model is that the predictions are not efficient (i.e., have larger
variances) though they are unbiased. For any xxx ∈ Rp, show that

E(xxxT
Aβ̂ββ

ols

A ) = xxxT
A0
βββ ∗A0

, Var(xxxT
Aβ̂ββ

ols

A )≥ Var(xxxT
A0
β̂ββ

ols

A0
),

where xxxA0 consists of the first p0 elements of xxx.

2. One consequence of excluding important variables in a linear model is that the
predictions are biased, though they have smaller variances. For any xxx ∈ Rp, show
that

E(xxxT
A1
β̂ββ

ols

A1
) 	= xxxT

A0
βββ ∗A0

, Var(xxxT
A1
β̂ββ

ols

A1
)≤ Var(xxxT

A0
β̂ββ

ols

A0
),

where xxxA1 consists of the first q elements of xxx.

Exercise 10.2 (SSE from backward elimination). ] Backward elimination starts with
the model that includes all the variables. At each step, it removes the variable making
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the smallest contribution. Assume that there are currently k variables in the model,
and the corresponding design matrix is X1. Verify that the equation (10.1.12) holds;
i.e., the new sum of squared errors (SSE) from fitting resulting from deleting the jth
(1≤ j ≤ k) variable from the current k-variable model is

SSEk−1 = SSEk +
(β̂1 j)2

s j j ,

where β̂ββ 1 = (β̂11, . . . , β̂1k)T is the vector of current regression coefficients and s j j is
the jth diagonal element of (XT

1 X1)−1.

Exercise 10.3 (Forward, backward, stepwise selection). Compare the performance
of forward selection, backward elimination, and stepwise selection on the Boston hous-
ing data, which are available in the R package MASS.

1. What are the final selected covariates for each of the three methods?

2. What are the five-fold CV errors for each of the three methods?

Exercise 10.4 (Linearity of regression). As seen in Chapter 2, for a general regression
model yi = f (xxxi) + εi, for i = 1, · · · ,n, an estimator f̂ of f is linear if the vector of
predicted values ŷyy = ( f̂ (xxx1), · · · , f̂ (xxxn))T satisfies

ŷyy = Syyy,

where S is the smoother matrix depending on xxxi, i = 1, · · · ,n only but not on yis. Here,
apply this to the linear model yi = β0 +βββxxxi + εi, i = 1, · · · ,n.

1. Show that the least squares estimator is a linear smoother, and find its smoother
matrix.

2. Show that the ridge estimator is a linear smoother, and find its smoother matrix.

Exercise 10.5 (Leave-one-out Property). Consider the regression model yi = f (xxxi)+
εi for i = 1, · · · ,n. Denote by f̂ (xxx) the fitted function based on the full data set and by
f̂−i the function fitted with the ith data deleted. Let

ỹyyi = (y1, · · · ,yi−1, f̂−i(xxxi),yi+1, · · · ,yn)T,

be the perturbed data, by replacing the ith element in yyy, yi, with the evaluation of the
delete-i fit f̂−i at xxxi. Let f̃−i be the estimate of f with data ỹyyi.

1. Prove that the leave-one-out property holds for the least squares estimate; i.e.,

f̃−i(xxxi) = f̂−i(xxxi), i = 1, · · · ,n,

if f̂ (xxx) = xxxTβ̂ββ
ols

.

2. Based on item 1, show that
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|yi− f̂−i(xxxi)| ≥ |yi− f̂ (xxxi)|, ∀i.

Exercise 10.6 (Penalized least squares). The penalized least squares problem can be
reformulated as a quadratic optimization problem subject to constraints. Take the ex-
ample of LASSO regression. Consider the two problems

β̂ββ
lasso

λ = argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ )+λ
p

∑
j=1
|β j| (10.7.1)

and

β̂ββ
lasso

s = argmin
βββ

(yyy−Xβββ )T(yyy−Xβββ ), subject to
p

∑
j=1
|β j| ≤ s. (10.7.2)

Prove that solving these two problems are equivalent. In other words, do the following:

1. Given any λ0 > 0 and its corresponding solution β̂ββλ0
to (10.7.1), find a unique value

sλ0
and its corresponding solution to (10.7.2) such that β̂ββ

lasso

λ0
= β̂ββ

lasso

sλ0
.

2. Given any s0 > 0 and its corresponding solution β̂ββ s0
to (10.7.2), find a unique value

λs0 and its corresponding solution to (10.7.1) such that β̂ββ
lasso

s0
= β̂ββ

lasso

λs0
.

Therefore, there is a one-to-one correspondence relationship between λ and s.

Exercise 10.7 (Penalized least squares and orthogonal design). In the special case
of an orthogonal design matrix (i.e., XTX = In) the penalized least squares problem

min
βββ∈Rp

(yyy−Xβββ )T(yyy−Xβββ )+λ
p

∑
j=1

J(|β j|)

becomes solving p one-dimensional shrinkage problems:

min
β j

(β j− β̂ ols
j )2 +λJ(|β j|), j = 1, · · · , p.

Now, consider four types of penalized least squares problems.

1. When X is orthogonal, show that the ridge estimates are given by

β̂ ridge
j =

1
1+λ

β̂ ols
j , j = 1, . . . , p.

2. When X is orthogonal, the nonnegative garrote (NG) estimator seeks a set of non-
negative scaling factors c j for j = 1, . . . , p by solving

min
c j

(c jβ̂ ols
j − β̂ ols

j )2 +λc j, s.t. c j ≥ 0.
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Show that the solution has the expression

ĉ j =

(
1− λ

2(β̂ ols
j )2

)

+

, j = 1, . . . , p,

where (t)+ = max(t,0). Therefore, the final NG estimator for the β s is

β̂ ng
j =

(
1− λ

2(β̂ ols
j )2

)

+

β̂ ols
j , j = 1, . . . , p. (10.7.3)

3. When X is orthogonal, show that the lasso solution is given by

β̂ lasso
j = sign(β̂ ols

j )(|β̂ ols
j |−2λ )+, j = 1, . . . , p.

4. When X is orthogonal, the L0-penalized least squares problems solve

min
β j

(β j− β̂ ols
j )2 +λ I(|β j| 	= 0), j = 1, . . . , p.

Show that the solution is given by

β̂ j = sign(β̂ ols
j )I(|β̂ ols

j |>
√
λ ).

This is often called the hard thresholding rule.

5. Comment on the difference in shrinkage effects achieved in items 1–4.

Exercise 10.8 (SCAD penalty and convexity). Fan and Li (2001) proposed a penal-
ized least squares using a smoothly clipped absolute deviation (SCAD) penalty of the
form

qλ (|w|) =

⎧⎪⎪⎨
⎪⎪⎩
λ |w| if |w| ≤ λ ,

− (|w|2−2aλ |w|+λ 2)
2(a−1) if λ < |w| ≤ aλ ,

(a+1)λ 2

2 if |w|> aλ ,

where a > 2 and λ > 0 are tuning parameters.

1. Show that qλ has a continuous first-order derivative everywhere except at the origin.

2. Show that qλ is a symmetric quadratic spline with knots at λ and aλ .

3. Show that qλ is not convex.

4. Show that qλ can be decomposed as the difference of two convex functions,

qλ (|w|) = qλ ,1(|w|)−qλ ,2(|w|),

where q1 and q2 are convex and satisfy

q′λ ,1(|w|) = λ , q′λ ,2(|w|) = λ
(

1− (aλ −|w|)+
(a−1)λ

)
I(|w|> λ ).
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This result was first proved in Wu and Liu (2009).

Exercise 10.9 (Bayes factors). Here are two examples of Bayes factors (BF).

1. Suppose that n samples are chosen from a population of size N. The number of
samples X found to have a certain trait (e.g., satisfactory quality) is distributed as
Binomial(n,θ), and θ ∼ Beta(1,9) is thought reasonable. If X = 0 is observed and
N >> n, consider H0 : θ ≤ .1 vs. H1 : θ > .1. Find the posterior probabilities of
the two hypotheses, the posterior odds ratio, and the BF.

2. Now do a simple robustness analysis: Vary the 1 and the 9 in the Beta, the value
of X , the sample size n, and the threshold of the test. Do the results change much?
What happens if N is not enormously large compared with n?

3. The waiting time for a meal in a restaurant at a certain time of day is Uni f orm(0,θ)
minutes. An ardent Bayesian is a patron of the restaurant and wants to test H0 : 0≤
θ ≤ 15 vs. H0 : θ > 15 to see if there is enough time for her guests to have dinner
there before they go to the Bayesian dance party. She assigns a Pareto(5,3) prior and
from personal experience has observed wait times of 5, 8, 10, 15, and 20 minutes.
(Recall that if X ∼ Pareto(x0,α), then

f (x|x0,α) =
α
x0

(x0

x

)α+1
for x≥ x0,

for which E(X) = (αx0)/(α+ 1) when α > 1.) Find her posterior probability, her
posterior odds ratio, and her Bayes factor.

4. Again do a simple robustness analysis: Vary the prior, the data, the thresholds of
the test, and the sample size to see how the conclusions change. Can you vary the
likelihood as well? Which of these inputs seems to have the largest effect?

Exercise 10.10 (BFs and dimension). Steve MacEachern observes that Bayes fac-
tors do not always work well in general when the dimension of the two hypothe-
ses is different. To see this, consider two models. Model I is one-dimensional: Let
θ ∼ N(0,σ2), and suppose (Xi|θ) ∼ N(θ ,1) are independent for i = 1,2. Model II
is two-dimensional: Let (θ1,θ2)t ∼ N(000,σ2I), and suppose that (Xi|θ) ∼ N(θi,1) for
i = 1,2. Thus, in Model I, the two variables are tied together by a parameter while in
Model II they are not.

1. Find the form of the BF and verify that it will essentially always choose Model I.

2. What happens as σ → ∞?

3. Conclude that prior selection for one dimension is not compatible in general with
prior selection for other dimensions and that some technique other than naive use
of BFs may be required for comparing models of different dimensions.

Exercise 10.11 (Zellner g-prior). Consider a linear model of the form

Mγ : Y = 1β0 +XXX γβββγ + εεε,
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for n outcomes, where XXX γ is the design matrix with columns corresponding to the
γth subset of (X1, ...,Xp), the vector βββ contains the regression coefficients, and εεε ∼
N(0,σ2Ip). (The notation bf 1 means the vector of p ones.) Letting pγ = dim(βββγ),
assign the Zellner g-prior by choosing priors

w(βββγ |γ,g) = Npγ (0,gσ2(XXXt
γXXX γ)−1) and w(β0,σ2|γ) =

1
σ2 .

Without loss of generality, assume the predictors are centered at zero so that depen-
dence on β0 is removed.

1. Verify that, for any γ ,

BF(γ,0) = (1+g)(n−pγ−1)/2(1−g(1−R2
γ))

−(n−1)/2,

where R2
γ is the usual coefficient of determination.

2. Suppose the data support γ strongly so that R2
γ → 1 for fixed values of n and g. What

is the limiting value of BF(γ,0)? What does this mean about the use of BFs?

Exercise 10.12 (LARS and LASSO). The LARS procedure described in Section
10.3.3 gives an efficient algorithm to solve the lasso. In particular, the fit can be ob-
tained with the R commands

load(lars)
fit <- lars(x,y, type="lasso")

where xxx is the vector of covariates and y is the response.

1. Show that LARS can be used to solve the adaptive LASSO optimization,

min
βββ

(yyy−Xβββ )T(yyy−Xβββ )+λ
p

∑
j=1

w j|β j|.

2. Modify the above code to get the entire solution path for the adaptive LASSO, given
a set of prespecified weights w1, · · · ,wp.

Exercise 10.13 (Comparing shrinkage estimators). Compare the performance of the
LASSO, the elastic net and the adaptive LASSO on the Boston housing data, which
are available in the R package MASS.

1. What are the final selected covariates for each of the three methods?

2. What are the five-fold CV errors for each of the three methods?

3. Compare the results in items 1 and 2 with those from Exercise 10.3.

Exercise 10.14 (Example of an RKHS). In this exercise, you can show that the
second-order Sobolev space W2[0,1],
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W2[0,1] = {g : g(t),g′(t) absolutely continuous, g′′(t) ∈L2[0,1]},

equipped with the norm

( f ,g) = f (0)g(0)+ f ′(0)g′(0)+
∫ 1

0
f ′′(t)g′′(t)dt,

is a reproducing kernel Hilbert space. For any t ∈ [0,1], define the evaluation functional
[t](·)

[t]( f ) = f (t) ∀ f ∈W2[0,1].

For each t ∈ [0,1], define the function

Rt(s) = 1+ st +
∫ 1

0
(s−u)+(t−u)+du.

1. Show that W2[0,1] is a Hilbert space.

2. For each t ∈ [0,1], show that the function Rt satisfies:

i. Rt ∈W2[0,1].

ii. Rt has the reproducing property; i.e.,

(Rt , f ) = f (t), ∀ f ∈W2[0,1].

3. Using item 2, show that the evaluation functional [t](·) is bounded for any t ∈ [0,1].

Taken together, these three items imply that W2[0,1] is an RKHS associated with the
reproducing kernel R(t,s) = Rt(s).

Exercise 10.15 (COSSO optimization). Lin and Zhang (2006) proposed the compo-
nent selection and smoothing operator (COSSO) as a direct shrinkage method to do
variable selection in nonparametric regression,

min
f∈H

n

∑
i=1

[yi− f (xi)]2 +λ
p

∑
j=1
‖P j f‖H , (10.7.4)

where ‖ · ‖H is the norm defined in the RKHS H and λ ≥ 0 is the smoothing param-
eter. Lin and Zhang (2006) further showed that solving (10.7.4) is equivalent to solve
the problem

min
f∈H ,θθθ

n

∑
i=1

[yi− f (xxxi)]
2 +λ0

p

∑
j=1

θ−1
j ‖P j f‖2

H +λ1

p

∑
j=1

θ j, subject to θ j ≥ 0 ∀ j,

(10.7.5)
where λ0 and λ1 are chosen to satisfy λ1 = λ 4/(4λ0).

1. For any λ > 0, if f̂ minimizes (10.7.4), set θ̂ j = λ 1/2
0 λ−1/2

1 ‖P j f̂‖ and show that the
pair (θ̂ , f̂ ) minimizes (10.7.5).
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2. On the other hand, if a pair (θ̂ , f̂ ) minimizes (10.7.5), show that f̂ also minimizes
(10.7.4).

Exercise 10.16 (Bayes factors in a linear model). Suppose that the n× p design ma-
trix XXX can be partitioned into XXX1, n× p1, containing the variables that do not belong in
a model for Y and XXX2, n× p2, containing the variables that do belong in a model for Y ,
and suppose their coefficients are βββ 1 and βββ 2 with dimensions p1 and p2, respectively.

1. Verify that the linear model for YYY can be written as

YYY = 111β0 +XXX1ηηηγ +VVVβββ 2 + εεε,

where VVV = (I−XXX1(XXXt
1XXX1)−1XXXt

1)XXX2, ηηη = βββ 1 +(XXXt
1XXX1)−1XXXt

1XXX2βββ 2, and XXXt
1VVV = 0

(see Zellner and Siow (1980)).

2. Consider testing H0 : βββ 2 = 0 vs. H1 : βββ 2 	= 0 assuming the prior probabilities of H0

and H1 are equal and the priors on the β js are noninformative (for instance, normal
with variance tending to infinity). Verify that the Bayes factor can be expressed as

BF(0,1) = b
[v1

2

]p2/2
[

1+
p2

v1
Fp2,v1

](v1−1)/2

,

where v1 = n− p1− p2−1, b =
√
π/Γ ((p2 +1)/2), and Fp2,v1 = β̂ββ

t
VVV tVVV β̂ββ/(p2s2

1).
In the last expression, s2

1 = (1/v1)(YYY − ȳ111−XXX1η̂ηη−VVV β̂ββ 2)
t(YYY − ȳ111−XXX1η̂ηη−VVV β̂ββ 2),

β̂ββ 2 = (VVVtVVV )−1VVV tYYY , and η̂ηη = (XXXt
1XXX1)−1XXXt

1YYY (see Moulton (1991), Yardimci and
Erar (2002)).

Exercise 10.17 (Exploration with complex sequential data). Generate IID data from
a complex function or use a complex real data set, and treat the data as if it were
arriving sequentially. Next, choose three of the shrinkage methods from the chapter,
e.g., LASSO, Ridge regression, SCAD, and use the default values of λ when fitting
each of them.

Now, using different ensembles of terms – polynomial, spline, trigonometric – com-
pare the sequential predictive performance of each of the three shrinkage methods with
the sequential predictive performance of their stacking average. Iterate the computa-
tion enough times that a variance can be assigned to the predictions and the residuals
at each time step.

Do you see any characteristic patterns in the variation in the residuals over time? Is the
improvement in bias from stacking enough to warrant the increase in variance from
estimating parameters in three models along with two stacking coefficients? Explain.



Chapter 11

Multiple Testing

The Neyman-Pearson formulation of the hypothesis testing problem comes down to
maximizing power, usually denoted 1− β , where β is the probability of making a
Type II error, subject to a level constraint, usually denoted α . That is, for testing

H : μ ∈ΩH vs. K : μ ∈ΩK , (11.0.1)

where μ is the parameter and ΩH and ΩK denote sets in the parameter space, the
optimal rejection region Rn for a sample of size n maximizes the power

Pμ(Rn) = 1−βRn(μ) over Rn satisfying sup
μ∈ΩH

Pμ(Rn)≤ α (11.0.2)

over μ ∈ΩK . It is not generally possible to maximize Pμ uniformly over ΩK , but that
is the ideal, which is sometimes achieved. In practice, Rn is typically identified by
thresholding a statistic.

Variants on the basic Neyman-Pearson formulation include the search for rejection
regions for H that permit α = αn and β = βn to decrease simultaneously, prefer-
ably both at an exponential rate of the form O(e−γn) for some γ > 0. (The Stein test
based on the empirical relative entropy is one test that achieves this in some cases and
γ = D(P||Q) for good choices of P and Q in the null and alternative hypotheses.) By
contrast, the Bayes approach treats hypothesis testing as a decision problem with ac-
tion space {Reject H,Accept H} and minimizes the posterior risk under generalized
zero-one loss. This gives the posterior probabilities of the hypotheses as the basis for
the test; in many cases the correct hypothesis has posterior probability tending to one
at an exponential rate (i.e., W (Ωcorrect |Xn)≥ 1− e−γn for some γ > 0).

All of this is reasonable for testing individual hypotheses; however, it is rare that only
one hypothesis is of interest. What’s even more serious is that practitioners often do
data snooping to see what hypotheses are suggested by the data with a view toward
testing only them. This amounts to selecting test statistics more likely to give a desired
conclusion. That is, many hypothesis tests are entertained initially and only some are
carried out. Done naively, this violates the assumption that the origin of the test and the
generation of the data are independent of each other. The effect of this is to overstate

B. Clarke et al., Principles and Theory for Data Mining and Machine Learning, Springer Series 679
in Statistics, DOI 10.1007/978-0-387-98135-2 11, c© Springer Science+Business Media, LLC 2009
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the power and level by understating the probability of a Type II error. Specifically,
letting the data motivate a hypothesis test that will give a rejection at nominal level α
has actual level α ′ < α . This means the nominal power 1−β is greater than the actual
power 1−β ′ and therefore the nominal probability of Type II error is β < β ′.
The way this is overcome classically is through multiple comparison procedures; i.e.,
procedures specifically derived to be valid for a large collection of tests regardless of
which elements of the collection are actually done. Arguably, the best-known instances
of this occur in analysis of variance, ANOVA.

Consider a balanced one-way ANOVA model with k cells, Yi, j = μi + εi, j with j =
1, ...,n with independent N(0,σ2) error terms εi, j. Tukey’s method for multiple com-
parisons is a way to perform all pairwise tests Hi, j : μi = μ j vs. Ki, j : μi 	= μ j simul-
taneously. It is based on the following reasoning. Let Y1, ...,YrÑ(μ ,σ2) be IID, and
suppose an estimate of σ2, say s2, based on ν degrees of freedom, is available. Then,
the studentized range statistic

q(ν ,r) =
maxi Yi−mini Yi

s

has percentiles qr,ν(1−α) that can be tabulated for each pair (r,ν). The percentiles can
be used for testing any two means and also give confidence intervals for any difference
of two means. Naturally, Tukey’s procedure gives tests and confidence intervals that
are weaker and wider, respectively, than would be the case for individual comparisons.
However, Tukey’s method is valid for all pairwise tests, regardless of which ones were
deemed most important before the data were collected. Scheffe’s method has a similar
interpretation but for a more general class of tests.

One general bound comes from the Bonferroni method, which rests on the union of
events bound. Let E1,E2, · · · ,Ek be a collection of events. Then, if each {Ei} is the
rejection region for a test with level α/k, the overall level of the test is

Pr

[
k⋃

i=1

Ei

]
≤

k

∑
i=1

Pr(Ei)≤ α.

In essence, to guarantee that the inferences are correct simultaneously with an overall
probability 1−α , one must adjust for the multiplicity, ensuring each individual infer-
ence on μi is correct with a probability somewhat higher than 1−α . Failure to adjust
for multiplicity makes the rate of incorrect decisions unacceptably high.

The limitation of these classical procedures is the sense in which they control errors.
As the number of tests increases, the probability that at least one error will be made
increases no matter what level is chosen. Even worse, if the error is not controlled
correctly, most methods will have very small levels and hence very low power, as can
be seen easily for Bonferroni. This problem is compounded by the fact that the test
statistics defining the individual rejection regions are typically not independent. Since
quantifying dependence is difficult, it can be hard to improve on Bonferroni bounds.

This chapter begins by analyzing the hypothesis testing problem to see how controlling
errors, in a sense different from the level and power, might be valuable. Then, several
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definitions of errors to be controlled can be listed. These include the family-wise error
rate, the per comparison error rate, the per family error rate, the false discovery rate and
the positive false discovery rate. In succeeding sections, controlling them is discussed.
Finally, conditional assessments such as q-values and the Bayesian formulation are
presented. It is important to bear in mind that the techniques of this chapter are intended
for large numbers of hypothesis tests where classical methods break down. Where
classical methods are effective, it may not make sense to use the techniques here.

11.1 Analyzing the Hypothesis Testing Problem

There are several analyses of the hypothesis testing problem; the classical Neyman-
Pearson framework is merely one of them that is particularly well known. In this sec-
tion, an analysis of Miller (1981) is presented first and then several alternative senses
of error are introduced.

11.1.1 A Paradigmatic Setting

To illustrate the principles underlying simultaneous statistical inference, Miller (1981)
proposes the problem of comparing the means of two normals with common variance:
Let Y1 and Y2 be independent random variables with Y1 ∼ N(μ1,1) and Y2 ∼ N(μ2,1),
and consider simultaneous inferences on μ1 and μ2. It will be seen that this problem
already contains the core elements of general multiple-comparisons problems.

11.1.1.1 Analyzing Miller’s Problem

From a significance test perspective, a natural null hypothesis would be

H0 : μ1 = 0 μ2 = 0,

and the natural alternative is the negation of H0, without further consideration. How-
ever, from a multiple-comparisons perspective, the alternative matters and corresponds
to multiple nulls. For instance, exploring both H0 and not H0 means comparing all the
following hypotheses:

H1 : μ1 = 0 μ2 = 0,

H2 : μ1 = 0 μ2 	= 0,

H3 : μ1 	= 0 μ2 = 0,

H4 : μ1 	= 0 μ2 	= 0.
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In other words, in simultaneous inference, it is not enough to stop with a decision
against H0 since rejection of H0 does not indicate which clause in H0 was wrong.
Moreover, among the alternatives, the ones corresponding to rejected nulls need to be
known, as they are likely to be of great interest to the investigator.

In the present case, making multiple comparisons between H0 and its alternatives
requires making statement S1 about μ1 and statement S2 about μ2; for instance
S1 = {μ1 = 0} and S2 = {μ2 	= 0}. Thus, to examine two means, one needs to make
two statements. So, the investigator can make zero, one, or two errors, and one measure
of adequacy is the frequency of errors made, or more typically the error rate.

11.1.1.2 The General Structure

For a given problem, there may be a family of possible statements, say F . In the two-
means example, the family is F = {S1,S2}. More generally, the family is defined as
F = {Si : i ∈ I }, where Si relates to parameter i. The number of statements in the
family F is N(F ); for the two-means case, N(F ) = 2. A variety of statements about
both μ1 and μ2 can be made, and the question arises as to how to group statements
together to form a family. Deferring this central question but assuming a family has
been selected, define Nw(F ) to be the number of incorrect statements made from F .
Now, the family error rate is

Err{F}=
Nw(F )
N(F )

.

Given data, the numerator in Err{F} is a random variable and so is Err{F}. Infer-
ence about the procedure generating Err{F} therefore requires the computation of
some nonrandom characteristic of the distribution of Err{F}. The two natural candi-
dates are:

• the probability of a nonzero family error rate, defined as

P{Nw(F ) > 0}= P

[
Nw(F )
N(F )

> 0

]
,

• and the expected family error rate, defined as

E

[
Nw(F )
N(F )

]
.

Using the indicator function

I(Si) =
{

1 if Si is incorrect,
0 if Si is correct,

it is seen that
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E{Nw(F )}= E{I(S1)}+E{I(S2)}+ · · ·+E
{

I(SN(F))
}

,

giving an obvious expression for the expected family error rate. In principle, it can be
based on the rejection regions of a collection of test statistics. In addition,

IP{Nw(F ) > 0} = P

{⋃
i

[I(Si) = 1]

}

=∑
i

IP{I(Si) = 1}− ∑
i1<i2

IP{I(Si1)I(Si2) = 1}+ ·

+ (−1)N(F)−1IP{I(S1)I(S2) · · · I(SN(F))}. (11.1.1)

11.1.1.3 The N(F ) = 2 Case

Expression (11.1.1) is usually analytically intractable because the probabilities of in-
tersections cannot be found. The only case that allows an easy expression for IP{F}
is the case where the statements in the family F are independent, in which case it is
straightforward to show that

1− IP{Nw(F ) > 0}=
N(F)

∏
i=1

(1− IP{I(Si) = 1}). (11.1.2)

While (11.1.2) does provide an analytical expression for P{Nw(F ) > 0}, the indepen-
dence assumption is rarely satisfied.

Without the assumption of independence, it is hard to relate P{Nw(F ) > 0} to the in-
dividual probabilities for the statements in the family F . Usually, only approximations
are available, for instance from the Bonferroni inequality. Write

1− IP{Nw(F ) > 0} ≥ 1−
N(F)

∑
i=1

αi, (11.1.3)

where αi = IP{I(Si) = 1} for i = 1,2, · · · ,N(F ).

The expected family error has a slightly more tractable interpretation. Setting

αi = P{I(Si) = 1}= E{I(Si)}

for i = 1,2, · · · ,N(F ), the expected family error is

1
N(F )

(α1 +α2 + · · ·+αN(F)). (11.1.4)

The importance of the probability of a nonzero family error rate and the expected fam-
ily error rate is that they are conceptually different from the Neyman-Pearson frame-
work and do not focus on ensuring that each individual test gives the right answer.
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Indeed, the count Nw(F ), as defined above, does not even distinguish between null
and alternative hypotheses. Below, the notions of null and alternative will be imposed
on testing problems, but it is not clear that this is logically necessary in general.

Arguably, the main limitation of classical testing is its emphasis on controlling the
per-test probability of making Type I errors because this causes a severe reduction in
the power of testing procedures when the number of tests grows larger. That is, as the
number of tests increases, the power of each individual test is substantially reduced
and may become unacceptably low. The effort to minimize the probability of making
even a single Type I error substantially reduces the overall coverage. In other words,
no matter what the α , the probability of at least one false positive goes to one as the
number of tests increases.

In effect, recent multiple testing procedures rest on the assumption that mistakes are
inevitable. So, it doesn’t make sense to seek rejection regions that correspond to es-
sentially no mistakes, but it does make sense to model the mistake-making process.
Hence, multiple testing often uses a relative measure in place of an absolute one that
tries to minimize or control mistakes rather than eliminate them.

11.1.2 Counts for Multiple Tests

Let Hi denote the null hypothesis for the test of the ith parameter. Then H1,H2, ...,Hm

are the null hypotheses of interest with alternatives taken as the negations of the His.
For each individual test above, the classical approach to testing is:

1. Prespecify Hi and the alternative.

2. Prespecify an acceptable significance level (Type I error rate) α .

3. Seek the most powerful test – the test with the smallest Type II error (β ), or highest
power (1−β ), among all the tests with the same α .

4. Collect the data.

5. See if the test statistic lands in the rejection region or not.

The possible outcomes of each test can be summarized in Table 11.1. However, when
m is large, it is likely that there will be many false positives (Type II errors), especially
when the null hypotheses are all true. So, rather than trying to eliminate them, consider
counting them. In fact, note that conditional on Hi being true, the outcome of a test,
reject Hi or do not reject Hi, amounts to a binomial. Similarly, if Hi is false, the decision
from a test is also a binomial. Combining the outcomes from these two possibilities
gives a contingency table that summarizes the counts from the individual tests. Let V
denote the number of true null hypotheses rejected (false positives), and let S be the
number of alternative hypotheses that are correctly declared significant (true positives).
The new summary is given in Table 11.2.

The sum R = V + S is the random variable that counts the number of rejected null
hypotheses, of which V is the number of false rejections and S is the number of correct
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Truth Decision

Do not Reject Hi Reject Hi

Hi is true Correct (1−α) Type I Error (α)

Hi is false Type II Error (β ) Correct (1−β )

Table 11.1 Summary of the possible outcomes of an individual hypothesis test.

Truth Decision Total

# Non Discoveries # Discoveries

(Null Not Rejected) (Null Rejected)

# True Null U V m0

# True Alternative T S m−m0

Total W R m

Table 11.2 Summary of the counts of outcomes for the m tests with m0 true nulls.

rejections. Likewise, W = U + T is the number of nonrejected nulls, of which U are
correct and T are incorrect. The number of true nulls is m0, so ideally there would be
m−m0 rejections and m0 nonrejections. However, S, T , U , V , and m0 are unobservable;
only m and R can be observed.

11.1.3 Measures of Error in Multiple Testing

As in classical testing of individual hypotheses, a reasonable multiple testing procedure
should keep the number of false positives (V ) and the number of false negatives (T ) as
small as possible in some sense. Also as in classical testing, it is typical to focus on
controlling the number of false positives, whether in absolute or relative terms. Thus,
most of the commonly used measures of error are generalizations of Type I error, as
can be seen from the following list:

• Family-wise error rate, FWER: For m simultaneous tests for which a joint deci-
sion is sought with an overall significance level α , the most widely used technique
in the classical approach to multiple testing has been to control

FWER = IP[V ≥ 1]. (11.1.5)

The FWER is the probability of declaring at least one false positive out of the m
hypotheses under consideration. It is the classical Type I error rate extended to
multiple hypotheses. So, for a given α , the classical criterion is expressible as

FWER≤ α.

• Per-comparison error rate, PCER: This is a Type I error rate defined as
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PCER =
E[V ]

m
.

The PCER is the expected number of Type I errors per hypothesis test.

• Per-family error rate, PFER: This is not really a rate, but the expected number of
Type I errors,

PFER = E[V ],

the numerator of the PCER. Really, the PFER is a frequency or count.

• False discovery rate, FDR: This is the expected proportion of falsely rejected null
hypotheses among the rejected null hypotheses. More formally, the FDR is

FDR = E

[
V
R
|R > 0

]
IP[R > 0].

If all the null hypotheses are true (i.e., m = m0) then controlling FDR coincides
with controlling FWER. One appeal of the FDR approach comes from the fact
that if m = m0 is not very likely, then the FWER criterion can be too stringent and
somewhat unrealistic, thereby reducing in test power.

• Positive false discovery rate, pFDR: This is yet another measure of Type I error
rate that addresses some limitations of the FDR by conditioning. It is defined as

pFDR = E

[
V
R
|R > 0

]
.

The pFDR is the rate at which discoveries are false, presuming a nonzero proba-
bility that there are “discoveries” to start with, hence the term positive. It is easy to
see that if Pr(R > 0)→ 1 as m→ ∞, then pFDR and FDR become identical.

Bayesian forms of the error in multiple testing will also be presented in Section 11.6.

Similar lists of types of errors and some of their properties can be found in Dudoit et al.
(2003) and in Ge et al. (2003), who also present many of their standard properties.

It has become customary to refer to rejected hypotheses as “discoveries”, although any
new, conclusive inference can claim to be a discovery. This terminology suggests that
only the probability of false rejection of the null has been controlled. Presumably, if
the probability of false rejection of the alternative were controlled, not rejecting the
null would also be a “discovery”.

Given the variety of measures of error in testing, it is of interest to compare them
theoretically and in practice. First, asymptotically in m, FDR≈ pFDR≈ E(V )/E(R),
the proportion of false positives. Another comparison is also nearly immediate: It can
be easily shown that

PCER≤ FDR≤ pFDR≤ FWER≤ PFER. (11.1.6)

However, it must be noted that these five measures may also differ in how much power
the testing procedures based on them have. Some of the measures tend to be more
stringent than others, leading to more conservative test procedures.
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11.1.4 Aspects of Error Control

In general, the concepts of a conservative test and p-value carry over to the multiple-
comparisons context. A test is conservative if it protects primarily against false rejec-
tion of the null, in the belief that the cost of Type I error is greater than that of Type
II error. It is conservatism that breaks the symmetry of the testing procedure because
a conservative test requires the Type I error rate to be less than the overall significance
level α , ignoring the Type II error rate. In practice, this leads to a reduction of test
power. Nonconservative tests, for instance tests that minimize the sum of the probabil-
ity of false rejection of the null and false rejection of the alternative, typically allow
for an increase in power in exchange for less control over the type I error rate.

The p-value is defined relative to a test that amounts to a collection of nested rejection
regions, {Γ }. Given a value t of a statistic T , the p-value for T = t is

p−value(t) = min
{Γ :t∈Γ }

IP[T ∈ Γ |H = 0],

where the notation H = 0 means that the hypothesis H is true. Typically, the regions
Γ are defined in terms of T . That is, the p-value is the lowest significance level for
which H would be falsely rejected for a future set of data using the regions {Γ } and a
threshold from the data gathered. Informally, it is the probability of seeing something
more discordant with the null than the data already gathered. In principle, it can be
computed for any test regions.

To extend these classical ideas to the multiple testing context, consider one hypothesis
Hi per parameter, with m parameters. Then, define random variables Hi for i = 1, ...,m
corresponding to the hypotheses by

Hi =
{

0, if the ith null hypothesis is true,
1, if the ith null hypothesis is false.

Now, let the set of indices of all the m hypotheses under consideration be denoted by
C = {1,2, · · · ,m}, and set N = {i : Hi = 0} and A = {i : Hi = 1}. These are the
indices corresponding to the sets of true null and true alternative hypotheses, respec-
tively. So, C = N ∪A . Note that m0 = |N | and m1 = m−m0 = |A | are unknown,
but m is known. Also, the set C is known, while the sets N and A are unknown and
must be estimated from the data. The set corresponding to the complete null hypothesis
is HC ,

HC =
m
∩

i=1
{Hi = 0},

which means that all m nulls are true. Parallel to this, HN is the collection of the m0

true nulls out of the m≥ m0 hypotheses being tested. Thus, HN is

HN =
⋂

i∈N

{Hi = 0}.

The importance of HN stems from the fact that the type of control exerted on the Type
I error rate will depend on the truth value of HN .
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In fact, the set of rejected hypotheses is an estimate of A just as the set of hypothe-
ses not rejected is an estimate of N . In this sense, multiple testing is a model se-
lection procedure. For instance, if the rejection of nulls is decided by a vector of
statistics Tn = (Tn,1, ...,Tn,m), where Tn,i corresponds to Hi, then the null distribu-
tion for T is determined under the complete (joint) null C and N is estimated by

ˆN = {i : Hi is rejected}= {i : |Tn,i| ≥ τi} for thresholds τi.

11.1.4.1 Kinds of Control

There are several ways to control hypotheses under a given choice of error assessment.
Here, these ways are presented in terms of the FWER, but the ideas apply to the other
error assessments, in particular FDR and pFDR.

For practical purposes, there are two kinds of control of the Type I error rate, weak
control and strong control, both of which are defined in terms of how the collection of
true null hypotheses HN is handled.

First, weak control for the FWER comes from a naive generalization of the p-value to
m simultaneous tests. So, consider the rate of falsely rejected null hypothesis condi-
tional on the complete null hypothesis HC being true. If FWER is the Type I error rate,
this translates into finding

IP[V > 0|HC ].

With m simultaneous tests, HC is just one out of the 2m possible configurations of
the null hypotheses. Clearly, controlling 1 out of the 2m is very little control since the
other 2m− 1 possibilities are unaccounted for, hence the expression weak control for
characterizing strategies that only account for the complete null hypothesis HC .

By contrast, strong control is when the Type I error rate is controlled under any com-
bination of true and false null hypotheses. The intuition here is that since HN is un-
known, it makes sense to include all 2m possible configurations ranging from the ones
with m0 = 1 to the one with m0 = m. Under strong control, one does indeed perform
complete multiple testing and multiple comparisons. This is clearly the most thorough
way to perform a realistic multiple testing procedure and can be done in many ways;
e.g., Bonferroni and Sidák, among others. However, in many other cases, strong con-
trol can require intensive computations for even moderately large m.

11.1.4.2 Terminology for Multiple Testing

If a sequence of hypothesis tests is to be performed, each individual test has a null, a
marginal p-value, and a marginal threshold for the p-value. The point of multiple test-
ing is to combine the marginal tests into one joint procedure to provide control of the
overall error. Once the joint procedure has been specified, the m tests are often done
stepwise (i.e., one at a time). However, the marginal thresholds are no longer valid.
One can either change the thresholds or transform the raw p-values, a process called
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adjustment. It will be seen that most of the popular techniques for multiple testing are
based on some form of adjustment. Although the adjustment may involve the joint dis-
tribution, these methods are often called marginal because they combine results from
the m tests. (Truly joint methods combine across tests by using a high-dimensional
statistic and comparing it with a null distribution but are beyond the present scope.)

There are two kinds of adjustments that are commonly applied to raw p-values in
stepwise testing. The simpler ones are called single-step: In a single step adjustment,
all the p-values from the m tests are subject to the same adjustment independent of
the data. Bonferroni and Sidák in the next section are of this type. Thus, stepwise
testing may use a single-step adjustment of the raw p-values. The more complicated
adjustments are called stepwise: In these, the adjustments of the p-values depend on
the data. Thus, stepwise testing may also use a stepwise adjustment of the raw p-
values. Note that the term stepwise has a different meaning when used to describe a
testing procedure than it does when describing an adjustment procedure.

Stepwise adjustments themselves are usually one of two types. Step-down methods
start with the most significant p-values (i.e., the smallest) test sequentially, reducing
the adjustment at each step, and stop at the first null not rejected. Step-down methods
do the reverse: They start with the least significant p-values (i.e., the largest) test se-
quentially, increasing the adjustment at each step, and stop at the first rejected null.
Step-down and step-up adjustments tend to be less conservative than single-step ad-
justments.

The notion of an adjusted p-value for a fixed testing procedure can be made more
precise. Fix n and consider a testing procedure based on statistics Ti for testing hy-
potheses Hi. If the tests are two-sided, the raw p-values are pi = IP(|Ti| ≥ ti|Hi = 0).
The adjusted p-value p̃i for testing Hi is the level of the entire procedure at which Hi

would just be rejected when Ti = ti, holding all the other statistics Tj, for j 	= i, fixed.
More explicitly, the adjusted p-values based on the optimality criteria in conventional
significance testing are

p̃i = inf
α∈[0,1]

{α | Hi is rejected at level α given t1, ..., tm}. (11.1.7)

These p̃is can be used to give an estimate ˆN of N . Note that the adjustment uses all
the values of ti for i = 1, ...,m, but the adjusted p-values still have a marginal interpreta-
tion. As will be seen below, the decision rule based on p̃is can sometimes be expressed
in terms of threshold functions Ti = Ti(p1, ..., pm) ∈ [0,1], where the ith hypothesis is
rejected if pi ≤ Ti(p1, ..., pm).

Expressions like (11.1.7) can be given for other optimality criteria in testing. For the
FWER, for instance, the adjusted p-values would be

p̃i = inf
α∈[0,1]

{α | Hi is rejected at FWER = α given t1, ..., tm}.

Other measures such as FDR or q-values have similar expressions. In the FWER situ-
ation, Hi would be rejected if p̃i ≤ α .
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11.2 Controlling the Familywise Error Rate

The vast majority of early multiple-comparisons procedures from ANOVA, such as
Tukey, Scheffe, studentized maximum modulus, and so forth, are single-step adjust-
ments of p-values to provide strong control of the FWER. By contrast, a goodness-of-
fit test in ANOVA that all the μis are zero, would be an instance of weak control with
FWER. Obviously, weak control is not enough for large studies involving thousands of
tests. The big problem with weak control is that as the number m of tests grows larger,
the probability of declaring false positives gets closer to 1 very fast even if all the null
hypotheses are true.

To dramatize this, if an experimenter performs one individual test at the α = 0.05
significance level, then the probability of declaring the test significant under the null
hypothesis is 0.05. In this case, FWER ≤ α . However, if the same experimenter per-
forms m = 20 independent tests, each at level 0.05, then the probability of declaring at
least one of the tests significant is

FWER = 1− (1−α)2 = 1−0.952 = 0.0975 > 0.05 = α,

nearly twice the level, even though all the null hypotheses are assumed true. It
gets worse as m gets larger. In fact, with m = 20 tests, this probability becomes
1− (1−α)20 = 0.642 for the experimenter to reject at least one correct null. Thus,
the probability of declaring at least one of the tests significant under the null converges
quickly to one as m increases. This means that if each individual test is required to have
the same significance level α , the overall joint test procedure cannot have FWER≤ α .

In practice, this means that tests have to be adjusted to control FWER to the desired
size. One way to do this is to adjust the threshold αi for the p-value of test i to ensure
that the entire study has a false positive rate no larger than the prespecified overall
acceptable Type I error rate α . Unfortunately, all the classical techniques aimed at
achieving strong control of the FWER that achieve FWER ≤ α turn out to be quite
conservative for large m.

11.2.1 One-Step Adjustments

As noted, the Bonferroni correction is the simplest and most widely used technique for
implementing a strong control of FWER. It uses the threshold αi = α/m for each test,
thereby guaranteeing that the overall test procedure has FWER≤ α .

BONFERRONI CORRECTION FOR m TESTS: For each null hypothesis Hi out of the
m hypotheses under consideration:

� Compute the unadjusted p-value pi.

� Compute the adjusted p-value p̃i with
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p̃i = min(mpi,1).

� Reject Hi if p̃i ≤ α or equivalently pi ≤ α/m.

The Bonferroni correction on m independent tests always achieves FWER < α under
the null hypotheses. For instance, let α = 0.05. With m = 2, one has FWER = 1−
(1− 0.05/2)2 = 0.0494 < 0.05 = α . For m = 10, the control is still achieved since
one has FWER = 1− (1− 0.05/10)10 = 0.0489 < 0.05 = α . For m = 20, the same
applies; i.e., FWER = 1− (1−0.05/20)20 ≈ e−.05 ≈ 0.0488 < 0.05 = α . Bonferroni,
like Sidák below, is conservative with respect to individual hypotheses but not very
conservative overall in the independent case. The practical appeal of Bonferroni lies in
its simplicity and its symmetric treatment of the null hypotheses.

Another adjustment technique that allows control of the FWER within a prespecified
level is the Sidák adjustment:

SIDÁK ADJUSTMENT FOR m TESTS: For each null hypothesis Hi out of the m
hypotheses under consideration:

� Compute the unadjusted p-value pi.

� Compute the adjusted p-value p̃i with

p̃i = min(1− (1− pi)m,1).

� Reject Hi if p̃i ≤ α or equivalently pi ≤ 1− (1−α)1/m .

Unfortunately, with αi = 1− (1−α)1/m decreasing as m gets larger, Sidák is just as
conservative as Bonferroni. Essentially, the only difference between Bonferroni and
Sidák is that the first is additive and the second multiplicative in their single-step slicing
of the overall significance level. The price paid for guaranteeing FWER <α in the case
of strategies like Bonferroni and Sidák is a substantial reduction in the ability to reject
any null hypothesis, as αi =α/m becomes ever smaller as m grows. In other words, the
power of the overall test is dramatically reduced for this type of single-step adjustment.

11.2.1.1 Two More One-Step Adjustments

Westfall and Young (1993) propose two, more elaborate, single-step p-value adjust-
ment procedures that are less conservative and also take into account the dependence
structure among the tests. Let Pi denote the p-value from test i as a random variable so
that, under the null Hi, Pi is Uni f orm[0,1] when Hi is exact. Then, it makes sense to
compare Pi with pi, the p-value obtained from the specific data set. Their first adjust-
ment is known as the single-step minP, which computes the adjusted p-values as

p̃i = IP

[
min

l=1,··· ,m
Pl ≤ pi

∣∣∣HC

]
. (11.2.1)
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Their second single-step adjustment is known as the single-step maxT and computes
the adjusted p-values as

p̃i = IP

[
max

l=1,··· ,m
|Tl | ≥ |ti|

∣∣∣HC

]
. (11.2.2)

Both of these provide weak control under the complete null; under extra conditions,
they give strong control (see Westfall and Young (1993), Section 2.8). Comparisons
among Bonferroni, Sidák, minP, and maxT tend to be very detailed and situation-
specific; see Ge et al. (2003).

11.2.1.2 Permutation Technique for Multiple Testing

Often minP and maxT are used in a permutation test context in which the distribution of
the test statistic under the null hypothesis is obtained by permuting the sample labels.
To see how this can be done in a simple case, recall that the data form an m×n matrix.
Of the n subjects in the sample, suppose that n1 are treatments and n2 are controls.
The gist of the permutation approach in this context is to create permutations of the
control/treatment allocation in the original sample. With that, there are

B =
(

n
n1

)
=
(

n1 +n2

n1

)
=

n!
n1!n2!

permutations of the labels, so that in principle B different samples have been generated
from the data. If the statistic for test i is Ti with realized values ti, then the following
table shows all the sample statistics that can be computed from all the permutations,
denoted Perm 1,...,B. The notation var i is meant to indicate the variable from the i-th
measurement in a sample in the experiment. For instance in genomics, this would be
the i-th gene and the outcome ti of Ti could be the usual t-test for testing the difference
of means in two independent normal samples with common variance.

Perm 1 Perm 2 · · · Perm b · · · Perm B
var 1 t11 t12 · · · t1b · · · t1B

var 2 t21 t22 · · · t2b · · · t2B
...

...
... · · ·

...
. . .

...
var i ti1 ti2 · · · tib · · · tiB

...
...

... · · ·
...

. . .
...

var m tm1 tm2 · · · tmb · · · tmB

In a typical multiple testing setting, the following template describes how the adjusted
p-values are computed for the single-step maxT procedure.



11.2 Controlling the Familywise Error Rate 693

Create B permutations of labels for b = 1, · · · ,B.

� Pick the bth permutation out of B possibilities; for i = 1, · · · ,m, compute the test
statistics tib.

� For i = 1, · · · ,m, set p∗i =
#{b : maxi |tib| ≥ |ti|}

B
.

The p∗i from the pseudocode is the estimate of p̃i in (11.2.2). A similar procedure for
(11.2.1) can be used; just compute p∗i as p∗i = #{b : mini pib ≤ pi}/B. For instance,
if the minimal unadjusted p-value is pmin = .003, then count how many times the
minimal p-value from the permuted sample label pseudodata sets is smaller than .003.
If this occurs in 8% of these B data sets, then p̃min = .08.

In general, even though minP and maxT are less conservative (outside of special cases)
than Bonferroni or Sidák, they remain overly conservative. This seems to be typical for
single-step adjustment procedures, but see Dudoit et al. (2003) and Pollard and van der
Laan (2004) for further results. Improving on single-step procedures in the sense of
finding related procedures that are less conservative but still effective seems to require
stepwise adjustment procedures.

11.2.2 Stepwise p-Value Adjustments

To illustrate the idea behind step-down procedures, let p(i) for i = 1, ...,m be the order
statistics from the p-values from m tests. The procedure in Holm (1979) is essentially
a step-down version of Bonferroni that is as follows. For weak control of the FWER at
level α , start with i = 1 and compare p(1) with α/(m−1+1), p(2) with α/(m−2+1),
and so forth. Thus, the thresholds for the ordered pis increase as the p(i)s do. Identify
the first value i0 for which the i0th order statistic exceeds its threshold, p(i0) > α/(m−
i0 +1), indicating nonrejection of H(i), where the ordering on the hypotheses matches
that of the p-values. Then, reject H(1),...,H(i0−1) but do not reject H(i0),...,H(m). If there
is no i0, then all the His can be rejected. If i0 = m, then no hypotheses can be rejected.
It can be verified that the Holm step-down adjusted p-values are

p̃(i) = max
k=1,...,i

min((m− k +1)p(k),1), (11.2.3)

which shows that the coefficient on the ordered p-values increases rather than being
constant, m at each step, as in Bonferroni. Note that, as i increases, the maximum in
(11.2.3) is taken over a larger and larger set so that p̃i ≤ p̃i+1. This means that rejection
of a hypothesis necessitates the rejection of the hypotheses corresponding to the earlier
order statistics.

A similar extension to a step-down procedure can be given for the Sidák adjustment.
The comparable expression to (11.2.3) is

p̃(i) = max
k=1,...,i

1− (1− p(i))
m−k+1, (11.2.4)
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in which the factor becomes an exponent, analogous to the difference between the
single-step versions of Bonferroni and Sidák. Indeed, in applications, for both the sin-
gle step (see the two boxes) and step-down, (11.2.3) and (11.2.4), versions of the Bon-
ferroni and Sidák testing procedures, the raw p-values denoted pi can be replaced with
the p∗i versions obtained from the permutation technique.

Following Ge et al. (2003) or Dudoit et al. (2003), the minP and maxT single-step
procedures also extend to step-down procedures, giving adjusted p-values analogous
to those in (11.2.1) and (11.2.2). These guarantee weak control of the FWER in all
cases and strong control under additional conditions. The maxT step-down adjustment
for the p-values is

p̃(i) = max
k=1,··· ,i

{
IP
[

max
u=k,··· ,m

|T(u)| ≥ |t(k)|
∣∣∣HC

]}
, (11.2.5)

and the minP step-down adjustment for the p-values is

p̃(i) = max
k=1,··· ,i

{
IP
[

min
u=k,··· ,m

P(u) ≤ p(k)

∣∣∣HC

]}
. (11.2.6)

Under some conditions, the minP procedure reduces to Holm’s procedure, but more
generally Holm’s procedure is more conservative than minP, as one would expect by
analogy with Bonferroni.

11.2.2.1 Permutation Techniques for Step-down minP and maxT

The computational procedure given for the single-step adjusted p-values for maxT and
minP is too simple for the step-down method because there is an optimization inside
the probability as well as outside the probability in (11.2.5) and (11.2.6). Consequently,
there is an extra procedure to evaluate the maximum and the minimum, respectively.
Since the two cases are analogous, it is enough to describe minP; see Ge et al. (2003).

WESTFALL AND YOUNG MINP STEP-DOWN PROCEDURE: For each null hypoth-
esis Hi out of the m hypotheses under consideration:

� Compute the unadjusted p-values pi from the data.

� Generate all the B permutations of the original sample of the n data points.

� For each permutation, compute the order statistic from the raw p-values,

p(1),b, ..., p(m),b, b = 1, ...,B.

� Find all m values of the successive minima, qi,b = mink=i,...,m p(k),b, based on the
raw p-values from the bth permutation:
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For i = m, set qm,b = p(m),b and, for i = m− 1, ....,1, recursively set qi,b =
min

(
qi+1,b, p(i),b

)
.

� From the B repetitions of this, find

p̃(i) = #({b : qi,b ≤ p(i)})/B

for i = 1, ...,m.

� Enforce monotonicity on the p̃(i)s by using p̃∗(i) = max{p̃(1), ..., p̃(i)}.

The maxT case is the same apart from using the appropriate maximization over sets de-
fined by permutations of the statistics in place of the p-values; the maxT and minP are
known to be essentially equivalent when the test statistics are identically distributed. In
practice, maxT is more computationally tractable because typically estimating prob-
abilities is computationally more demanding than estimating test statistics. Ge et al.
(2003), however, give improved forms of these algorithms that are more computation-
ally tractable; see also Tsai and Chen (2007).

In general, the permutation distribution of Westfall and Young (1993) gives valid ad-
justed p-values in any setting where a condition called subset pivotality holds. The
distribution of P = (P1, ...,Pm) has the subset pivotality property if and only if the joint
distribution of any subvector (Pi1 , ...,PiK ) of P is the same under the complete null HC

as it is under ∩K
j=1Hi j . Essentially, this means that the subvector distribution is unaf-

fected by the truth or falsehood of hypotheses not included. When subset pivotality is
satisfied, it implies that upper bounds on conditional probabilities of events defined in
terms of subvectors of P, given HC , give upper bounds on the same events conditional
only on the hypotheses in the subvector; see Westfall and Young (1993), Section 2.3.
Consequently, whether the test is exact and has Pi ∼Uni f orm[0,1], or is conservative
in which Pi is stochastically larger than Uni f orm[0,1] is not really the issue for validity
of the permutation distribution even though it is valid. In fact, the permutation distri-
bution is valid even for tests that have Pi stochastically smaller than Uni f orm[0,1].

The benefit of step-down procedures, and their step-up counterparts, is that they are a
little less conservative and have more power than single-step procedures. This arises
from the way in which the adjusted p-values tie the m tests together. There is also
some evidence that this holds in large m, small n contexts. It will be seen that the
FDR paradigm achieves the same goal as Westfall and Young (1993) but for a different
measure of Type I error. Step-down testing for FWER is studied in Dudoit et al. (2003).

11.3 PCER and PFER

The central idea of PCER or PFER is to apportion the error level α for m tests to the
tests individually. Informally, roughly it’s as if each test is allowed to have αi error
associated with falsely rejecting the null in the ith test. In other words, the value of V
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is composed of the errors of the individual tests, and the task is to choose the αis so
they add up to α overall.

The techniques for how to do this for PCER or PFER given in this section are from
the important contribution by Dudoit et al. (2003). Although the development here is
for PFER and PCER, the techniques apply to any measure of Type I error rate that
can be expressed in terms of the distribution of V , including FWER, the median-based
PFER, and the generalized FWER; the last two measures of error rate are not explicitly
studied here. On the other hand, the false discovery rate to be presented in the next
section cannot be expressed as an operator on V because it involves R as well.

PCER can be expressed in terms of the distribution of V because if Fn is the distribu-
tion function of V , having support on {1, ...,m}, then PCER =

∫
vdFn(v)/m; PCER is

similar. Observe that for, one-sided tests, the set N is estimated by

Sn = {i : Tn,i > τi},

where the threshold τi = τi(Tn,Q0,α). Note that Sn = S(Tn,Q0,α), where Q0 is the dis-
tribution assigned to T under the null. In terms of Table 1.2, the number of hypotheses
rejected is R = Rn = #(Sn), and the number not rejected is #(Sc

n) = m−#(Sn). The key
variable is V = Vn = #(Sn∩S0), where S0 = S0(IP) is the number of nulls that are true
when IP is the true distribution, so m0 = #(S0) and m1 = m−m0 = #(Sc

0).

11.3.1 Null Domination

Write IP to mean a candidate probability for the data in a testing problem. The dis-
tribution of a test statistic T = (T1, . . . ,Tm) based on n data points can be denoted
Q = Qn(IP) and contrasted with the null Q0 used to get level α cutoffs for T . Note that
Q0 need not be Q(IP) for any IP and that testing procedures are very sensitive to the
choice of Q0; see Pollard and van der Laan (2004).

To be explicit, note that there is a big conceptual distinction between

Rn = R(S(Tn,Q0,α)|Qn(IP)); Vn = V (S(Tn,Q0,α)|Qn(IP)),

the number of rejected and the number of falsely rejected hypotheses when IP is true
and

R0 = R(S(Tn,Q0,α)|Q0); V0 = V (S(Tn,Q0,α)|Q0),

the same quantities when Q0 is taken as true.

If IP0 is the null distribution in an exact test then it may make sense to set Q0 = Qn(IP0).
However, more generally it is difficult to obtain reliable testing procedures unless it can
be ensured that controlling the Type I error under Q0 implies that the Type I error under
the IPs in the null is controlled at the same level. One way to do this is to require that
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R0 ≥V0 ≥Vn; (11.3.1)

i.e., the number of rejected hypotheses under Q0 is bounded below by the number of
falsely rejected hypotheses under Q0 (a trivial bound), which in turn is bounded below
by the number of falsely rejected hypotheses under the true distribution. Note that the
random variables in (11.3.1) only assume values 0, 1,.., m.

Expression (11.3.1) can be expressed in terms of distribution functions denoted FX for
random variable X as

∀s : FR0(s)≤ FV0(s)≤ FVn(s), (11.3.2)

which is the usual criterion for “stochastically larger than”. Expression (11.3.2) is the
null domination condition for the number of Type I errors.

Recall that PFER and PCER are error criteria that can be regarded as parameters of
the distribution function. Indeed, PCER and PFER can be expressed as increasing
functions of the distribution function. This ensures that bounding the error of Vn also
provides a bound on the error under R0. That is, for the case of PFER,

PFER(FVn)≤ PFER(FV0)≤ PFER(FR0),

and if the right is bounded by α , so is the left.

The null domination condition can also be expressed in terms of statistics. Form the
subvector Tn,S of Tn consisting of those Tn, j for which j ∈ S0 and consider two distri-
butions for T . First, Tn ∼ Q0, a null chosen to give useful cutoffs. Second, if IP0 is the
true distribution, then Tn ∼ Qn = Qn(IP0). Now, the domination condition relates Q0

and Qn by the inequality

Qn(Tn, j ≤ τ j, j ∈ S0)≥ Q0(Tn, j ≤ τ j, j ∈ S0).

That is, if the left-hand side is small (indicating rejection), then the right-hand side is
small also.

11.3.2 Two Procedures

For single-step procedures, which are the main ones studied to date for PFER and
PCER, Dudoit et al. (2003) propose a generic strategy that can be implemented in two
ways. It is the following.

DUDOIT, VAN DER LAAN, AND POLLARD GENERIC STRATEGY:

� To control the Type I error rate PCER(FVn) for Tn ∼ Qn(IP), find a testing null
Q0 that satisfies

PCER(FVn)≤ PCER(FV0).
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� By the monotonicity of PCER as a parameter of a distribution, since V0 ≤ R0,
FV0 ≥ FR0 , so PCER(FV0)≤ PCER(FR0).

� Control PCER(FR0), which correspond to the observed number of rejections un-
der Q0. That is, assume Tn ∼ Q0, and ensure PCER(FR0)≤ α .

Note that the first two steps are conservative; often the bound will not be tight in the
sense that PCER(FR0)≤ α may mean PCER(FVn) < α .

This generic strategy can be implemented in two different ways, the common quantile
and common cutoff versions. They correspond to choosing rejection regions for the
His with thresholds representing the same percentiles with different numerical cutoffs
or rejection regions with the same cutoffs but different percentiles.

11.3.2.1 Common Quantiles: Single Step

The common quantile version of the Dudoit et al. (2003) generic strategy is to define
a function δ = δ (α) that will be the common quantile for the m hypotheses. Then, the
null Hj for j = 1, ...,m is rejected when Tn, j exceeds the δ (α) quantile of the testing
null Q0, say τ j(Q0,δ (α)). The function δ translates between the overall level α and
the common level of the m tests. Therefore, to control the Type I error rate PCER(FVn)
at level α , δ (α) is chosen so that PCER(FR0) is bounded by α . Note that FR0 is the
distribution for the observed number of rejections R0 when Q0 is assumed true. That
is, Q0 is used to set the thresholds for testing Hi.

Suppose this procedure is used and the null Hj is rejected when Tn, j > τ j, where the
τ j = τ j(Q0,α) are quantiles of the marginals Q0, j from Q0 for Tn. Gathered into a
single vector, this is τ = (τ1, ...,τm). So, the number of rejected hypotheses is

R(τ|Q) =
m

∑
j=1

1{Tn, j>τ j}, (11.3.3)

and the number of Type I errors among the R(τ|Q) rejections is

V (τ|Q) = ∑
j∈S0

1{Tn, j>τ j}, (11.3.4)

although S0 is not known. As before, following Dudoit et al. (2003), Rn, Vn, R0, and V0

are the versions of R and V with the true (but unknown) distribution Qn = Qn(IP) and
the testing null Q0 in place of Q in (11.3.3) and (11.3.4). That is,

Rn = R(τ|Qn), Vn = V (τ|Qn), R0 = R(τ|Q0), V0 = R(τ|Q0). (11.3.5)

Now, the Dudoit et al. (2003) single-step common quantile control of the Type I er-
ror rate PCER(FVn) at level α is defined in terms of the common quantile cutoffs
τ(Q0,α) = (τ1(Q0,δ (α)), ...,τm(Q0,δ (α))), where δ (α) is found under Q0. Their
procedure is the following.
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� Let Q0 be an m-variate testing null, let δ ∈ [0,1], and write

τ = (τ1(Q0,δ ), ...,τm(Q0,δ ))

to mean a vector of δ -quantiles for the m marginals of Q0. Formally, if Q0, j is the
distribution function of the jth marginal from Q0, this means

τ j(Q0,δ ) = Q−1
0, j(δ ) = inf{x|Q0, j(x)≥ δ}.

� Given the desired level α , set

δ = δ (α) = inf{δ |PCER(FR(τ(Q0,δ )|Q0))≤ α},

where R(τ(Q0,δ )|Q0) is the number of rejected hypotheses when the same quantile
is used for each marginal from Q0.

� The rejection rule is: For j = 1, ...,m,

Reject the null Hj when Tn, j > τ j(Q0,δ (α)).

Equivalently, estimate the set of false hypotheses by the set

S(Tn,Q0,α) = { j|Tn, j > τ(Q0,δ (α))}.

This procedure is based on the marginals, largely ignoring dependence among the
Tn, js. Moreover, its validity rests on the fact that PCER(F) is a continuous function of
distributions F and that if F ≥ G then, PCER(F)≤ PCER(G).

11.3.2.2 Common Quantiles: Adjusted p-Values

Single-step common quantile p-values can be converted into adjusted p-values. The
conversion presented in this subsection assumes Q0 is continuous and the marginals
Q0, j have strictly increasing distribution functions. While these conditions are not nec-
essary, they do make the basic result easier to express. Recall that the raw p-value
p j = p j(Q0) for testing the null Hi under Q0 can be represented as

p j = 1−Q0, j(Tn, j) = Q̄0, j(Tn, j)

for j = 1, ...,n. Thus, the common quantile method uses thresholds

τ j(Q0,1− p j) = Q−1
0, j(1− p j) = Q̄−1

0, j(p j) = Q̄−1
0, j(Q̄0, j(Tn, j)).

Indeed, τ j(Q0,1− p j) = Tn, j. Now, the adjusted p-values for the common quantile
procedure can be stated explicitly.

Proposition (Dudoit et al. 2003): The adjusted p-values for the single-step common
quantile procedure for controlling the Type I error rate under PCER using Q0 are
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p̃ j = PCER(FR(τ j(Q0,1−p j)|Q0)).

Equivalently, the set of false hypotheses is estimated by the set

S(Tn,Q0,α) = { j : p̃ j ≤ α}. (11.3.6)

Proof: Recall that, for fixed Q0, the function φ : δ → φ(δ ) = PCER(FR(τ(Q0,δ )|Q0)) is
monotonically increasing so its inverse φ−1 exists and

φ−1(α) = inf{δ |φ(δ )≤ α}.

So, the common quantile cutoffs can be written

τ j(Q0,δ (α)) = Q−1
0, j(δ (α)) = Q−1

0, j(φ
−1(α)).

Now, the adjusted p-values are

p̃ j = inf{α ∈ [0,1] : τ j(Q0,δ (α)) < Tn, j}
= sup{α ∈ [0,1] : Q−1

0, j(φ
−1(α)) < Tn, j}

= sup{α ∈ [0,1] : φ−1(α) < Q0, j(Tn, j)}
= sup{α ∈ [0,1] : α < φ(Q0, j(Tn, j))}
= φ(Q0, j(Tn, j) = φ(1− p j)
= PCER(FR(τ j(Q0,1−p j)|Q0)), (11.3.7)

as claimed. The second part follows from the definitions. �

11.3.2.3 Common Cutoffs: Single Step

The Dudoit et al. (2003) generic strategy can be implemented as a common cutoff
procedure as well. The common cutoff procedure is simpler: Reject the null Hj when
Tm, j > c(Q0,α), where α satisfies PCER(FR0)≤ α .

As before, the single-step common cutoff procedure for controlling the Type I error
rate PCER(FVn) at level α is defined in terms of the common cutoffs c(Q0,α) and can
be given as follows.

Let Q0 be an m-variate testing null and let α ∈ (0,1) be the desired level.

� Define the common cutoff c(Q0,α) by

c(Q0,α) = inf{c|PCER(FR((c,...,c)|Q0))≤ α},

where R((c, ...,c)|Q0) is the number of rejected hypotheses for the common cut-
off c under Q0 for Tn.

� The rejection rule is: For j = 1, ...,m,
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Reject the null Hj when Tn, j > c(Q0,α).

� The set of false hypotheses is estimated by

S(Tn,Q0,α) = { j|Tn, j > c(Q0,α)}.

The single-step common cutoff and common quantile procedures here reduce to the
single-step minP and maxT procedures based on ordering the raw p-values or test
statistics; see Dudoit et al. (2003).

11.3.2.4 Common Cutoffs: Adjusted p-Values

The single-step common cutoff p-values can be converted into adjusted p-values as
was the case with single-step common quantiles. Again, the conversion assumes Q0

is continuous and the marginals Q0, j have strictly increasing distribution functions.
These conditions are not necessary, but they do make the basic result easier to express.

Proposition (Dudoit et al. 2003): The adjusted p-values for the single-step common
cutoff procedure for controlling the Type I error rate under PCER using Q0 are

p̃ j = PCER(FR((Tn, j ,...,Tn, j)||Q0)) (11.3.8)

for j = 1, ...,m. Equivalently, the set of false hypotheses is estimated by the set

S(Tn,Q0,α) = { j : p̃ j ≤ α}. �

The proof is omitted; it is similar to that of the common quantile case. Indeed, much of
the difference is a reinterpretation of the notation. For instance, note that in (11.3.8),
the expression for p̃ j, the common cutoff Tn, j appears m times in the argument of R and
the set estimation expression is the same as in (11.3.6), although the adjusted p-values
are from (11.3.8) rather than from (11.3.6).

Overall, choosing between common quantile and common cutoff procedures is a mat-
ter of modeling, outside of special cases. For instance, the two procedures are equiva-
lent when the test statistics Tn, j are identically distributed. More generally, the proce-
dures give different results because the m tests are either done at different levels (and
hence weighted in importance) or are done at the same level (implying all tests are
equally important in terms of the consequences of errors). As a generality, common-
quantile based procedures seem to require more computation than common cutoff
based procedures; this may make common quantile methods more sensitive to the
choice of Q0. This may force common quantile procedures to be more conservative
than cutoff-based methods.



702 11 Multiple Testing

11.3.3 Controlling the Type I Error Rate

It can be proved that the single-step common quantile and common cutoff tests are
asymptotically level α; this is done in the first theorem below. There are several as-
sumptions; the most important one is that Vn is stochastically smaller than V0. Verifying
that this condition is satisfied is not trivial: It rests on constructing a satisfactory testing
null Q0. Accordingly, it is important to identify sufficient conditions for a satisfactory
Q0 to exist. This is the point of the second theorem in this subsection.

Unfortunately, while these results enable identification of a PCER level α test, they do
not say anything about whether the PCER for any element in the alternative is small.
That is, the analog of power for Neyman-Pearson testing, which leads to unbiasedness
of tests, has not been examined for PCER. Nevertheless, if the dependence of the
behavior on the test statistics Tn, j depends on IP strongly enough, it is reasonable to
conjecture that the analogs of power and unbiasedness from Neyman-Pearson testing
can be established for the Dudoit et al. (2003) methods.

11.3.3.1 Asymptotic PCER Level

Recall that the generic procedure compares Vn with V0 and then compares V0 with R0.
The second of these is trivial because V0≤R0 by definition. So, it is enough to focus on
the first. Restated, this is the requirement that the number of Type I errors, Vn under the
true m-dimensional distribution Qn = Qn(IP) for the test statistics Tn, j be stochastically
smaller, at least asymptotically, than the number of Type I errors V0 under the testing
null Q0. Formally, this means

∀x liminf
n→∞

FVn(x)≥ FV0(x).

In the present setting, this can be written in terms of events of indicator functions.
The criterion becomes that the joint distribution Qn = Qn(IP) of the test statistics Tn

satisfies an asymptotic null domination property when compared with Q0,

liminf
n→∞

PQn

(
∑
j∈S0

1Tn, j>c j ≤ x

)
≥ PQ0

(
∑
j∈S0

1Z j>c j ≤ x

)
, (11.3.9)

for all x = 0, ...,m and all c = (c1, ...,cm), where Z ∼ Q0 = Q0(IP).

The proof that the single-step common quantile procedure is level α also requires the
monotonicity of PCER; i.e., given two distribution functions F1 and F2,

F1 ≥ F2 ⇒ PCER(F1)≤ PCER(F2), (11.3.10)

where the ≥ on the left holds in the sense of stochastic ordering and the representation
of the PCER as a functional with a distribution function argument is continuous. The
continuity can be formalized as requiring that, for any two sequences of distribution
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functions Fk and Gk,

lim
k→∞

d(Fk,Gk) = 0⇒ lim
k→∞

(
PCER(Fk)−PCER(Gk)

)
= 0 (11.3.11)

for some metric d. One natural choice is the Kolmogorov-Smirnov metric, d(F,G) =
supx |F(x)−G(x)|. Since the distribution functions of concern here only assign mass
at x = 0,1, ...,m, any metric that ensures the two distribution functions match at those
points will make the representation of PCER continuous as a functional.

The level α property of the single-step common quantile procedure can now be stated
and proved.

Theorem (Dudoit et al., 2003): Suppose there is a random variable Z so that (11.3.9)
holds. Also, assume that (11.3.10) and (11.3.11) hold. Then the single-step procedure
with common quantile cutoffs given by c(Q0,α) = τ(Q0,δ (α)) gives asymptotic level
α control over the PCER Type I error rate,

limsup
n→∞

PCER(FVn)≤ α. (11.3.12)

The number of Type I errors for Tn ∼ Qn(P) is

Vn = V (c(Q0,α)|Qn) = ∑
j∈S0

1Tn, j>c j(Q0,α).

Proof: By construction, V0 ≤ R0. So, FV0(x)≥ FR0(x), and so

PCER(FV0)≤ PCER(FR0)≤ α (11.3.13)

when the cutoffs c(Q0,α) = τ(Q0,δ (α)) are used to ensure PCER(FR0) ≤ α . The
theorem will follow if

limsup
n→∞

PCER(FVn)≤ PCER(FV0). (11.3.14)

To see (11.3.14), write

FVn = FV0 +(FVn −FV0)≥ FV0 +min(0,FVn −FV0).

By (11.3.9), liminfFVn ≥ FV0 , so

lim
n→∞

(FV0(x)+min(0,FVn −FV0)(x)) = FV0(x)

since the limit exists. Using (11.3.11) gives

lim
n→∞

PCER(FV0 +min(0,FVn −FV0)) = PCER(FV0).

By (11.3.10),
PCER(FVn)≤ PCER(FV0 +min(0,FVn −FV0)),
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and so

limsup
n→∞

PCER(FVn)≤ lim
n→∞

PCER(FV0 +min(0,FVn −FV0)) = PCER(FV0). �

It is not hard to see that, under the same conditions, the single-step common cutoff pro-
cedure is also level α . Moreover, it is straightforward to see that the key assumptions
satisfied by PCER or PFER that make the proof possible are also satisfied by FWER
and other criteria. Therefore, level α tests for common quantile procedures for those
criteria can also be found.

11.3.3.2 Constructing the Null

The remaining gap to be filled for the common quantile and common cutoff procedures
for PCER and PFER is the identification of Q0. Essentially, asymptotic normality can
be invoked provided a suitable shift is made to ensure Vn is stochastically smaller
than V0 and hence R0. Once this is verified, a bootstrap procedure can be used to give
an estimate of Q0. The central result is the identification of a limiting procedure that
relates the statistics Tn, j to the criterion (11.3.9).

To state the theorem, suppose there are vectors λ = (λ1, ...,λm) and γ = (γ1, ...,γm)
with γ j ≥ 0 that bound the first two moments of Tn for j ∈ S0. That is, when j indexes
a true null hypothesis Hj,

limsup
n→∞

E Tn, j ≤ λ j (11.3.15)

and

limsup
n→∞

Var(Tn, j)≤ γ j. (11.3.16)

The λ js will be used to relocate the Tn, js into random variables Zn, j that are stochas-
tically larger. The γ js will be used to rescale the relocated Tn, js so their standardized
form will have a limiting distribution that does not degenerate to a single value.

To do this, let

ν j = νn, j =

√
min

(
1,

γ j

Var(Tn, j)

)
, (11.3.17)

and set

Zn, j = Z j = ν j (Tn, j +λ j−E(Tn, j)) (11.3.18)

for j = 1, ...,m. The key assumption for the theorem will be that Zn = (Z1, ...,Zm)
has a well-defined limiting distribution. Although (11.3.17) supposes that the Tn, js are
scaled appropriately to make their variances converge to a (usually nonzero) constant,
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expression (11.3.17) also ensures that a gap between the limit superior and the upper
bound on the variance will not generally affect the limiting distribution of Zn. The
following theorem establishes that the assumption (11.3.9) holds in general.

Theorem (Dudoit et al., 2003): Suppose that IP is the true probability measure and
that, for some m-dimensional random variable Z,

Zn ⇒ Z ∼ Q0(IP). (11.3.19)

Then, for Q0 = Q0(IP), (11.3.9) is satisfied for any x and c js. That is, for Qn = Qn(IP),

liminf
n→∞

Qn

(
∑
j∈S0

1Tn, j>c j ≤ x

)
≥ Q0

(
∑
j∈S0

1Z j>c j ≤ x

)
. (11.3.20)

Proof: Consider a vector Z̄n = (Z̄n, j : j ∈ S0), with entries corresponding to the true
hypotheses S0 in which

Z̄n, j = Z̄ j = Tn, j +max(0,λ j−ETn, j).

By construction, Tn, j ≤ Z̄ j.

From (11.3.15) and (11.3.16) for j ∈ S0, it is seen that limn νn, j = 1 and that Z̄n and Zn

have the same limiting distribution Z. That is,

Z̄ ⇒ Z ∼ Q0,S0 ,

where Q0,S0 indicates the marginal joint from Q0 corresponding to S0. Letting P denote
the probability of Z̄, the limiting property of Z̄ and the upper bound on Tn give

liminf
n→∞

Qn

(
∑
j∈S0

1Tn, j>c j ≤ x

)
≥ liminf

n→∞
P

(
∑
j∈S0

1Z̄ j>c j
≤ x

)

= Q0,S0

(
∑
j∈S0

1Z j>c j ≤ x

)
(11.3.21)

for any vector of c js and any x. �
In some cases, Q0 can be a mean-zero normal. However, the scaling per se is not
needed to get level α so much as the relocating to ensure the stochastic ordering. A
consequence of this theorem is that the λ js and γ js only depend on the marginals for
the Tn, js under the true hypothesis; in many cases, they can be taken as known from
univariate problems. Dudoit et al. (2003) Section 5 use t-statistics and F-statistics as
examples and replace the λ js and γ js by estimators.

Even given this theorem, it remains to get a serviceable version of Q0 and derive the
cutoffs from it. This can be done by bootstrapping. A thorough analysis of this is
given in Dudoit et al. (2003) Section 4, ensuring that the bootstrapped quantities are
consistent for the population quantities. This analysis largely boils down to making
sure that the bootstrapped version of Q0 converges to Q(IP) for the true distribution
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IP, essentially a careful verification that empirical distributions converge to their lim-
its uniformly on compact sets. As a consequence, the following procedure gives the
desired construction for the estimate of a testing null Q0:

� Generate B bootstrap samples X1,b, ...,Xn,b. For fixed b, the Xi,bs are n IID realiza-
tions.

� From each of the B samples, find the test statistics Tn,b = (Tn,b,1, ...,Tn,b,m). This
gives an m×B matrix T as in the permutation technique in Section 2.1.

� The row means and variances of T give m estimates of ETn, j and Var(Tn, j) for
j = 1, ...,m.

� Use the means and variances from the last step, together with user-chosen values λ j

and γ j for j = 1, ...,m, to relocate and rescale the entries in T by (11.3.18). Call the
resulting matrix M.

� The empirical distribution from the columns Mb,n of M is the bootstrap estimate
Q0,B for Q0 from the last theorem.

� The bootstrap common quantiles or common cutoffs are row quantities of M.

Note that this procedure for estimating Q0 is quite general and can be adapted, if de-
sired, to other testing criteria.

11.3.4 Adjusted p-Values for PFER/PCER

To conclude this section, it is revealing to give expressions for the adjusted p-values
for the common quantile and common cutoff procedures. In this context, the notion of
adjusted does not correspond to step-down or step-up procedures but only to p-values
for Hj that take into account the values of Tn, j′ for j′ 	= j. The essence of the result is
that adjustment does not make any difference for the PCER in the common quantile
case, whereas adjustment amounts to taking averages in the marginal distribution for
the common cutoff procedure.

Proposition (Dudoit et al., 2003): Suppose the null distribution Q0 is continuous with
strictly monotone marginal distributions. For control of the PCER, the adjusted p-
values for the single-step procedures are as follows:

(i) For common quantiles, p̃ j = Q̄0, j(Tn, j) = p j, i.e., they reduce to the unadjusted, raw
p-values for j = 1, ...,m.

(ii) For common cutoffs,

p̃ j =
1
m

m

∑
k=1

Q̄0,k(Tn, j);

i.e., they become identical, with common a value given by the average of the p-values
from the m tests.
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Proof: Let Z ∼ Q0 and write the PCER as an operator on a distribution, PCER(F) =∫
xdF(x)/m.

For Part (i), the adjusted p-value for testing the null Hj is

p̃ j = PCER(FR(τ(Q0,1−p j)|Q0)) =
1
m

m

∑
k=1

Q0(Zk > Q̄−1
0 (p j))

=
1
m

m

∑
k=1

Q̄0(Q̄−1
0 (p j)) = p j.

For part (ii), the adjusted p-value for testing the null Hj is

p̃ j = PCER(FR((Tn, j ,...,Tn, j)|Q0)) =
1
m

m

∑
k=1

Q0(Zk > Tn, j) =
1
m

m

∑
k=1

Q̄o,k(Tn, j). �

It should be remembered that all the results in this section apply not just to PCER but
have analogs for FWER and any other measure of Type I error that can be represented
as a monotone, continuous functional of distribution functions. Indeed, the only place
that specific properties of PCER were used was in the last proposition. However, even it
has an analog for other Type I error measures, including generalized FWER, gFWER,
which is defined by P(Vn ≥ k + 1) so the FWER is gFWER for k = 0. The result
is the interesting fact that the single-step adjusted p-values for the common quantile
and common cutoff for gFWER control are expressible in terms of the ordered raw p-
values similar to the step-down procedures for FWER; see Dudoit et al. (2003), Section
3.3 for details.

11.4 Controlling the False Discovery Rate

While controlling FWER is appealing, the resulting procedures often have low power;
the effect of low power is to make it hard to reject the null when it’s false so the in-
teresting effects (usually the alternatives) become hard to find. Indeed, although minP
and maxT improve power and account for some dependence among the test statistics,
the fact that they control the FWER criterion can make them ill-suited for situations
where the number of tests m is large: FWER-based tests typically have low power for
high values of m. The properties of PCER are not as well studied but overall seem to
suggest that PCER is at the other extreme in that the control it imposes on Type I error
is not strong enough: It doesn’t force the number of false positives low enough. Thus
the question of whether there is a measure that can achieve an acceptable control of the
Type I error while at the same time maintaining a usefully high power for the overall
testing procedure remains.

One answer to this question is the FDR, introduced by Benjamini and Hochberg
(1995), often written simply as E(V/R). Of course, when the number of rejections
is R = 0, the number of false rejections V = 0, too, so if 0/0 ≡ 0, then E(V/R) is the
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same as the formal definition in Section 11.1. The integrand V/R is sometimes called
the false discovery proportion. In some cases, the slight variant on V/R is used and is
written explicitly as the random variable

FDP(t) =
∑m

j=1(1−Hj)1p j≤t

∑m
j=1 1p j≤t

+1all p j>t , (11.4.1)

where Hj is an indicator function, Hj = 0,1, according to whether the jth null hypoth-
esis is true or false, and p j is the jth p-value (which should be written as Pj since it is
being treated as a random quantity). The ratio amounts to the number of false discov-
eries over the total number of discoveries. Thus, if T is a multiple testing threshold,
the FDR can be regarded as

FDR = FDRT = EFDP(T ).

The net effect of using a relative measure of error like FDR, which doesn’t directly
control the absolute number of rejections in any sense, is that testing essentially be-
comes just a search procedure. Rather than relying on testing to say conclusively which
His are true and which are not, the goal is that the rejected His hopefully reduce the
number of hypotheses that need to be investigated further. For instance, if each Hj per-
tains to a gene and Hj = 0 means that the gene is not relevant to some biochemical
process, then the rejected Hjs indicate the gene that might be investigated further in
subsequent experiments. Thus, the point of rejecting nulls is not to conclude alterna-
tives per se but to identify a reduced number of cases, the discoveries. The hope is that
these statistical discoveries will be a small subset of cases, that hopefully contain the
even fewer actual cases being sought. Then, studying the discoveries is an effective
step between the set of m possibilities and scientific truth. Of course, false acceptances
of nulls may be present, but controlling the level is a way to minimize these in practice
to a point where they can be ignored.

While the FDR and pFDR are used ever more commonly, it is important to recall
they they are just one choice of criterion to impose on a testing procedure. So, for
background, it will first be important to present some variants on them that may be
reasonable. Then, the Benjamini-Hochberg (BH) procedure will be presented. In fact,
BH goes back to Eklund and Seeger (1965) and Simes (1986) but was recently redis-
covered and studied more thoroughly. For instance, there have been a wide variety of
extensions to the BH method, including using dependent p-values, and studies to de-
velop an intuition for how BH performs and how to estimate and use both the FDR and
pFDR. Finally, there is an interesting Bayesian perspective afforded from comparing
the FDR to the pFDR leading to the q-value, a Bayesian analog of the p-value. Some
material on the FDR is deferred to Section 11.5 on the pFDR since the two criteria can
be treated together for some purposes.
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11.4.1 FDR and other Measures of Error

The FDR and pFDR are two possible ratios involving false discoveries that have been
studied and found to be well justified. One argument favoring the FDR is that when
some of the alternatives are true (i.e., m0 < m) the FDR is smaller than the FWER.
Indeed, if V = v≥ 1 and R = r, then v/r≤ 1 so E(V/R)≤ 1{V≥1}. Taking expectations
gives P(V ≥ 1)≥ FDR, so any test controlling the FWER also controls the FDR. Since
the inequality is far from tight, a procedure that only bounds the FDR will be less
stringent and hence may have higher power. As the number of false nulls, m−m0,
increases, S tends to increase and the difference between the FWER and FDR tends to
increase as well. Thus, the power of an FDR-based testing scheme tends to increase as
the number of false nulls does. Indeed, the intuition behind the FDR approach is that
tolerating a few false positives can give a testing procedure with a much higher overall
power.

Indeed, even controlling the FDR or the pFDR has unexpected subtleties: If m = m0

and a single hypothesis is rejected, then v/r = 1. Thus, V/R cannot be forced to be
small and neither can (V/R|R > 0) under the same conditions. Their means can be
forced to be small, and this is the point, but the random variables themselves seem
hard to control, even though that would be the ideal.

Variants on the FDR or pFDR are numerous. The proportion of false discoveries
as a proportion of all discoveries would be E(V )/R – a mix of a mean and a ran-
dom variable. This unusual criterion is similar to the conditional expectation of V/R,
E(V/R|R = r) = E(V |R = r)/r, but E(V ) 	= E(V |R = r). The ratio E(V )/R is also
impossible to control as before when m0 = m because of the random part.

The proportion of false positives would be E(V )/E(R). Like the random variable ra-
tios, when m0 = m, E(V )/E(R) = 1, making it impossible to control. In principle, one
could use E(R|R > 0) in the denominator, but using E(V |R > 0) in the numerator for
symmetry again cannot be controlled when m = m0.

In the present context, the usual Type I error is a false positive. To see how false
positives and the FDR are related, consider a single test of Hj. Walsh (2004) notes that
the FDR is

FDR = IP(Hj is truly null| j is significant).

The false positive rate is the reverse,

FPR = IP( j is significant|Hj is truly null),

controlled at level α . The conditioning in the FDR includes both false positives and
true positives, and the relative fraction depends on what proportion of the Hjs are truly
null. That is, the FDR is heuristically like a Bayesian’s posterior probability in contrast
to the usual frequentist conditioning.

The posterior error rate is the probability that a single rejection is a false positive,

PER = IP(V = 1|R = m = 1).
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If FDR = δ then the PER for a randomly drawn significant test is also δ . Now let α
be the level and β be the probability of a Type II error, and suppose π is the fraction
of true nulls, π = m0/m. Then,

PER =
IP(false positive|null true)IP(null)

IP(R = m = 1)
=

απ
IP(R = m = 1)

.

Again, follow Walsh (2004) and consider the event where a single randomly chosen
hypothesis is rejected; i.e., discovered or declared significant. This event can happen
if the hypothesis is true and a Type I error is made or if an alternative is true and a
Type II error is avoided. In the second case, the power is S/(m−m0), the fraction of
alternatives that are found significant. Since the power is 1−β , the probability that a
single randomly drawn test is significant is

IP(R = m = 1) = απ+(1−β )(1−π).

So, as a function of α and β ,

PER =
1

1+ (1−β )(1−π)
απ

.

It can be seen that the Type I error rate and the PER for a significant test are very
different because the PER depends on the power and the fraction of true nulls, as well
as α . To get a satisfactorily low PER usually requires 1−π > α .

11.4.2 The Benjamini-Hochberg Procedure

Although there are precedents for what is often called the Benjamini-Hochberg or BH
procedure (see Simes (1986) for instance) the earlier versions generally did not focus
on the procedure itself as a multiple-comparisons technique for general use in its own
right. Benjamini and Hochberg (1995) not only proposed the procedure as a general
solution to the multiple comparisons problem, they established it has level α .

First, the BH procedure is the following. Fix m null hypotheses H1,...,Hm. Rank the m
p-values pi in increasing order p(1), · · · , p(m) and then find

K(BH) = arg max
1≤i≤m

{
p(i) ≤

i
m
·α
}

. (11.4.2)

The rule becomes: Reject all the hypotheses corresponding to P(1),P(2), · · · ,P(KBH ). It
can be seen that BH corresponds to adjusting the p-values as

p̃ri = min
k=i,··· ,m

{
min

{(m
k

)
prk ,1

}}
.
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Establishing that this procedure has level α is nontrivial, even with the added assump-
tion that the p-values are independent as random variables. Indeed, the proof is unusual
in testing because of how it uses induction and partitions on the conditioning p-values
as random variables.

Theorem (Benjamini and Hochberg, 1995): Let α > 0, and suppose all the pis are
independent as random variables. Then, for any choice of m0 false nulls, the BH pro-
cedure given in (11.4.2) is level α; that is,

E(V/R)≤ m0

m
α. (11.4.3)

Proof: See the Notes at the end of this chapter. �
To conclude this subsection, it is worthwhile stating formally a result proved at the
beginning, comparing FDR and FWER.

Proposition: For all combinations of null and alternative hypotheses,

E[FDR]≤ P(Reject at least one true null) = FWER

with equality if all the nulls are true. �

11.4.3 A BH Theorem for a Dependent Setting

Benjamini and Yakutieli (2001) establish a more general form of the BH theorem by
introducing a dependence concept for m-dimensional statistics called positive regres-
sion dependency on a subset (PRDS) where the subset I of indices must be specified.
If I is specified, it is assumed to be the full set of indices. To state PRDS, define a set
D ⊂ IRm to be increasing if, given xxx ∈ D and yyy ≥ xxx, then yyy ∈ D. An increasing set is
more general than a cone (which contains all positive multiples of its elements) and
very roughly corresponds to an orthant with origin located at the smallest element of
D. Letting XXX = (X1, ...,Xm) and I = {1, . . . ,m},

XXX satisfies PRDS⇔ IP(XXX ∈ D|Xi = xi) nondecreasing in xi, (11.4.4)

with corresponding versions if I ⊂ {1, . . . ,m}.
The right-hand side of (11.4.4) is implied by multivariate total positivity of order 2
(roughly f (xxx) f (yyy) ≤ f (min(xxx,yyy)) f (max(xxx,yyy)), the max and min taken coordinate-
wise) and implies positive association (in the sense that cov( f (XXX),g(xxx)) ≥ 0 for
increasing f , g). PRDS differs from positive regression dependency, which is that
P(XXX ∈ D|X1 = x1, . . . ,Xm = xm) be nondecreasing in the m arguments xi, even though
the two are clearly similar. The PRDS assumption will be applied to the distribution
of m test statistics T1, ..., Tm, giving p-values p1,..., pm for m hypotheses H1,..., Hm. It
will turn out that choosing I to be the indices of the hypotheses that are true permits a
new BH-style theorem and it is only the Tjs for j ∈ I that must be PRDS.
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Benjamini and Yakutieli (2001) verify that multivariate normal test statistics satisfy
the PRDS criterion provided the elements of the covariance matrix are positive. Also,
the absolute values of a multivariate normal and the studentized multivariate normal
(divided by the sample standard deviation) are PRDS. Accordingly, asymptotically
normal test statistics are very likely to be PRDS. In addition, there are latent variable
models that satisfy the PRDS property.

Essentially, under PRDS, Benjamini and Yakutieli (2001) refine the BH procedure so
it will be level α for FDR for PRDS dependent tests. In other words, this is a new way
to estimate K(BH). In this case, the procedure is based on

KBH = arg max
1≤i≤m

{
P(i) ≤

i
m · c(m)

·α
}

,

where c(m) = 1 for independent tests and more generally c(m) =∑m
i=1 1/i. This corre-

sponds to adjusting the p-values as

p̃(i) = min
k=i,··· ,m

{
min

{(
m

k

∑
j=1

1
j

)
p(k),1

}}
.

Formally, the Type I error of FDR can be controlled as follows. It can be seen in Step
4 of the proof that one of the main events whose probability must be bounded is an
increasing set. The event is defined in terms of p-values, and its conditional probability,
given a p-value, is amenable to the PRDS assumption. It is this step that generalizes the
control of (11.7.6) (in which an extra conditioning on a p-value is introduced) which
is central to the independent case.

Theorem (Benajamini and Yekutieli, 2001): Suppose the distribution of the test
statistic TTT = (T1, ...,Tm) is PRDS on the subset of Tjs corresponding to the true His.
Then, the BH procedure controls the FDR at level no more than (m0/m)α; i.e.,

E

(
V
R

)
≤ m0

m
α. (11.4.5)

Proof: See the Notes at the end of this chapter. �
The hypotheses of this theorem are stronger than necessary; however, it is unclear how
to weaken them effectively. Indeed, the next theorem has this same problem: The use
of ∑m

i=1 1/i gives a test that may be excessively conservative.

Theorem (Benjamini and Yekutieli, 2001): Let α ′ = α/∑m
i=1 1/i. If the BH proce-

dure is used with α ′ in place of α , then

E

(
V
R

)
≤ m0

m
α. (11.4.6)

Proof: It is enough to use α and show that the increase in FDR is bounded by
∑m

j=1(1/ j).
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Let Ck(i) = ∪
v+s=k

Cv,s(i), where Cv,s(i) is the event that Hi is rejected along with v− 1

true nulls and s falls nulls; i.e., there are k rejections total. Define

pi jk = IP

({
Pi ∈

[
j−1
m

α,
j

m
α
]}
∩Ck(î)

)
,

so that

m

∑
k=1

pi jk = IP

({
Pi ∈

[
j−1
m

α,
j

m
α
]}
∩
(
∪m

k=1Ck(î)
))
≤ α

m
.

Using this, the FDR is

E

(
V
R

)
=

m0

∑
i=1

m

∑
k=1

1
k

k

∑
j=1

pi jk =
m0

∑
i=1

k

∑
j=1

m

∑
k= j

1
k

pi jk

≤
m0

∑
i=1

k

∑
j=1

m

∑
k= j

1
j

pi jk ≤
m0

∑
i=1

k

∑
j=1

m

∑
k=1

1
j

pi jk = m0

m

∑
j=1

1
j
α
m

. �

11.4.4 Variations on BH

As noted earlier, there are a large number of choices of error criteria for testing. Since
this is an area of ongoing research and the procedures are being continually improved,
it is important to explain several related directions.

11.4.4.1 Simes Inequality

A simpler form of the procedure in (11.4.2) is called Simes’ procedure; see Simes
(1986). Suppose a global test of H1,..., Hm is to be done with p-values p1,...,pm so
that the null is H0 = ∩Hi and the level of significance is α . Then, Simes’ procedure
is a restricted case of BH. That is, Simes’ method is to reject H0 if p(i) ≤ iα/n for at
least one i. This can be regarded as a more powerful Bonferroni correction because
Bonferroni would reject H0 if any p(i) ≤ α/n, which is easier to satisfy. However,
unlike Bonferroni, Simes’ procedure does not really allow investigation of which of
the Hi’s are rejected or not.

Simes’ procedure is in the fixed α framework in which test power is the optimality cri-
terion. Simes (1986) showed that for continuous independent test statistics his method
was level α; i.e., the probability of correct acceptance of H0 is

IPH0(p(i) ≥ iα/n : i = 1, ...,n)≥ 1−α. (11.4.7)
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Thus, Simes’ procedure is the same as the BH procedure in the case that m0 = m, i.e.,
all m hypotheses are true. In fact, although (11.4.7) is attributed to Simes (1986), it
was first studied by Seeger (1968).

Although the BH theorem permits an arbitrary number m0 of the m hypotheses to be
true, the BH theorem is still limited by the assumption that the p-values are indepen-
dent; this assumption is used in the proof to ensure that the ith p-value under Hi is
Uni f orm(0,1). In practice, p-values are often dependent and, in many cases, even the
Benjamini-Yekutieli theorem will not be entirely sufficient. Like BH, Simes’ inequal-
ity also holds for some dependent cases, but the focus here is on multiple testing, not
global tests.

11.4.4.2 Combining FDR and FNR:

A dual quantity to the FDR is the false nondiscovery rate or FNR. Whereas the FDR
is the proportion of incorrect rejections, the FNR is the proportion of incorrect accep-
tances, or nonrejections. Thus,

FNR =

{
T
W R < m

0 R = m.

Obviously, it is not enough to control the FDR at level α without ensuring some quan-
tity like the FNR is not too big. Otherwise it would be like ensuring a test is level α
without investigating its power on the alternative.

To set this up, Genovese and Wasserman (2002) look at the asymptotics of the BH
procedure as m→ ∞ in the special case where all the alternatives are the same fixed
simple hypothesis with the same distribution. The nulls are also all the same, so their
asymptotic analysis is the generalization of the simple versus simple case on which
the Neyman-Pearson theory is built. To formalize the limiting behavior of the testing
procedure requires that the proportions of true and false hypotheses be constant. Thus,
write a0 = m0/m and a1 = m1/m and assume these are constants bounded away from
zero as m increases. Now, each test can be written H0,i : θ = θ0 vs. H1,i : θ = θ1 for
some θ0, θ1 taken to index the distributions specified under the nulls and alternatives.
For simplicity, write F0 = Fθ0 and F1 = Fθ1 .

The main random quantity in the BH procedure is D, say, the largest value of i for
which p(i) < αi/m, because this is the last rejected hypothesis. So, let D = max{i :
p(i) < αi/m}. Now, the limiting behavior of D/m from the BH procedure can be
expressed in terms of u∗, a solution to an equation involving F1 and a constant
β = (1/α−a0)/(1−a0).

Theorem (Genovese and Wasserman, 2002): Suppose that F1 is strictly concave,
that F ′(0) > β , and that u∗ is the solution to F1(u) = βu. Then, D/m → u∗/α , in
probability, and hence the BH threshold Dα/m→ u∗ in probability.

Proof: Omitted. �
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This means that α/m≤ u∗ ≤α , so the BH procedure is between Bonferroni and uncor-
rected testing. Moreover, the BH threshold at which rejection stops can, in principle,
be replaced for large m by the constant u∗. That is, there is a fixed, asymptotically valid
threshold that one could use to approximate the BH procedure so that in the limit step-
up (or step-down) procedures are not really needed. It would be enough, in principle,
to use the right correction to the p-values and compare them to a single fixed threshold.

Two consequences of this result use the characterization of the limit to express other
properties of the BH procedure. First, let δ = (δ1, ...,δm) be indicator functions for
the truth of the ith hypothesis, δi = 0 if H0,i is true and δi = 1 if Hi,i is true. The
empirical version of δ is δ̂ = (δ̂1, ..., δ̂m) where δ̂i = 0 if H0,i is accepted by a procedure
and δ̂i = 1 if H0,i is rejected in level α testing. The difference between δ and δ̂ is
summarized by

Rm =
1
m

E

(
m

∑
i=1
|δi− δ̂i|

)
,

which combines false positives and false negatives. This is a classification risk, and its
limiting behavior is summarized by the following.

Theorem (Genovese and Wasserman, 2002): As m→ ∞,

Rm → RF = a0u∗+a1(1−F1(u∗)) = a0u∗+a1(1−βu∗).

Proof (sketch): The BH procedure is

reject Hi with p−value Pi ⇔ Pi ≤ PD.

Also, Pi ≤ P(D) ⇔ Pi ≤ Dα/m. Using this,

Rm =
1
m

E

[
m0

∑
i=1

χPi<Dα/m +
m1

∑
i=1

χPi>Dα/m

]

= a0IP(P0 < Dα/m)+a1IP(P1 > Dα/m),

where P0 is a p-value under H0 and P1 is a p-value under H1 since they are all the same.
The last theorem gives the result. �
With this in hand, one can verify that the risk of uncorrected testing is RU = a0α +
a1(1−F1(α)) and the risk of the Bonferroni method is RB = a0α/m+a1(1−F1(α/m)).
Genovese and Wasserman (2002) verify that BH dominates Bonferroni but examining
when RU −RF > 0 reveals that neither method dominates the other.

Second, Genovese and Wasserman (2002) also characterize the limiting behavior of
the expected FNR under the BH procedure in the generalized simple versus simple
context.

Theorem (Genovese and Wasserman, 2002): Suppose that F1 is strictly concave, that
F ′1(0) > β , and that u∗ is the solution to F1(u) = βu. Then,
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E(FNR)→ a1(1−βu∗).

Proof: Similar to that of the last theorem. �
Equipped with these results, E(FNR) can be minimized subject to E(FDR) ≤ α
asymptotically as m → ∞. Since the BH procedure rejects hypotheses with p-values
under u∗, consider Pi < c in general. Following Genovese and Wasserman (2002), the
FDR is

FDR =
∑m0

i=1 χPi<c

∑m0
i=1 χPi<c +∑m1

i=1 χPi<c
.

The sums are binomial random variables,∑m0
i=1 χPi<c∼Binomial(m0,c) and∑m0

i=1 χPi<c∼
Binpmial(m1,F1(c)). So,

E(FDR) =
a0

a0c+a1F1(c)
+O

(
1√
m

)
.

Neglecting the big-O term, c satisfies E(FDR)≤ α when

F1(c)
c

≥ β − 1
α

,

which is satisfied for c = u∗ for any F1 and a0. This verifies that the BH procedure
satisfies the E(FDR) level constraint for any distributions. That is,

a0u∗

a0u∗+a1F1(u∗)
=

m0

m
.

The asymptotics in this case for the FNR are based on

FNR =
∑m0

i=1 χPi>c

∑m0
i=1 χPi>c +∑m1

i=1 χPi>c
.

Recognizing the binomials gives the approximation

E(FNR) =
a1(1−F1(c))

a1(1−F1(c))+a0(1− c)
+O

(
1√
m

)
.

Now, the assumed concavity of F1 gives that the FDR is increasing in c, so minimizing
E(FNR) forces the choice E(FDR) =α , implying that the optimal c is the c∗ satisfying
F1(c∗)/c∗ = β −1/α so that

F1(u∗)
u∗

− F1(c∗)
c∗

=
1
α

.

The difference in effect from c∗ to u∗ is the cost BH pays for being effective indepen-
dently of the distributions in the nulls and alternatives. Consequently, the BH procedure
does not achieve the minimal E(FNR).
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However, there is a sense in which the BH procedure is E(FNR) optimal. Write the
threshold in the BH procedure in general as �(t) = r(t)/m so the BH procedure cor-
responds to the choice r(t) = αt with D = max{i : P(i) < �(i)}. It can be verified (see
Genovese and Wasserman (2002)) that, since BH uses the last upcrossing from the left
of the p-values, above a threshold minimizing the E(FNR) corresponds to choosing
the D as big as possible, which leads to r(t) = αt as in BH. Thus, the BH procedure is
optimal in the class of last upcrossing procedures.

Related work by Sarkar (2004) uses step-up/step-down procedures to control the FDR
and FNR by comparing FDR procedures in terms of their FNRs.

11.4.4.3 False Discovery Proportion

Another variant on the BH method is to examine V/R as a random variable rather than
taking its expectation as in (11.4.1). This is called the false discovery proportion (FDP)
and is the number of false rejections divided by the total number of rejections. If there
are no rejections, then V/R = 0/0 is taken as zero. The goal is to preset γ > 0 to be the
tolerable proportion of false discoveries and devise a testing procedure subject to

IP(FDP > γ)≤ α. (11.4.8)

In this case, setting γ = 0 gives back the FWER since the probability of no false rejec-
tions is bounded.

A simple relationship between the FDP and FDR follows from Markov’s inequality.
For any random variable X ,

E(X) = E(X |X ≤ γ)IP(X ≤ γ)+E(X |X > γ)IP(X > γ)≤ γIP(X ≤ γ)+ IP(X > γ).

As noted in Romano and Shaikh (2006), this gives

E(X)− γ
1− γ ≤ IP(X > γ)≤ E(X)

γ
. (11.4.9)

Setting X = (V/R) implies that if a method gives FDR ≤ α , then the same method
controls the FDP by IP(FDP > γ)≤ α/γ . From the other direction, the first inequality
in (11.4.9) gives that if (11.4.8) holds, then FDR≤ α(1−γ)+γ ≥ α , but not by much.
Crudely, controlling one of FDR and FDP controls the other.

However, since it is a mean, directly controlling FDR seems to require stronger dis-
tributional assumptions on the p-values than directly controlling the FDP, which is a
random variable. Indeed, Romano and Shaikh (2006) establish that the level of an FDP
controlling procedure can be enforced when the p-values from the hypothesis tests are
bounded by a uniform distribution, as would be obtained for a single hypothesis test.
That is,

∀u ∈ (0,1) ∀ H0,i P0,i(pi ≤ u)≤ u, (11.4.10)
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where P0,i is any element in the ith null. When the null is simple, P0,i is unique. No
further distributional requirements such as independence, asymptotic properties, or
dependence structures such as PRDS need be imposed. In fact, (11.4.10) generally
holds for any sequence of nested rejection regions: If Si(α) is a level α rejection region
for Hi and Si(α)⊂ Si(α ′) when α < α ′, then p-values defined by pi(X) = inf{α : X ∈
Si(α) satisfy (11.4.10).

To find a variant on BH that satisfies (11.4.8), consider the following line of reasoning.
Recall that V is the number of false rejections. At stage i in the BH procedure, having
rejected i− 1 hypotheses, the false rejection rate should be V/i ≤ γ (i.e., V ≤ �γi�),
where �x� is the first integer less than or equal to x. If k = �γi�+ 1, then IP(V ≥ k) ≤
α so that the number of false rejections is bounded by k. Therefore, in a step-down
procedure, the BH thresholds iα/m should be replaced by the step-down thresholds

αi =
(�γi�+1)α

m− i+ �γi�+1
, (11.4.11)

in which m− i is the number of tests yet to be performed and (�γi�+1) is the tolerable
number of false rejections in the first i tests expressed as a fraction of i. Unfortunately,
Romano and Shaikh (2006) show that this procedure is level α for the FDP when a
dependence criterion like PRDS is satisfied. (Their condition uses conditioning on the
p-values from the false nulls.) Thus, the test depends on the dependence structure of
the p-values.

In general, increasing the αis makes it easier to reject hypotheses, thereby increas-
ing power. So, the challenge is to maintain a level α while increasing the αis and
enlarging the collection of distributions the p-values are allowed to have (to re-
quire only (11.4.10) for instance). One choice is to use α ′ = αi/C�γm�+1, where

C�γm�+1 = ∑�γm�+1
i=1 (1/i). However, it is possible to do better.

Romano and Shaikh (2006) propose a step-down method that replaces αis with
α ′′i = αi/D where D = D(γ,m) is much smaller than C�γm�+1. This procedure con-
trols the FDP at level α but for all i = 1, ...,m, α ′′i > α ′i , so that the test will reject more
hypotheses and have higher power.

The test itself is as follows: For k = 1, ...,�γm�, set

βk = k/max(m+ k−(k/γ)+1,m0) and β�γm�+1 =
�γm�+1

m0
,β0 = 0.

Then let

N = N(γ,m,m0) = min

(
�γm�+1,m0,�γ

(
m−m0

1− γ +1

)
�+1

)
,

S = S(γ,m,m0) = m0

N

∑
i=1

βi−βi−1

i
,

and finally
D(γ,m) = max{S(γ,m,k) : k = 1, ...,m0}.
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Despite the odd appearance of this test, it is level α for FDP.

Theorem (Romano and Shaikh, 2006): Suppose the pis satisfy (11.4.10). The step-
down testing procedure with thresholds α ′′i = αi/D satisfies IP(FDP > γ)≤ α .

Proof: Omitted. �
Note that D(γ,m) is a maximum and so does not depend on m0, the unknown number of
true hypotheses. If m0 were known, or could be estimated extremely well (see below),
S(γ,m,m0) could be used in place of D.

11.5 Controlling the Positive False Discovery Rate

The pFDR is a variant on the FDR resulting from conditioning on there being at least
one rejected null. That is, the pFDR is

pFDR = E

[
V
R
|R > 0

]
.

The motivation for this criterion is that the event {R = 0} makes the testing pointless
so there is no reason to consider it. Indeed, this is why the factor IP(R > 0) is not
usually part of the definition. Although similar to the FDR, the pFDR and FDR have
surprisingly different properties. These are studied in detail in Storey (2002, 2003).

The pFDR is relatively tractable. It will first be seen that the pFDR has a natural
Bayesian interpretation. Then several theoretical properties of pFDRs can be given.
In many settings, however, it is not the theoretical properties that are most important
to investigate further. Rather, it is the implementation that bears development.

11.5.1 Bayesian Interpretations

Unexpectedly, it is the Bayesian formulation that makes the pFDR tractable. The pure
Bayes treatment will be seen in the last section of this chapter; for the present, the
central quantity in Bayes testing, the posterior probability of the null, appears naturally
as an expression for the pFDR that can be related to frequentist testing with p-values.
As a consequence, a Bayesian analog to the p-value, the q-value, can be defined from
the rejection regions of the frequentist tests.

11.5.1.1 pFDR and the Posterior

Recall that each test Hi can be regarded as a random variable so that, for i = 1,2, · · · ,m,
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Hi =
{

0 ith null hypothesis is true,
1 ith null hypothesis is false.

Now, suppose the m hypotheses are identical and are performed with independent,
identical test statistics T1,T2, · · · ,Tm. Then, the His can be regarded as independent
Bernoullis with Pr[Hi = 0] = π0 and IP[Hi = 1] = π1 = 1− π1. In other words, π0

and π1 are the prior probabilities of the regions meant by Hi and Hc
i , (Ti|Hi) ∼ (1−

Hi)F0 + HiF1, where F0 and F1 are the distributions of Ti under Hi and Hc
i , and Hi ∼

Bernoulli(π1); implicitly this treats Hi and Hc
i as a simple versus simple test. Let Γi

denote a fixed test region under Ti for Hi. By the identicality, the Γis are all the same
and can be denoted generically as Γ . The first important result is that the pFDR is a
posterior probability.

Theorem (Storey, 2003): Let m identical hypothesis tests be performed with indepen-
dent test statistics Ti with common rejection region Γ . If the prior probabilities of the
hypotheses are all P(H = 0) = π0 and P(H = 1) = π1, then

pFDR(Γ ) =
π0IP[T ∈ Γ |H = 0]

IP[T ∈ Γ ]
= IP[H = 0|T ∈ Γ ],

where IP[T ∈ Γ ] = π0IP[T ∈ Γ |H = 0]+ (1−π0)IP[T ∈ Γ |H = 1].

Proof: First, let θ = IP[H = 0|T ∈ Γ ] be the probability that the null hypothesis is true
given that the test statistic led to rejection. If there are k rejections (discoveries) among
the m null hypotheses, they can be regarded as k independent Bernoulli trials, with
success being the true positives and failure being the false positives. Let V (Γ ) denote
the number of false positives and R(Γ ) be the total number of positives. Conditioning
on the total number of discoveries being k, this formulation implies that the expected
number of false positives is

E[V (Γ )|R(Γ ) = k] = kθ = kIP[H = 0|T ∈ Γ ].

Returning to the statement of the theorem, it is easy to see that

pFDR(Γ ) = E

[
V (Γ )
R(Γ )

|R(Γ ) > 0

]

=
m

∑
k=1

E

[
V (Γ )

k
|R(Γ ) = k

]
IP[R(Γ ) = k|R(Γ ) > 0]

=
m

∑
k=1

kIP[H = 0|T ∈ Γ ]
k

IP[R(Γ ) = k|R(Γ ) > 0]

= IP[H = 0|T ∈ Γ ]
m

∑
k=1

IP[R(Γ ) = k|R(Γ ) > 0]

= IP[H = 0|T ∈ Γ ]. �

This result shows that the pFDR is the posterior probability from a Bayesian test; later
it will be seen that the pFDR also has an interpretation in terms of p-values because it
can be defined by rejection regions rather than by specifying levels α .
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Note that this result is independent of m and m0 and that from Bayes rule

pFDR(Γ ) = IP(H = 0|T ∈ Γ ) =
π0IP(Type I error of Γ )

π0IP(Type I error of Γ )+π1IP(power of Γ )
,

so that pFDR is seen to increase with increasing Type I error and decrease with in-
creasing power.

11.5.1.2 The q-Value

The pFDR analog of the p-value is called the q-value; roughly the event in a p-value
becomes the conditioning in the Bayesian formulation. For tests based on Ti, the rea-
soning from p-values suggests rejecting Hi when

pFDR({T ≥ t}) =
π0IP(T ≥ t|H = 0)

π0IP(T ≥ t|H = 0)+π1IP(T ≥ t|H = 1)
(11.5.1)

=
π0IP(U0 ≥)

π0IP(U0 ≥)+π1IP(U1 ≥)
(11.5.2)

= IP(H = 0|T ≥ t),

is small enough, where U0 and U1 are random variables with the distribution specified
under H0 and H1 and T = t is the value of T obtained for the data at hand.

The left-hand side is the q-value and is seen to be a function of a region defined by T ;
however, this is not necessary. It is enough to have a nested set of regions Γα with α ≤
α ′ ⇒ Γα ⊂ Γα ′ . Indeed, the index α is not strictly needed, although it may provide an
interpretation for the rejection region if α = t is the value of the statistic, for instance.
In general, however, no index is needed: For a nested set of rejection regions denoted
〈C〉= 〈Ci〉|i∈I , the p-value of an observed statistic T = t is

q-value(t) = min
{C:t∈C}

IP[T ∈C|H = 0],

and the q-value is

p-value(t) = min
{C:t∈C}

IP[H = 0|T ∈C] = min
{C:t∈C}

pFDR(C).

Thus, the q-value is a measure of the strength of T = t under pFDR rather than prob-
ability. It is the minimum pFDR that permits rejection of H0 for T = t. Now, the last
theorem can be restated as follows.

Corollary (Storey, 2003): If Γ is replaced by a set of nested regions Γα parametrized
by test levels α , then

q-value(t) = inf
{Γα :t∈Γα}

IP(H = 0|T ∈ Γα). �



722 11 Multiple Testing

As a consequence, the rejection region determining a q-value can be related to the ratio
of Type I error to power. By Bayes rule and rearranging,

arg inf
{Γα :t∈Γα}

IP(H = 0|T ∈ Γα) = arg inf
{Γα :t∈Γα}

IP(T ∈ Γα |H = 0)
IP(T ∈ Γα |H = 1)

. (11.5.3)

It is intuitively reasonable that the q-value minimizes the ratio because the pFDR mea-
sures how frequently false positives occur relative to true positives.

Moreover, it is seen that there is a close relationship between the rejection regions for
p-values and q-values. This extends beyond (11.5.3) because the p-values can be used
directly to give the q-value. Recall that the Ti ∼ π0F0 +π1F1 are IID for i = 1, ...,m,
where Fi is the distribution specified under Hi. Let

Gi(α) = IP(T ∈ Γα |H = i),

for i = 0,1, be the distribution functions of T under the null and alternative hy-
potheses. Clearly, G0(α) represents the level and G1(α) represents the power. The
ratio α/G1(α), from (11.5.3), is minimized over α to find the smallest α satisfy-
ing α = G1(α)/G′1(α). Thus, as noted in Storey (2003), α/G1(α) can be minimized
graphically by looking for the line from the origin that is tangent to a concave portion
of the function G1(α) for α ∈ (0,1) and has the highest slope. This line is tangent to
the point on the curve where α/G1(α) is minimized. In particular, if G1(·) is strictly
concave on [0,1], then the ratio of power to level increases as α → 0 (i.e., as the re-
gions Γα get smaller), and therefore in (11.5.1) the minimal pFDR corresponding to
the minimal level-to-power ratio is found for small α . More formally, we have the
following.

Proposition (Storey, 2003): If G1(α)/α is decreasing on [0,1], the q-value is based
on the same significance region as the p-value,

arg min
{Γα :t∈Γα}

IP(H = 0|T ∈ Γα) = arg min
{Γα :t∈Γα}

IP(T ∈ Γα |H = 0).

Proof: Since G1(α)/α decreasing implies G1 is concave, the Γα that contains t and
minimizes pFDR(Γα) also minimizes P(T ∈ Γα |H = 0) because one would take the
same significance region with the smallest α with tinΓα to minimize α/G1(α). Conse-
quently, the same significance region is used to define both the p-value and the q-value.
�
Not only can p-values and q-values be related as in the corollary, defining the q-value in
terms of regions specified by statistics is equivalent to defining the q-value in terms of
the p-values from those statistics. Let pFDRT (Γα) be the pFDR based on the original
statistics and let pFDRP(Γα) be the pFDR based on the p-values; that is, pFDRP({p≤
α}). The relationship between these quantities is summarized as the first part means
that the q-value can be found from the raw statistics or their p-values.

Proposition (Storey, 2003): For m identical hypothesis tests,

pFDRT (Γα) = pFDRP({p≤ α}).
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Moreover, when the statistics are independent and follow a mixture distribution,

q-value(t) = pFDRP({p : p≤ p-value(t)}) (11.5.4)

if and only if G1(α)/α is decreasing in u.

Proof: Since the Γαs are nested, it is trivial to see that p-value(t)≤ α ⇔ t ∈ Γα . This
implies the first statement.

For the second, for any T = t, let

Γα ′ = arg min
{Γα :t∈Γα}

pFDRT (Γα),

so that

q-value(t) = pFDRT (Γα ′) = pFDRP({p : p≤ α ′}).

Since it is also true that

Γα ′ = arg min
{Γα :t∈Γα}

IP(T ∈ ΓαH = 0),

it is seen that p-value = α ′.
For the converse, suppose (11.5.4) holds for each t. By the definition of the q-value,
q-value(t) is increasing in p-value(t), so G1(α)/α is decreasing in α . �

11.5.2 Aspects of Implementation

Continuing to assume that the p-values are independent, rejection regions expressed
in terms of p-values are always of the form [0,γ], where γ represents the p-value. It
is usually convenient for implementation purposes to replace the abstract Γ with such
intervals, often just using γ > 0 to mean the whole interval [0,γ]. Now the theorem can
be stated as

pFDR(γ) =
πoIP(P≤ γ|H = 0)

IP(P≤ γ)
=

π0γ
IP(P≤ γ)

,

in which, under the null, the p-value P is distributed as Uni f orm[0,1] and IP in the
denominator is the mixture probability over the null and alternative.

Now, if good estimators for π0 and IP(P ≤ γ) can be given, the pFDR can be esti-
mated. Let λ > 0. Following Storey (2002), since the p-values are Uni f orm[0,1], the
numerator can be estimated by

π̂0(λ ) =
#{pi ≥ λ}
(1−λ )m

=
W (λ )

(1−λ )m
, (11.5.5)
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where W = #{pi ≥ λ} and λ remains to be chosen. (Note that EW (γ) = mIP(Pi > γ)
and π0(1− γ) = IP(Pi > γ,Hi = 0) ≤ IP(Pi > γ) ≤ m(1− γ).) This estimator is rea-
sonable since the largest p-values are likely to come from the null and π0 is the prior
probability of the null. Similarly, the denominator can be estimated for any γ empiri-
cally by

ÎP(P≤ γ) =
#{pi ≤ γ}

m
=

R(λ )
m

, (11.5.6)

where R(λ ) = #{pi ≤ λ}. The ratio of (11.5.5) over (11.5.6) is an estimator for the
pFDR. However, it can be improved in two ways. First, if R(γ) = 0, the estimate is
undefined, so replace R(γ) with max(R(γ),1). Second, R(γ) ≥ 1− (1− γ)m because
IP(R(γ) > 0) ≥ 1− (1− γ)m. So, since the pFDR is conditioned on R > 0, divide
by 1− (1− γ)m as a conservative estimate of the probability of Type I error. Taken
together,

p̂FDRλ (γ) =
π̂0(λ )γ

P̂(P≤ γ)(1− (1− γ)m)
=

W (λ )γ
(1−λ )max(R(γ),1)(1− (1− γ)m)

is a natural estimator for pFDR, apart from choosing λ .

The same reasoning leads to

F̂DRλ (γ) =
π̂0(λ )γ

P̂(P≤ γ)
=

W (λ )γ
(1−λ )max(R(γ),1)

as a natural estimator for FDR, apart from choosing λ which will be done shortly.

11.5.2.1 Estimating FDR(γ) and pFDR(γ)

Since the procedures for obtaining useful estimates of pFDR and FDR are so similar,
the treatment here will apply to both but focus on pFDR. As with the PCER, the main
computational procedures devolve to bootstrapping. First, recall that by assumption
all the tests are identical, and suppose the abstract region Γα is replaced by the region
defined by ranges of p-values as in the last proposition. Now, the following algorithm,

from Storey (2002), results in an estimate p̂FDR
b
λ (γ) of pFDRλ (γ), where the choice

of λ is described in the next subsection and γ is the upper bound on the value of a
p-value, usually chosen using the actual p-value from the data for the test.

ALGORITHM FOR ESTIMATING FDR(γ) AND pFDR(γ):

� For the m hypothesis tests, calculate their respective realized p-values p1, p2, · · · , pm.
Then, estimate π0 and IP[P≤ γ] by

π̂0(λ ) =
W (λ )

(1−λ )m
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and

P̂[P≤ γ] =
R(γ)∨1

m
,

where R(γ) = #{pi ≤ γ} and W (λ ) = #{pi > λ}.
� For any fixed rejection region of interest [0,γ], estimate pFDR(γ) using

p̂FDRλ (γ) =
π̂0(λ )γ

P̂[P≤ γ]{1− (1− γ)m}

for some well-chosen λ .

� For B bootstrap samples from p1, p2, · · · , pm, calculate the bootstrap estimates

p̂FDR
b
λ (γ) for b = 1, ...,B.

� Take the 1−α quantile of p̂FDR
b
λ (γ) for b = 1, ...,B as an upper confidence bound.

This gives a 1−α upper confidence interval for pFDR(γ).
For FDR(γ), use the same procedure apart from choosing

F̂DRλ (γ) =
π̂0(λ )γ

ÎP[P≤ γ]
.

It is seen from this procedure that pFDR and FDR procedures are somewhat the reverse
of the usual Neyman-Pearson procedure. That is, rather than fixing a level and then
finding a region that satisfies it, one fixes a procedure (based on taking γ as a p-value,
say) and finds its “level” by bootstrapping. Nevertheless, iterating this process can
result in a region with a prespecified level as in the traditional theory.

11.5.2.2 Choosing λ

To complete the last procedure, specification of λ is necessary, and the procedure is
straightforward. As suggested in Storey (2002), since λ ∈ [0,1], start with a grid of
values such as G = {λ = .05u | u = 0,1, ...,19} and find both

p̂FDRλ (γ) =
π̂0(λ )γ

ÎP[P≤ γ]{1− (1− γ)m}

and p̂FDR
b
λ (γ) for b = 1, ...,B, for each λ in the grid as in the last algorithm. These

can be used to form a mean squared error,

M̂SE(λ ) =
1
B

B

∑
b=1

(
p̂FDR

b
λ (γ)−min

λ ′∈G
p̂FDRλ ′(γ)

)2

.

Now, choose λ̂ = argminM̂SE(λ ) to form the estimate p̂FDR(γ) = p̂FDRλ ′(γ).
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Again, the 1−α quantile of the bootstrap estimates p̂FDR
b
λ ′ for b = 1, ...,B gives

a 1−α upper confidence bound on p̂FDR(γ). For FDR, the same procedure can be
applied to F̂DR(γ).

11.5.2.3 Calculating the q-Value

Recall that for an observed statistic T = t the q-value is

q(t) = inf
Γ :t∈Γ

pFDR(Γ ).

So, in terms of p-values, it is

q(t) = inf
γ≥p

pFDR(γ) = inf
γ≥p

π0γ
IP(P≤ γ)

,

in which the second equality only holds when the Hi are independent Bernoulli vari-
ables with IP(Hi = 0) = π0.

If the p-values from the m tests are p1,...,pm, with order statistic p(1),...,p(m) then the
corresponding q-values are qi = q1(p(i)), with qi ≤ qi+1, for i = 1, ...,m. Denote the
estimates of the q-values by q̂i = q̂i(p(i)). Then, q̂(p(i)) gives the minimum pFDR for
rejection regions containing [0, p(i)]. That is, for each pi, there is a rejection region
with pFDR = q(p(i)) so that at least H(1),...,H(i) are rejected.

ALGORITHM FOR CALCULATING THE q-VALUE:

� For the m hypothesis tests, calculate the p-values and order them to get p(1)≤ p(2)≤
·· · ≤ p(m).

� Set q̂(p(m)) = p̂FDR(p(m)).

� For i = m−1,m−2, · · · ,2,1, set q̂(p(i)) = min
[

p̂FDR(p(i)), q̂(p(i+1))
]
.

11.5.2.4 Estimating m0

The number of true hypotheses m0 is unknown but, surprisingly, can be estimated,
although the techniques can be elaborate. Among other authors, Storey (2002) suggests
estimating m0 using

m̂0(λ ) = ∑m
i=1 I(pi ≥ λ )

1−λ ,

where λ ∈ (0,1) can be estimated by cross-validation. Meinshausen and Buhlmann
(2008) give a 1−α upper confidence bound on m0 by way of bounding functions
through a more complicated technique.
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As a separate issue, controlling sample size as a way to ensure a minimal pFDR has
been studied in Ferreira and Zwinderman (2006) and Chi (2007). While this sort of
control is possible and important, effective techniques are not yet fully established,
even though they can be based substantially on the classical theory of p-values.

11.6 Bayesian Multiple Testing

To a conventional Bayesian, multiple testing is just another problem that fits comfort-
ably into the existing Bayesian paradigm. The usual questions of what loss function to
choose, what reasonable priors would be, and how to do the computing still occur and
demand resolution. However, the formulation is not otherwise conceptually difficult.
The usual hierarchical models suffice even when m is large. As a consequence, the
Bayesian treatment is much easier to present and understand than the frequentist.

An orthodox Bayesian would not only argue that the unified Bayesian treatment is
more straightforward and scientifically accurate, but would also criticize the other
methods. The Bayesian would be especially critical of the use of p-values on the
grounds that they are frequentist probabilities of regions that did not occur (and hence
are irrelevant) and are thoroughly ad hoc, having no inferential interpretation.

More specifically, Bayesians would ignore the BH procedure, and others like it, for at
least four reasons: First, it has no apparent decision theoretic justification. The proce-
dure is not a Bayes rule, or necessarily optimal, under any meaningful criterion. Thus,
there is no reason to use it. Second, it is wide open to cheating: If you want to ac-
cept a hypothesis, just find enough hypotheses with really small p-values so that the
BH threshold is reduced enough that you can accept the hypotheses you want. (The
Bayesian does not accuse the frequentist of cheating, just that the frequentist method
is so lacking in justification that it is likely to be misused inadvertently.) Third, the
central ingredients, whether p-values or other quantities, including the FDR, PCER
and so forth, are just the wrong quantities to use because they involve post-data use of
the entire sample space, not conditioning on the realized outcomes. Indeed, even the
Bayesian interpretation of the q-value is not really Bayesian because the conditioning
is on a set representing tail behavior rather than on the data. Fourth, a more pragmatic
Bayesian criticism is that p-values generally overreject so that rejection at the com-
monly used thresholds .05 or .01 is far too easy. This is sometimes argued from a prior
robustness standpoint.

Naturally, frequentists have spirited responses to these criticisms. The point for the
present is not to examine the Bayes-frequentist divide so much as to explain the moti-
vations Bayesians have for developing alternative techniques. These techniques begin
with a hierarchical formulation of the multiple testing problem, which leads to more
complicated decision-theoretic Bayes formulations.
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11.6.1 Fully Bayes: Hierarchical

Following the critical survey of Bayarri and Berger (2006), on which much of this
section is based, the Bayes multiple testing problem can be formulated as follows.
Assume observables XXX = (X1, ...,Xm) and consider m tests

H0,i : Xi ∼ f0,i vs. H1,i : Xi ∼ f1,i. (11.6.1)

The Xis may be outcomes, statistics Ti, or any other data-driven quantities. The hy-
pothesized distributions f0,i and f1,i may have parameters. If the parameters are fixed
by the hypotheses, the tests are simple versus simple. Let γγγ = (γ1, ...,γm) in which the
γis are indicator variables for the truth of H0,i, γi = 0,1 according to whether H0,i is
true or false. There are 2m models γγγ .

As usual in Bayesian analyses, inference is from the posterior probabilities. In this
case, it is not the model selection problem (i.e., γγγ) that is of interest but the posterior
probabilities that each γi = 0,1. Whichever of 0, 1 has higher posterior probability
is the favored inference. If the m tests are independent and γγγ = 0 (i.e., all the nulls
are true), then overall there should be αm rejections where α is the threshold for the
posterior probabilities. The goal is to do better than this since excessive false rejections
mask the detection of incorrect nulls by rejecting true nulls.

11.6.1.1 Paradigmatic Example

Suppose that each Xi ∼ N(μi,σ2) with σ unknown and the task is to tell which of the
μis are nonzero. Write μμμ = (μ1, ...,μm). Then γi = 0,1 according to whether μi = 0 or
μi 	= 0. The conditional density for XXX = (X1, . . . ,Xm) with xxx = (x1, . . . ,xm) is

p(xxx|σ2,γ,μμμ) =Πm
i=1

e−(x j−γ jμ j)2/2σ2

√
2πσ

.

To determine which entries in μμμ are nonzero, there are m conditionally independent
tests of the form

H0,i : μi = 0 vs. H1,i : μi 	= 0.

Fix the same prior for each γi and for each μi. Thus, using w and W to denote prior
densities and probabilities generically, set W (γi = 0) = p0 to represent the proportion
of nulls thought to be true. Write W (γi = 0|xxx) = pi for the posterior for γi and set
μi ∼ N(0,τ2). Now, the density w(μi|γi,xxx) is well defined. If a hyperprior for p0 is
given as well, the joint posterior density for all the hyperparameters w(p0,σ2,τ2|xxx) is
well defined and these three are the main quantities of interest.

The hierarchy can be explicitly given as:

� (Xi|μi,σ2,γi)∼ N(γiμi,σ2), IID,

� (μi|τ2)∼ N(0,τ2), (γi|p0)∼ Bernoulli(1− p0), and
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� (τ2,σ2)∼ w(τ2,σ2), p0 ∼ w(p0).

The joint density for the parameters and data is

w(p0,τ2, σ 2,γγγ,μμμ)p(xxx|μμμ,γγγ,σ2)
= w(p0)w(τ2|σ2)w(σ2)(Πm

i=1w(γi|p0))(Πm
i=1w(μi|τ2))p(xxx|μμμ,γγγ,σ2),

with the specifications indicated in the hierarchy. It is also reasonable to take w(p0)∼
Uni f orm[0,1], although this may be generalized to a Beta(a,b) since a = 1,b = 1
gives the uniform and allows mass to be put in the part of [0,1] thought to contain the
proportion of true nulls.

Now, the posterior probability that μi 	= 0 is W (μi 	= 0|xxx) = πi, where

1−πi =
∫ 1

0

∫ 1
0 Π j 	=i(p0 +(1− p0)

√
1−ueux2

i /2σ2
)d p0du∫ 1

0

∫ 1
0 Πm

j=1(p0 +(1− p0)
√

1−ueux2
i /2σ2)d p0du

,

which can be computed numerically or by importance sampling.

The prior inclusion probabilities are W (γi = 1), leading to posterior inclusion proba-
bilities W (γi = 1|xxx). These quantities are usually the most interesting since they deter-
mine which of the μis really are nonzero. Of course, if μi 	= 0, the distribution of the
μi remains interesting. However, the distribution W (γγγ|xxx) is not particularly interesting
because the problem is hypothesis testing, not model selection.

Even so, Ghosh et al. (2004) use a hierarchical Bayes model to show the pFDR in a
variable selection context. Briefly, if Yi ∼ N(XXXiβ ,σ2) and βi|γi ∼ (1− γi)N(0,τ2

i )+
γiN(0,c2

i τ2
i ) with γi ∼ Bernoulli(pi) and σ2 ∼ IG(ν/2,ν/2), then

IP(γi = 0|β̂i = 0) = 1−
[
(σ2

i /τ2
i + c2

i )
(σ2

i /τ2
i +1)

]1/2

.

This posterior probability is closely related to the pFDR, and the calculation general-
izes to conditioning on other regions.

One benefit of the Bayes approach is that W (p0|xxx) can be defined and found read-
ily. This is the proportion of true nulls, and its distribution comes for free from the
Bayesian formulation. By contrast, the estimator m̂0 from, say, the pFDR is a point
estimator. While a standard error for it can doubtless be given, it is not as good a sum-
mary as the full distribution. Bayarri and Berger (2006) give examples of computations
for all the relevant posteriors. The effect of prior selection clearly matters, as does the
computing, which can be demanding. See Scott and Berger (2006) for a discussion of
prior selection and techniques for using importance sampling.
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11.6.1.2 A Bayesian Stepdown Procedure

Arguably, there is a parallel between p-values and Bayes factors in that both are inter-
preted to mean the strength of the support of the data for the hypothesis. Recall that
the Bayes factor is the ratio of the posterior odds to the prior odds and is the Bayes
action under generalized 0-1 loss. In the present case, the marginal Bayes factors for
the m hypotheses are

Bi =
W (Hi|xxx)

1−W (Hi|xxx)
1−πi,0

πi,0
. (11.6.2)

In the Scott and Berger (2006) example above, all the πi,0s were the same value p0

which could therefore be treated as a hyperparameter. The joint Bayes factor for testing
H0 : ∩m

i=1Hi vs. H1 : ∪m
i=1Hc

i is

B =

∫
H0

w(θθθ |xxx)dθθθ
1−

∫
H0

w(θθθ |xxx)dθθθ
1−

∫
H0

w(θθθ)dθθθ∫
H0

w(θθθ)dθθθ
. (11.6.3)

The difference between Bi and B is analogous to the difference between tests based on
the marginal distributions from the statistics Ti from m experiments and tests based on
the joint distribution from the vector (T1, ...,Tm) in the frequentist case.

Now let θ = (θ1, ...,θm) and let Ω ⊂ IRm be the whole parameter space. Suppose the
marginal testing problems are

H0,i : θ ∈Θi vs H1,i : θ ∈Θ c
i

rather than simple versus simple, whereΘi∩Θ c
i is void andΘi∪Θ c

i =Ω . This means
Θi, Θ c

i do not constrain the m− 1 testing problems for θ j, j 	= i. Therefore, neither
H0,i nor H0,1 constrain θ j for j 	= i so the hypotheses only constrain the ith component
θi. Thus,

πi,0 =
∫

H0,i

π(θ)dθ and P(H0,i|xxx) =
∫

H0,i

π(θ |xxx)dθ ,

and similarly for the H1,is. If Ω is a Cartesian product of intervals so the hypotheses
can be written as H0,i : θi ≤ θ0,i for all i and the data are IID, then
∫

H0

π(θ)dθ =Πm
i=1

∫
H0,i

π(θ)dθ and
∫

H0

π(θ) f (xxx|θ)π(θ)dθ =Πm
i=1

∫
H0,i

π(θi|xxx)dθi,

with similar expressions for H1.

If the data are truly from unrelated sources, there is no reason to combine the m tests;
nothing can be gained in the Bayesian paradigm. However, even if the data are related,
so it may be useful to combine the tests, it may be easier to use the Bis instead of
investigating B itself. In these cases, to account for the effect of the joint distribution,
it may make sense to use a stepwise procedure on the marginal Bayes factors. This has
been proposed heuristically (i.e., without decision-theoretic or other formal justifica-



11.6 Bayesian Multiple Testing 731

tion) by Chen and Sarkar (2004). In essence, their method is the BH procedure applied
to marginal Bayes factors.

BAYES VERSION OF THE BH PROCEDURE:

Find B(1) ≤ B(2),≤ . . .B(m) the order statistic from the marginal Bayes factors, with
B(i) corresponding to H(i) = H0,(i).

For r = 0, ...,m, construct composite hypotheses

H(r) :
[
∩r

i=1H1,(i)
]
∩
[
∩m

i=r+1H0,(i)
]
,

so the number of nulls is decremented by one with each increment in r. (When
r = 0, the first intersection does not appear.)

For each r, the stepwise Bayes factor B(r) for testing H(r) vs. H(r+1),...,H(m) is

B(r) =
W (H(r)|xxx)

∑m
i=r+1 W (H(i)|xxx)

∑m
i=r+1 W (H(i))

W (H(r))
.

� Start with r = 0, the intersection of all m hypotheses. If B(0) > 1, then accept
H(0) = ∩m

i=1H(i) and stop. If B(0) ≤ 1, then proceed.

� For r = 1, ...m− 1, find B(r). If B(r) > 1, then accept H(r) and stop. Otherwise,
B(r) ≤ 1, so reject all H(i)s for i≤ r +1 and proceed.

� For r = m, find B(m). If B(m) > 1, then accept H(m) and stop. Otherwise, B(m)≤ 1,
so reject all the H(i)s.

Note that the threshold used for the Bayes factors is denoted as 1; this means that
acceptance and rejection are a priori equally acceptable. A larger threshold would
give a more stringent criterion for rejection.

Chen and Sarkar (2004) give the formulas for testing a point null versus a continuous
alternative by using a point mass prior on the null. They report that the procedure
works well in examples and may be easier to implement.

11.6.2 Fully Bayes: Decision theory

Recall that the pFDR has a Bayesian interpretation in that the pFDR for a rejection
region in terms of a statistic T corresponds to a q-value, which in turn can be regarded
as a conditional probability. That is, because

pFDR(Γ ) = P(γi = 0|Ti ∈ Γ ),

for a region Γ usually taken to be defined as the rejection region from a statistic T , one
can abuse notation and write
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pFDR = P(H0 true| rejectH0).

However, as noted, this is not really Bayesian because the conditioning is on a region
not the data. Nevertheless, Bayarri and Berger (2006) observe that a Bayesian version
of this is finding

1−πi = P(H0 true|ti),

and then integrating it over the rejection region based on T . To turn this into a test, one
can try to control the pFDR at level α and reject Hi if πi > p∗, where

p∗ = argmin
c

{
∑m

i=1 1π>c(1−πi)
∑m

i=1 b f 1π>c
≤ α

}
.

While this procedure is intuitively sensible, it rests on assuming that some version of
the FDR is the right criterion in the first place. While this may be true, it does not seem
to correspond to a decision-theoretic framework. That is, the FDR does not obviously
correspond to risks under a loss, Bayes or otherwise, which can be minimized to give
an optimal action. (BH is known to be inadmissible Cohen and Sackrowitz (2005) and
so cannot be Bayes either.)

However, other quantities do have a decision-theoretic interpretation. Under variations
on the zero-one loss, the most popular choices lead to thresholding rules for πi as
the optimal strategy for making decisions under posterior risk. More generally, zero-
one loss, and its variants, amount to being entirely right or entirely wrong. This is
unrealistic since an alternative that is closer to the null will usually be nowhere near
as suboptimal in practice as one that is far from the null even though both have the
same risk. Accordingly, linear or other losses are often more reasonable in general,
even though they are more difficult to use.

11.6.2.1 Proportion of False Positives

A quantity similar to the pFDR called the Proportion of False Positives, PFP =
E(V )/E(R), may have a decision theory justification of sorts (see Bickel (2004)) which
extends to the pFDR. Even though FDR≈ pFDR≈ E(V )/E(R), asymptotically in m,
so the differences among them only matter in finite samples, it does not appear that
Bickel’s argument applies to the FDR.

Bickel (2004) regards Table 11.2 as a summary of the results from the m tests individ-
ually. Thus, the number of rejections is R = ∑m

i=1 Ri, where each Ri is 1 if the ith null
is rejected and 0 otherwise. If Hi = 0,1, as before, to indicate the i-th null is true or
false, respectively, then for each i = 1, ...,m, Vi = (1−Hi)Ri so that V = ∑m

i=1 Vi is the
number of false discoveries. The other entries in Table 11.2 can be treated similarly.
So, PFP = (E∑m

i=1 Vi)/(E∑m
i=1 Ri).

The PFP can be derived from a sort of cost–benefit structure: see Bickel (2004). If ci

is the cost of false rejection of Hi and bi is the benefit of rejecting Hi when it’s false,
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then the overall desirability of any pattern of rejections can be written as

dm(bbb,ccc) =
m

∑
i=1

biRi−
m

∑
i=1

(bi + ci)Vi.

If all the bis and cis are the same, say b1 and c1, then the expectation simplifies to

Edm = b1E

(
m

∑
i=1

Ri−
(

1+
c1

b1

) m

∑
i=1

Vi

)
= b1

(
1−

(
1+

c1

b1

)
E(V )
E(R)

)
E(R),

provided E(R) 	= 0. Bickel (2004) calls ∇= E(V )/E(R) the decisive FDR, dFDR, on
the grounds that it has a decision-motivated interpretation.

Storey (2003) establishes that PFP and dFDR amount to the same criterion. Indeed, a
Corollary to Storey’s theorem is the following.

Corollary (Storey, 2003): Under the hypotheses of Storey’s theorem,

E

[
V (Γ )
R(Γ )

|R(Γ ) > 0

]
=

E(V (Γ ))
E(R(Γ ))

.

Proof: This follows from the theorem because E(V (Γ )) = mπ0IP(T ∈ Γ |H = 0) and
E(R(Γ )) = mIP(T ∈ Γ ). �
A consequence is that the argument leading to dFDR also applies, in many cases, to
the pFDR.

Bickel (2004) uses Storey’s corollary for each of the m tests to see that

∇=
E(∑m

i=1(1−Hi)Ri)
E(∑m

i=1 Ri)
=
π0∑m

i=1 IP(ti ∈ Γ |Hi = 0)
∑m

i=1 IP(ti ∈ Γ )

=
π0mIP(t ≥ τ|H = 0)

mIP(t ≥ τ)
=
π0(1−F0(τ))

1−F(τ)
,

where Γ = [τ,∞) is the rejection region, F0 is the distribution of T under H0, and F
denotes the distribution of T under an alternative. In the case of a simple alternative
F1, F = F1. More generally, the choice of F depends on which element of H1 is under
consideration.

11.6.2.2 Zero-One Loss and Thresholds

Instead of proposing a multiple testing criterion and seeing if it corresponds to a loss,
one can propose a loss and see what kind of criteria it can motivate. Following Ba-
yarri and Berger (2006), consider the zero-one loss commonly used for Bayes testing.
Let ddd = (d1, ...,dm) be a decision rule for m hypothesis tests; di = 0 if the ith null is
accepted and di = 1 if the ith null is rejected. As before, γγγ = (γ1, ...,γm) and γi = 0,1
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according to whether the ith null is true or false. Under the generalized zero-one loss,
for each test i there are four possibilities:

di = 0 di = 1

γi = 0 0 c1

γi = 1 c0 0

The zeros indicate where a correct choice was made, and the c0, c1 are the costs for
false acceptance and false rejection of the null. The standard theory now says that,
given a prior on γi, it is posterior-risk optimal to reject the null; i.e., di = 1 if and only
if W (γi = 1|xxx) = π > c1/(c0 + c1).

Recalling that in Table 11.2 it is only V and T that correspond to the number of er-
rors and that for m tests V = ∑m

i=1 Vi and T = ∑m
i=1 Ti, the natural global loss for m

independent tests is

L(ddd,γγγ) =
m

∑
i=1

L(di(xi),γi) =
m

∑
i=1

c1,iVi +
m

∑
i=1

c0,iTi = c1V + c0T

if the costs c0,i and c1,i are the same c0 and c1 for all tests. The consequence is that the
posterior risk is necessarily of the form

Eγγγ|xxxL(ddd,γγγ) = c1Eγγγ|xxx(V )+ c0Eγγγ |xxx(T ).

This seems to imply that under a zero-one loss regime, only functions of E(V ) and
E(T ) can be justified decision-theoretically, and the least surprising optimal strategies
di would involve thresholding the posterior probabilities as above.

11.6.2.3 Alternative Loss Functions

Muller et al. (2004) study the performance of four objective functions. One is

L1(ddd,γγγ) = cEγγγ |xxx(V )+Eγγγ|xxx(T ),

which results from setting c0 = 1. Setting

FDR(ddd,γγγ) = ∑m
i=1 di(1− γi)

R
and FNR(ddd,γγγ) = ∑m

i=1 γi(1−di)
n−R

,

and ignoring the possibility of zeros in the denominator, the posterior means are

Eγγγ|xxx(FDR) = ∑m
i=1 di(1−πi)

R
,

Eγγγ|xxx(FNR) = ∑m
i=1πi(1−di)

m−R
.
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The behavior of L1 can be contrasted with

L2(ddd,xxx) = cEγγγ |xxx(FDR)+Eγγγ|xxx(FNR),
L3(ddd,xxx) = (Eγγγ|xxx(FDR),Eγγγ|xxx(FNR)),
L4(ddd,xxx) = (Eγγγ|xxx(V ),Eγγγ|xxx(T )),

in which L3 and L4 are two-dimensional objective functions that must be reduced to
one dimension; L1 and L2 are just two possibilities. In effect, Muller et al. (2004) treat
the FDR or FNR as if it were the loss function itself.

First, note that the optimal strategy under L2 is similar to the thresholding derived for
L1; the main difference is in the thresholding value. Writing di = Iγi>t , the optimal t
for L1 was the ratio of costs. The optimal t for L2 can be derived as follows.

Since L2, like L3 and L4, depends only on ddd (and xxx), direct substitution gives

L2(ddd,xxx) = c−
(

c
R

+
1

m−R

) m

∑
i=1

diπi +
1

m−R

m

∑
i=1

πi.

Only the second term depends on the dis, so for fixed R the minimum occurs by setting
di = 1 for the R largest posterior probabilities πi, π(m), ..., π(m−R+1). Using this gives

min
r

L2(ddd,xxx|R = r) = min
r

[
c−

(
c
r

+
1

m− r

) m

∑
i=m−r+1

π(r) +
1

m−R

m

∑
i=1

πi

]
.

So, the optimal thresholding is di = Iπi>t , where

t = t(xxx) = π(m−r∗) and r∗ = argmin
r

L2(ddd,xxx|R = r).

The optimal strategies for L3 and L4 can also be thresholding rules. Often, the two-
dimensional objective function is reduced by minimization. In this case, it is natural to
minimize Eγγγ|xxx(FNR) subject to Eγγγ|xxx(FDR)≤α and Eγγγ|xxx(T ) subject to Eγγγ|xxx(V )≤αm,
respectively. These minimizations can be done by a Lagrange-style argument on

fλ (ddd) = Eγγγ|xxx(FNR)−λ (α−Eγγγ|xxx(FNR))

and the corresponding expression for L4. The thresholding rules for L2, L3, and L4 are
data-dependent, unlike that for L1, which is genuinely Bayesian.

Unfortunately, all of these approaches have deficiencies. For instance, since Eγγγ|xxx(FDR)
is bounded, even as m increases, it is possible that some hypotheses with πi ≈ 0 will
end up being rejected, so L3 may give anomalous results; L4 may have the same prop-
erty (although slower as m increases). Under L1, Eγγγ|xxx(FDR)→ 0 as m increases, so
it may end up being trivial. Finally, L2 appears to lead to jumps in Eγγγ|xxx(FDR), which
seems anomalous as well.
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11.6.2.4 Linear Loss

To demonstrate how loss functions that are explicitly sensitive to the distance between
a point null and elements of the alternative behave, Scott and Berger (2006) (see also
Bayarri and Berger (2006)) develop the appropriate expressions for a linear loss. Let

L(di = 0,μi) =

{
0 if μi = 0,

c|μi| if μi 	= 0

L(di = 1,μi) =

{
1 if μi = 0,

0 if μi 	= 0

where c indicates the relative costs of the two types of errors. Letting π denote a prior
on μi, the posterior risks are given by

E(L(di = 0,μi)|xxx) =
∫

L(di,μi)π(μi|xxx)dμi = πi,

E(L(di = 1,μi)|xxx) = c(1−πi)
∫
|μi|π(μi|γi = 1,xxx)dμi.

Consequently, the posterior expected loss is minimized by rejecting H0,i (i.e., setting
di = 1) when

1−πi <
c
∫
IR |μi|π(μi|γi = 1,xxx)dμi

1+ c
∫
IR |μi|π(μi|γi = 1,xxx)dμi

. (11.6.4)

Note that this, too, is a thresholding rule for πi, and the larger E(|μi||γi = 1,xxx) is, the
smaller the threshold. There is some evidence that, for appropriate prior selection, the
posterior expectations of the μis would be large enough that H0,i would be rejected
for extreme observations even when the posterior odds against an outcome xi repre-
senting a nonzero μi are large. This appears to happen in cases where the number of
observations that are noise (i.e., come from μis best taken as 0) is large.

11.7 Notes

11.7.1 Proof of the Benjamini-Hochberg Theorem

For the sake of clarity, use uppercase and lowercase to distinguish between realized
p-values and p-values as random variables. Also, let Pi for i = 1, ...,m1 = m−m0 be
the p-values for the false hypotheses and let P′i for i = 1, ...,m0 be the p-values for the
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true null hypotheses. For convenience, write P(m0) for the largest p-value of the true
nulls.

Assuming that the first m0 hypotheses (i.e., H1,...,Hm0 ) are true, the theorem follows
by taking expectations on both sides of

E(V/R |Pm0+1 = pm0+1, ...Pm = pm0+m1)≤
m0

m
α, (11.7.1)

so it is enough to prove (11.7.1) by induction on m.

The case m = 1 is immediate since there is one hypothesis, which is either true or
false. The induction hypothesis is that (11.7.1) is true for any m′ ≤ m. So, it is enough
to verify (11.7.1) for m+1. In this case, m0 ranges from 0 to m+1 and m1 ranges from
m+1 to 0, correspondingly.

Now, for m+1, if m0 = 0, all the nulls are false, V/R = 0, and

E(V/R |P1 = p1, ...,Pm = pm) = 0≤ m0

m+1
α. (11.7.2)

So, to control the level at the m+1 stage, it is enough to look at m0 ≥ 1.

To do this, fix a nonzero value of m0 and consider Pi for i = 1, ...,m0, the m0 p-values
corresponding to the true nulls. These can be regarded as m0 independent outcomes
from a Uni f orm(0,1) distribution. Write the largest order statistic from these p-values
as P(m0). Without loss of generality, order the p-values corresponding to the false nulls
so that the Pm0+i = pm0+i for i = 1, ...,m1 satisfy pm0+1 ≤ pm0+2 ≤ . . .≤ pm0+m1 .

Now, consistent with the BH method, let j0 be the largest value of j in {0, ...,m1} for
which the BH method rejects Hj and necessarily all hypotheses with smaller p-values.
That is, set

j0 = max

{
j|pm0+ j ≤

m0 + j
m+1

α, j = 1, ...,m1

}
, (11.7.3)

and write p∗ to mean the maximum value of the threshold,

p∗ =
m0 + j0
m+1

α.

Next represent the conditional expectation given the p-values from the false nulls as the
integral in which the expectation has been further conditioned on the largest p-value
P(m0) from the true nulls,

E(V/R |Pm0+1, . . . ,Pm0+m1 = pm0+m+1)

=
∫ 1

p∗
E(V/R |P(m0) = p,Pm0+1, ...,Pm0+m1 = pm0+m+1) fP(m0) (p)d p

+
∫ p∗

0
E(V/R |P(m0) = p,Pm0+1, ...,Pm0+m1 = pm0+m+1) fP(m0) (p)d p,

(11.7.4)
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in which the density fP(m0) (p) = m0 p(m0−1) for P(m0) comes from the fact that it is the

largest order statistic from a Uni f orm(0,1) sample.

In the second term on the right in (11.7.4), p ≤ p∗, so all m0 true hypotheses are
rejected, as are the first j0 false hypotheses. That is, on this domain of integration,
m0 + j0 hypotheses are rejected and (V/R) = m0/(m0 + j0). Now, the integral in the
second term of (11.7.4) is

m0

m0 + j0
(p∗)m0 ≤ m0

m0 + j0

m0 + j0
m+1

α(p∗)m0−1 =
m0

m+1
α(p∗)m0−1, (11.7.5)

in which the inequality follows from the bound in (11.7.3).

To deal with the first term in (11.7.4), write it as the sum

∫ pm0+ j0+1

p∗ E(V/R |P(m0) = p,Pm0+1 = pm0+1, ...,Pm0+m1 = pm0+m+1) fP′(m0)
(p)d p

+
m1− j0−1

∑
i=1

∫ pm0+ j0+i+1

pm0+ j0+i

E(V/R |P(m0) = p,Pm0+1 = pm0+1, ...

...,Pm0+m1 = pm0+m+1) fP(m0) (p)d p

+
∫ 1

pm0+m1

E(V/R |P(m0) = p,Pm0+1 = pm0+1, ...

...,Pm0+m1 = pm0+m+1) fP(m0) (p)d p, (11.7.6)

in which pm0+ j0 ≤ p∗ < P(m0) = p < pm0+ j0+1 for the first term, pm0+ j0 < pm0+ j ≤
P(m0) = p < pm0+ j+1 for the terms in the summation, and the last term is just the
truncation at 1.

To control (11.7.6), it is enough to get an upper bound on the integrands that depends
on p (but not on the domain of integration) so as to set up an application of the induc-
tion hypothesis.

So, fix one of the terms in (11.7.6) and observe that, because of the careful way j0
and p∗ have been defined, no hypothesis can be rejected because of the values of p,
pm0+ j0+1, ..., pm0+m1 , because they are bigger than the cutoff p∗. Therefore, when all
m0 +m1 hypotheses are considered together and their p-values ordered from 1 to m, a
hypothesis H(i) corresponding to p(i) is rejected if and only if

∃k ∈ {i, ...,m0 + j0−1} : p(k) ≤
k

m+1
α

⇔
p(k)

p
≤ k

m0 + j0−1
m0 + j0−1
(m+1)p

α. (11.7.7)

When conditioning on P(m0) = p, the m0 + j0 − 1 p-values, the p(k)s, on the right-
hand side of (11.7.4) have two forms. Some, m0 of them, correspond to true His. Of
these, the largest is the condition P(m0) = p. For the other m0 − 1 true hypotheses,
p(k)/p really is of the form Pi/p for some i = 1, ...,m0− 1, which are independent
Uni f orm(0,1) variates. The rest, j0 − 1 of them, correspond to false His. In these
cases, p(k)/p corresponds to pm0+i/p for i = 1, ..., j0−1.
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Using the criterion (11.7.7) to test the m0 + j0− 1 ≤ m hypotheses is equivalent to
using the BH method with α chosen to be

α ′ =
m0 + j0−1
(m+1)p

α.

Therefore, the induction hypothesis (11.7.1) for this choice of α ′ and the extra condi-
tioning on p, with m0 replaced by m0−1, can be applied. The result is

E(V/R |P(m0) = p,Pm0+1 = pm0+1, ...,Pm0+m1 = pm0+m+1)

≤ m0−1
m0 + j0−1

× m0 + j0−1
(m+1)p

α =
m0−1

(m+1)p
α, (11.7.8)

which depends on p but not on the i in (11.7.6) for which it was derived. That is,
the bound in (11.7.8) is independent of the segment pm0+i ≤ p ≤ pm0+i+1, the initial
segment bounded by p∗, and the terminal segment bounded by 1.

Using (11.7.8) as a bound on the integrand in the first term in (11.7.4) gives that it is

∫ 1

p∗
E(V/R |P(m0) = p,Pm0+1, ...,Pm0+m1 = pm0+m+1) fP(m0) (p)d p

≤
∫ 1

p∗

m0−1
(m+1)p

α×m0 pm0−1d p =
∫ 1

p∗
(m0−1)pm0−2d p

=
m0

m+1
α(1− (p∗)m0−1). (11.7.9)

Finally, adding the bounds on the two terms in (11.7.4) from (11.7.5) and (11.7.9) gives
(11.7.4) for m+1, so the induction is complete. �

11.7.2 Proof of the Benjamini-Yekutieli Theorem

Let αi = (1/m)α be the threshold for the ith p-value for i = 1, ...,m. Now partition the
sample space into sets

Av,s = {xxx : under TTT , BH rejects exactly v true and s false hypotheses},

so that the FDR is

E

(
V
R

)
=

m1

∑
s=0

m0

∑
v=1

v
v+ s

IP(Av,s), (11.7.10)

and let Pi be the p-value for the ith true hypothesis, as a random variable, from Ti for
i = 1, ...,m0.

Step 1: For any fixed v, s,
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IP(Av,s) =
1
v

m0

∑
i=1

IP({Pi ≤ αv+s}∩Av,s).

Let w be a subset of {1, ...,m0} of size v and define the event

Aw
v,s = {the v true nulls rejected are in w}. (11.7.11)

Now, Av,s is the disjoint union of the Aw
v,ss over all possible distinct ws.

Now, ignoring the v, consider the sum on the right-hand side. It is

m0

∑
i=1

IP({Pi ≤ αv+s}∩Av,s) =∑
w

m0

∑
i=1

IP({Pi ≤ αv+s}∩Aw
v,s). (11.7.12)

There are two cases: i∈w and i /∈w. If i∈w, (i.e., Hi is rejected), then, by construction,
Pi ≤ αv+s and conversely, if Pi ≤ αv+s, then Hi must be rejected and so corresponds
to an outcome in Aw

v,s. Thus, for i ∈ w, IP(Pi ≤ αv+s ∩Aw
v,s) = IP(Aw

v,s). If i /∈ w, then
IP(Pi ≤ αv+s∩Aw

v,s) = 0 because the two events are disjoint.

So, the right-hand side of (11.7.12) is

∑
w

m0

∑
i=1

χi∈wIP(Aw
v,s) =∑

w
vIP(Aw

v,s) = vIP(Av,s).

To state Step 2, two classes of sets must be defined. Let

Cv,s(î) = { if Hi is rejected, then so are v−1 other true nulls and v false nulls},

and denote unions over these sets by

Ck(î) = ∪v,s:v+s=kCv,s(î).

Roughly, Cv,s(î) is the event that Hi is one of the v rejected hypotheses and Ck(î) is the
event that, out of all the ways to reject exactly k hypotheses, one of them is Hi.

Step 2: The FDR can be written as

E

(
V
R

)
=

m0

∑
i=1

m

∑
k=1

1
k

IP({Pi ≤ αk}∩Ck(î)).

Start by using Step 1 in (11.7.11) to get

E

(
V
R

)
=

m1

∑
s=0

m0

∑
v=1

m0

∑
i=0

1
v+ s

IP(Pi ≤ αv+s∩Av,s). (11.7.13)

It is the intersected events in the probability that can be simplified. Note that Cv,s(î)⊂
Av,s since the event that one rejected hypothesis out of v+ s rejections is Hi is a subset
of there being vs rejected hypotheses in total. So,
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Pi ≤ αv+s∩Av,s =
[
Pi ≤ αv+s∩Cv,s(î)

]
∪
[
Pi ≤ αv+s∩ (Av,s \Cv,s(î))

]
,

in which the second intersection is void because Pi≤αv+s means that Hi is rejected and
Av,s \Cv,s(î) means Hi is not rejected. Using this substitution in (11.7.13) and noting
that for each i the events Ck(î) are mutually disjoint (for k and k′ 	= k, different numbers
of His are rejected) and so their probabilities can be summed, gives Step 2.

To state Step 3, define

Dk(î) = ∪ j: j≤kCj(î)

for k = 1, ...,m. This is the set on which k or fewer of the m hypotheses are rejected,
one of them being Hi, regardless of whether they are true or not. This will set up an
application of the PRDS property to bound the inner sum in (11.7.13) by α/m.

Step 3: The set Dk(î) is nondecreasing.

To see Step 3, it is enough to reexpress Dk(î) in terms of inequalities on p-values. First,
let P(î) be the ordered vector of m−1 p-values formed by leaving out the ith p-value
corresponding to Hi. Now, P(î) has m−1 entries,

P(î) = (P(1)(î), ...,P(m−1)(î)).

On the set Dk(î), Hi is rejected, so its p-value must be below its BH threshold. Also,
k− 1 other hypotheses must be rejected so the smallest BH threshold that a p-value
can be above is αk+1 and the smallest p-value must be the kth entry of P(î). That is, on
Dk(î), αk+1 ≤ P(k)(î). The next smallest BH threshold is αk+2, and the next smallest
p-value must be the k+1 entry of P(î) and on Dk(î) they must satisfy αk+2 ≤ P(k+1)(î).
Proceeding in this way gives that

Dk(î) = {ppp = pppk(î)|αk+1 ≤ p(k)(î), ...,αm ≤ p(m−1)(î)},

from which it is easily seen that Dk(î) is nondecreasing.

Step 4: For i = 1, ...,m−1,

m

∑
k=1

IP({Pi ≤ αk}∩Ck(î))
IP(Pi ≤ αk)

≤ 1.

This is where the PRDS property is used. For any nondecreasing set D, p≤ q implies
IP(D|Pi = p) ≤ IP(D|Pi = q). So, IP(D|Pi ≤ p) ≤ IP(D|Pi ≤ q), see Lehmann (1966)
(which could be used as the definition of PRDS). Setting D = {Pi≤ qk}∩Dk(î), p =αk,
and q = αk+1 gives

IP({Pi ≤ αk}∩Dk(î))
IP(Pi ≤ αk)

≤ IP({Pi ≤ αk+1}∩Dk(î))
IP(Pi ≤ αk+1)

. (11.7.14)

Using D j+1(î) = D j(î)∪Cj+1(î) in (11.7.14) gives
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IP({Pi ≤ αk}∩Dk(î))
IP(Pi ≤ αk)

+
IP({Pi ≤ αk+1}∩Dk(î))

IP(Pi ≤ αk+1)

≤ IP({Pi ≤ αk+1}∩Dk(î))
IP(Pi ≤ αk+1)

+
IP({Pi ≤ αk+1}∩Dk(î))

IP(Pi ≤ αk+1)

=
IP({Pi ≤ αk+1}∩Dk+1(î))

IP(Pi ≤ αk+1)

for k = 1, ...,m−1.

To complete Step 4, take the sum over k = 1, ...,m−1: Since D1(î) = C1(î) for each i,
once k = 2 on the left the first term on the left cancels with the term on the right for
k = 1 and so forth for k = 3,4, ...m−1 until the last uncanceled term on the right is

IP({Pi ≤ αm}∩Dm(î))
IP(Pi ≤ αm)

≤ 1 (11.7.15)

since Dm(î) is the whole sample space.

Step 5: To complete the proof, note that, under Hi, IP(Pi ≤ αk)≤ αk = (k/m)α , so that
from Step 2

E

(
V
R

)
≤

m0

∑
i=1

m

∑
k=1

α
m

IP({Pi ≤ αk}∩Ck(î))
IP(Pi ≤ αk)

. (11.7.16)

Now, Step 4 completes the proof. �
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additive models, 172
hypothesis test for terms, 178
optimality, 181

additivity and variance stabilization, 218
Akaike information criterion, see information

criteria
alternating conditional expectations, 218
Australian crabs

self-organizing maps, 557

backfitting, 184
backfitting algorithm, 173–177
Bayes, see Bayes variable selection, information

criteria, see Bayes testing
model average

dilution, 311
cluster validation, 482
cross-validation, 598
extended formulation, 400–402
model average, 310–312
nonparametrics, 334

Dirichlet process, 334, 460
Polya tree priors, 336

Occam’s window, 312
Zellner g-prior, 311

Bayes clustering, 458
general case, 460
hierarchical, 458, 461
hypothesis testing, 461

Bayes rules
classification, 241

high dimension, 248
normal case, 242
risk, 243

Idiot’s, 241
multiclass SVM, 294
relevance vector classification, 350
risk, 331
splines, 343

Bayes testing, 727
decision theoretic, 731

alternative losses, 734
linear loss, 736
proportion of false positives, 732
zero one loss, 733

hierarchical, 728
paradigm example, 728–729

pFDR, 719, 729
step down procedure, 730

Bayes variable selection
and information criteria, 652
Bayes factors, 648

variants, 649
choice of prior, 635

on parameters, 638–643
on the model space, 636–638

dilution priors on the model space, 637
hierarchical formulation, 633
independence priors on the model space, 636
Markov chain Monte Carlo, 643

closed form posterior, 643
Gibbs sampler, 645
Metropolis-Hastings, 645

normal-normal on parameters, 641
point-normal on parameters, 639
prior as penalty, 650
scenarios, 632
spike and slab on parameters, 638
stochastic search, 646
Zellner’s g-prior on parameters, 640

Bayesian testing
step down procedure

parallel to BH, 731
big-O, 23
blind source separation model, see independent

component analysis
boosting

and LASSO, 621

773
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as logistic regression, 320
properties, 325
training error, 323

bootstrap, 18
asymptotics, 41–43
in parameter estimation, 21
with a pivot, 23
without a pivot, 25

branch and bound, 573

classification, see Bayes rules, see discriminant
function, see logic trees, see neural
networks, see random forests, see
relevance vector classification, see support
vector machines, see tree based, see
discriminant function, see Bayes rules, see
logistic regression classification

neural networks, 294–295
clustering, 405

Bayes, see Bayes clustering
dendrogram, 415
dissimilarity

choices, 415
definition, 410
matrix, 418
monothetic vs polythetic, 419
selecting one, 421

EM algorithm, see EM algorithm
graph-theoretic, see graph-theoretic clustering
hierarchical

agglomerative, 414
conditions, 427–428
convergence, 429
definition, 406
divisive, 422

partitional
criteria, 431
definition, 406
objective functions, 431
procedures, 432

problems
chaining, 416
clumping, 407
scaling up, 418

techniques
centroid-based, 408–413
choice of linkage, 415
divisive K-means, 424
hierarchical, 413–426
implementations, 417, 423
K-means, 407, 409–411
K-medians, 412
K-medoids, 412
model based, 432–447
principal direction divisive partitioning, 425
Ward’s method, 413

validation, 480
association rules, 483
Bayesian, 482
choice of dissimilarity, 480
external, 481
internal, 482
relative, 482
silhouette index, 482

concurvity, 5, 10, 176–178, 188, 213
convex optimization

dual problem, 276
Lagrangian, 275
slack variables, 280

convex optimzation
primal form, 274

cross-validation, 27–29
choices for K, 593
consistency, 594
generalized, 591
in model selection, 587

K-fold cross-validation, 590
leave one out, 588

inconsistency as overfit, 595
leave-one-out

equivalent to Cp, 592
median error, 598
unifying theorem, 596
variations, 598

Curse, 3–4, 39
Barron’s Theorem, 197

statement, 200
descriptions, 5
error growth, 12
experimental design, 11
feature vector dimension, 284
Friedman function

comparisons, 394
instability of fit, 9
kernel estimators, 159
kernel methods, 89
kernel smoothers

convergence, 89
kernel smoothing, 152
linearity assumption, 8
LOESS, 65
nearest neighbors, 100
neural networks, 192
parsimony principle, 17
projection pursuit regression, 188, 189
ranking methods in regression, 575
reproducing kernel Hilbert spaces, 152–154
scatterplot smooths, 55
sliced inverse regression, 215
smooth models, 172
splines, 117
superexponential growth, 8
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support vector machines, 233, 290

derivatives
notation, 484

design, 11
A-optimality, 11
D-optimality, 11
G-optimality, 11
Hammersley points, 12
sequentially, 11

dilution, 637
dimension

average local, 14
high, 248
local, 13, 15
locally low, 12
Vapnik-Chervonenkis, 269

dimension reduction, see feature selection, see
variable selection

variance bias tradeoff, 494
discriminant function, 232, 235, 239

Bayes, 239
distance based, 236

ratio of variances, 237
Fisher’s LDA, 239

decision boundary, 244
regression, 241

Mahalanobis, 239
quadratic, 243

early smoothers, 55
Edgeworth expansion, 23, 26
EM algorithm

properties, 445
exponential family, 444
general derivation, 438
K components, 440
two normal components, 436

empirical distribution function
convergence, 20
estimates from, 20
Glivenko-Cantelli Theorem, 19
large deviations, 19

empirical risk, 267, 332
ensemble methods

bagging, 312
indicator functions, 315
stability vs bias, 313

Bayes model averaging, 310
boosting, 318

relation to SVMs, 321
classification, 326
definition, 308
functional aggregation, 326
stacking, 316

ε-insensitive loss, 290

example, see visualization
Australian crab data

self-organizing maps, 557
Australian crabs

projections, 542
Boston housing data

LARS, LASSO, forward stagewise, 619
Canadian expenditures

Chernoff faces, 547
profiles and stars, 535

Ethanol data
Nadaraya-Watson, 102
splines, 135

Fisher’s Iris Data, 366
centroid based clustering, 477
EM algorithm, 478
hierarchical agglomerative clustering, 475
hierarchical divisive clustering, 477
neural networks, 367
spectral clustering, 479
support vector machines, 368
tree models, 367

Friedman function
generalized additive model, 392
six models compared, 390

high D cubes
multidimensional scaling, 551

mtcars data
heat map, 539

Ripley’s data, 369
centroid based clustering, 468
EM algorithm, 471
hierarchical agglomerative clustering, 465
hierarchical divisive clustering, 468
neural networks, 372
relevance vector machines, 375
spectral clustering, 472
support vector machines, 373
tree models, 370

simulated
LOESS, 102
Nadaraya-Watson, 100

simulated, linear model
AIC, BIC, GCV, 654–657
Bayes, 659–665
Enet, AEnet, LASSO, ALASSO, SCAD,

658–659
screening for large p, 665–667

sinc, 2D
LOESS, NW, Splines, 160

sinc, dependent data
LOESS, NW, Splines, 157

sinc, IID data
Gaussian processes, 387
generalized additive model, 389
neural networks, 379
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relevance vector machines, 385
support vector machines, 383
tree models, 378

sinc, IID data, LOESS, NW, Splines, 155
sunspot data

time dependence, 544
two clusters in regression, 532

factor analysis, 502–508
choosing factors, 506
estimating factor scores, 507
indeterminates, 504
large sample inference for K, 506
ML factors, 504
model, 502
principal factors, 505
reduction to PCs, 503

false discovery proportion, see false discovery
rate

false discovery rate, 707
Benjamini-Hochberg procedure, 710

dependent data, 712
theorem, 711

Benjamini-Yekutieli procedure
theorem, 712

false discovery proportion, 717
step down test, 718

false non-discovery rate, 714
asymptotic threshold, 714
asymptotics, 715
classification risk, 715
optimization, 716

Simes’ inequality, 713
variants, 709

false nondiscovery rate, see false discovery rate
familywise error rate, 690

Bonferroni, 690
permutation test

stepdown minP, maxT, 694
permutation tests, 692

maxT, 692
Sidak, 691
stepwise adjustments

stepdown Bonferroni, Sidak, 693
stepdown minP, maxT, 694

Westfall and Young
minP, maxT, 691

feature selection, see factor analysis, see
independent components, see partial
least squares, see principal components,
see projection pursuit, see sufficient
dimensions, see supervised dimension
reduction, see variable selection, see
visualization, 493

linear vs nonlinear, 494
nonlinear

distance, 519
geometric, 518–522
independent components, 518
principal components, 517
principal curve, 520

Gaussian processes, 338
and splines, 340

generalized additive models, 182
backfitting, 183

generalized cross-validation, 30, 591
generalized linear model, 181
Gini index, 205, 252
graph-theoretic clustering, 447

cluster tree, 448
k-degree algorithm, 450
Kruskal’s algorithm, 449, 484
minimal spanning tree, 448
Prim’s algorithm, 449, 485
region, 451
spectral

graph Laplacian, 452, 456
minimizing cuts, 453
mininizing cuts divisively, 455
other cut criteria, 455
properties, 456

Green’s Functions, 150

Hadamard, ill-posed, 138
Hammersley points, 38–39
hidden Markov models

definition, 352
problems, 354

Hoeffding’s inequality, 296
Holder continuous, 75

independent component analysis
computational approach

FastICA, 515
definitions, 511–513
form of model, 511
properties, 513

independent components analysis, 516
information criteria

Akaike, 580
corrected, 586
justification, 580
risk bound, 582

Akaike vs Bayes, 585
and Bayes variable selection, 652
basic inequality, 579
Bayes, 583

consistency, 584
definition, 578
deviance information, 586
Hannan-Quin, 586
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Mallows’, 572, 578
risk inflation, 586

Karush-Kuhn-Tucker conditions, 274, 277
kernel, 284

choices, 74, 288
definition, 73
Mercer, 285

kernel trick, 284

leave-one-out property, 589
linearly separable, 234
Lipschitz continuous, 74
little-o, 23
local dimension, 12
logic trees, 253
logistic regression classification, 232, 246–247,

349

median cross-validation, 598
Mercer conditions, 285
model selection procedure, 31
multiclass classification, 234

reduction to binary, 234
multicollinearity, 5, 9
multidimensional scaling, 547–553

implementation in SMACOF, 550
minimization problem, 548
representativity, 549
variations, 551

multiple comparisons, 679, see Bayes testing,
see false discovery rate, see familywise
error rate, see per comparison error rate,
see positive false discovery rate

ANOVA
Bonferroni correction, 680
Scheffe’s method, 680
Tukey’s method, 680

criteria
Bayes decision theory, 731
fully Bayes, 728
FWER, PCER/PFER, FDR, pFDR, 685

family error rate, 683
table for repeated testing, 684
terminology

adjusted p-values, 689
stepwise vs single step, 688
types of control, 688

two normal means example, 681
multivariate adaptive regression splines, 210

fitting, 212
model, 211
properties, 213

Nadaraya-Watson, 78
as smoother, see smoothers, classical

variable bandwidth, 131
nearest neighbors, 96–100
neural networks

architecture, 191
approximation, 199
backpropagation, 192
backpropogation, 196
bias-variance, 199
definition, 189
feedforward, 190
interpretation, 200

no free lunch, 365, 397
statement, 400

nonparametric optimality, 180

occupancy, 255
oracle inequality, 328

classification
LeCue, 333

generic, 329
regression

Yang, 331
oracle property, 600
orthogonal design matrix, 601

parsimony, 17
partial least squares

properties, 526
simple case, 523
Wold’s NIPALS, 524

per comparison error rate, 695
adjusted p-values

single step, 706
asymptotic level, 703
basic inequality, 696
common cutoffs

single step, 700
adjusted p-values, 701

common quantiles
adjusted p-values, 699
single step, 698

constructing the null, 704
generic strategy, 697

per family error rate, see per comparison error
rate

polynomial interpolation, 60–61
Lagrange, 62

positive false discovery rate, 719
estimation, 723

number of true nulls, 726
parameter selection, 725
q-value, 726

posterior interpretation, 720
q-value, 721

rejection region, 722
rejection region, 721
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positive regression dependence on a subset, 711
prediction, 309, 647

bagging, 312
Bayes model averaging, 311
Bayes nonparametrics

Dirichlet process prior, 335
Gaussian process priors, 339
Polya trees, 337

boosting, 318
stacking, 316

principal component analysis, 511
principal components, 16, 495

canonical correlation, 500
empirical PCs, 501
main theorem, 496

Lagrange multipliers, 497
quadratic maximization, 498

normal case, 499
properties, 498
techniques for selecting, 501
using correlation matrix, 500

projection pursuit, 508–511
choices for the index, 510
projection index, 509

projection pursuit regression, 184
non-uniqueness, 186
properties, 188

q-value, 721, see positive false discovery rate

random forests, 254
asymptotics, 258
out of bag error, 255
random feature selection, 256

recursive partitioning, see tree models
regluarization

representer theorem, 153
regression, see additive models, see additivity

and variance stabilization, see alternating
conditional expectations, see generalized
additive models, see multivariate adaptive
regression splines, see neural networks,
see projection pursuit, see relevance vector
regression, see support vector regression,
see tree based models

systematic simulation study, 397
regularization

cubic splines, 121
empirical risk, 122
in multiclass SVMs, 293
in reproducing kernel Hilbert spaces, 147
in smoothing splines, 122, 137
neural networks, 199, 379
relevance vector machines, 345
tree models, 207, 370

regularized risk, 121, 137, 286, 341

relevance vector, 345
relevance vector classification, 349

Laplace’s method, 350
relevance vector machines

Bayesian derivation, 346–348
parameter estimation, 348

relevance vector regression, 345
relevance vectors

definition, 347
interpretation, 348

reproducing kernel Hilbert space, 122
construction, 141–143
decomposition theorem, 150
definition, 140
direct sum construction, 146
example, 144
Gaussian process prior, 343
general case, 147
general example, 149
kernel function, 140
spline case, 143

risk, 265–270, 328
confidence interval, 269
hinge loss, 332
hypothesis testing, 715
zero-one loss, 266

search
binary, 35
bracketing, 33
graph, 37
list, 35
Nelder-Mead, 33
Newton-Raphson, 32
simulated annealing, 34
tree, 35
univariate, 32

self-organizing maps, 553–560
contrast with MDS, 559
definition, 554
implementation, 556
interpretation, 554
procedure, 554
relation to clustering, PCs, NNs, 556

shattering, 269
shrinkage

Adaptive LASSO, 610
properties, 611

Bridge
asymptotic distribution, 609
consistency, 608

Bridge penalties, 607
choice of penalty, 601
definition, 599
elastic net, 616
GLMs, 623
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LASSO, 604
and boosting, 621
grouped variables, 616
properties, 605–606

least angle regression, 617
non-negative garrotte, 603

limitations, 604
nonlinear models

adaptive COSSO, 627
basis pursuit, 626
COSSO, 626

optimization problem, 601
oracle, 600
orthogonal design matrix, 601, 603
penalty as prior, 650
ridge regression, 602
SCAD

difference of convex functions, 614
local linear approximation, 615
local quadratic approximation, 613
majorize-minimize procedure, 613

SCAD penalty, 611
properties, 612

SS-ANOVA framework, 624–625
support vector machines

absolute error, binary case, 629
absolute error, multiclass, 630
adaptive supnorm, multiclass, 631
double sparsity, 628
SCAD, binary case, 629
supnorm, multiclass, 630

tree models, 623
singular value decomposition, 250, 602
sliced inverse regression, 215

and sufficient dimensions, 528
elliptical symmetry, 215, 339
properties, 217

smooth, 55
smoothers

classical
B-splines, 127
kernel bandwidth, 92–94
kernel selection, 90
LOESS, 64–67
Nadaraya-Watson, 78–81
nearest neighbors classification, 96
nearest neighbors regression, 99
NW AMISE, 85
NW asymptotic normality, 85
NW consistency, 81
Parzen-Rosenblatt, 78
Priestly-Chao, 75–77
rates for Kernel smoothers, 86
rates for kernel smoothers, 90
smoothing parameter selection, 129
smoothing spline parameter, 121

spline asymptotic normality, 133
spline bias, 131
spline MISE, 132
spline penalty, 121
spline variance, 131
spline vs kernel, 130
splines, 124, see spline, 126–131

early smoothers
bin, 56
moving average, 57
running line, 57
bin, 118
running line, 118

linear, 95
Sobolev space, 123, 163
sparse, 5, 6

data, 594
matrices, 175
posterior, 347
principal components, 499
relevance vector machine, 345
relevance vector machines, 344
RVM on Ripley’s data, 375
RVM vs SVM, 348
similarity matrix, 417
SS-ANOVA, 627
support vector machine, 277
SVM and Ripley’s data, 373
tree model

sinc function, 391
sparsity, 6–8, 11

and basis pursuit, 626
and LASSO, 606
and oracle inequalities, 632
of data, 481, 541
of graphs, 490
of local linear approximation, 615
relevance vector machine, 346
RVM vs SVM, 375, 396
shrinkage methods, 599
support vector machines, 628
through thresholding, 636

spline, 117
as Bayes rule, 344
as smoother, see smoothers, classical
B-spline basis, 128
band matrix, 124
Cox-de Boor recursion, 127
cubic, 118
definition, 117
first order, 118
Hilbert space formulation, 136
interpolating, 117–120
natural cubic, 120, 123

optimal, 125, 127
uniqueness, 125
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thin plate, 152
zero-th order, 118

sufficient dimensions, 527
and sliced inverse regression, 528
estimating the central subspace, 528
quadratic discrepancy function, 529
testing for dimension, 530

superexponentially, 5, 8
supervised dimension reduciton

sufficient dimensions, 527
supervised dimension reduction

partial least squares, 523
support vector machines, 262

distance, 264
general case, 282

linearization by kernels, 283
Mercer kernels, 285

linearly separable, 271–279
margin, 262

maximization, 271
margin expression, 273
multiclass, 293
not linearly separable, 279–282

dual problem, 281
primal form, 281

optimization, 274
dual form, 278
primal form, 276

regularized optimization, 286
separating hyperplane, 262, 270

support vector regression, 290–292

template
Friedman PPR, 185
ACE, 219
average local dimension, 15
backfitting, 173
Bayes BH procedure, 731
Bonferroni, 690
boosted LASSO, 622
boosting, 318
Chen’s PPR, 187
constructing the null, 706
dense regions in a graph, 451
divisive K-means clustering, 424
EM algorithm, 437
estimating FDR and pFDR, 724
FastICA, 516
hierarchical agglomerative, 414
hierarchical divisive clustering, 422
least angle regression, 617
MARS, 212
maxT, 692
Metroplis-Hastings, 645
NIPALS

deflating the matrix, 525

finding a factor, 525
partitional clustering, 430
PCER/PFER generic strategy, 697
principal curves, 521
principal direction divisive partitioning

clustering, 425
projection pursuit, 509
self-organizing map, 554
shotgun stochastic search, 646
Sidak adjustment, 691
single step, common cutoffs, 700
single step, common quantiles, 698
SIR, 217
stepdown permutation minP, 694

theorem
Aronszajn, 141
Barron, 201
Benjamini-Hochberg, 711, 712
Benjamini-Yekutieli, 712
Breiman, 258, 261
Buhlman-Yu, 315
calculating q-values, 726
Chen, 188
Cook-Ni, 530
Devroye et al., 100
Devroye-Wagner, 89
Duan and Li, 216
Dudoit et al., 703, 705
Dudoit, et al., 699
Eriksson and Koivunen, 513
Fan and Jiang, 179
Friedman et al., 320
Gasser-Muller, 76
Genovese and Wasserman, 714, 715
Green-Silverman, 124
Hoeffding, 297
Kagan et al., 513
Kleinberg, 428
Knight-Fu, 608, 609
LeCue, 333
Luxburg, 457
Mercer-Hilbert-Schmidt, 142
Muller, 597
Rahman and Rivals, 256
Representer, 151, 153
Riesz representation, 139
Romano and Shaikh, 719
Schapire et al., 323
semiparametric Representer, 154
Shi and Malik, 454
Silverman, 130
Storey, 720, 722
Vapnik, 271
Vapnik and Chervonenkis, 269, 324
White, 195, 196
Wu, 446
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Yang, 331
Yang’s, 582
Zhou et al., 131
Zou, 611
Zou and Hastie, 617

tree based classifiers, 249
splitting rules, 249

Gini index, 252
impurity, 251
principal components, 251
twoing, 252

tree models
Bayesian, 210
benefits, 203
pruning, 207

cost-complexity, 207
regression, 202
selecting splits, 204

Gini, 205
twoing, 205

twin data, 30
twoing, 205, 252

variable selection, 569, see Bayes variable
selection, see cross-validation, see
information criteria, see shrinkage, see
variable ranking

classification
BW ratio, 575

SVMs, 628
in linear regression, 570
linear regression

forward, backward, stepwise, 573
leaps and bounds, 573
subset selection, 572

ranking
Dantzig selector, 576
sure independence screening, 576

VC dimension, 269, 297
indicator functions on the real line, 298
Levin-Denker example, 300
planes through the origin, 298
shattering, 269

visualization, see multidimensional scaling, see
self-organizing maps, 532

Chernoff faces, 546
elementary techniques, 534

graphs and trees, 538
heat map, 539
profiles and stars, 535
projections, 541
time dependence, 543

GGobi, 534
Shepard plot, 549
using up data, 533

Wronskian, 149
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